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Abstract

‘We present a closed form analytical solution to the problem
of obtaining surface normal information from the specular and
Lambertian components of the image of a surface. We show that
this algebraic approach to the fusion of data is extremely sensi-
tive to noise and we therefore provide two alternative approaches
based on the minimization of energy functionals. The first ap-
proach weights the specular and Lambertian information uni-
formly over the image with respect to a smoothness constraint.
The second approach weights the specular and Lambertian com-
ponents adaptively according to a measure of the sensitivity of
the algebraically derived surface normals to noise in the mea-
sured image components. This results in a greater dependence
on the smoothness constraint in the parts of the image where
the surface reconstruction process is most sensitive to noise and
provides a more accurate reconstruction of the surface than the
uniform weighting technique.

1 An Algebraic Approach to Fusing
Specular and Lambertian
Reflectance Data

The vision process that we examine in this paper is that of obtain-
ing object shape from information about the specular and Lambertian
components of an image.

We will assume that we have available two spatially and temporally
registered images, corresponding to the specular and Lambertian com-
ponents of the surface reflectance. It is possible to extract the specular
and Lambertian reflectance components from a color image. If we as-
sume a dichromatic model of surface reflectance [5, 6], it is possible
to use color information to distinguish between these two reflectance
components [3, 7). Another approach for extracting the specular and
Lambertian reflectance components involves the use of polarizing fil-
ters. This approach was described in [8].

However the specular and Lambertian surface reflectance compo-
nents are obtained, they can directly provide surface normal values,
assuming the following simple reflectance models. A simple model for
the reflectance function of specularities is given by

Ey(z,y) = (k- h(z,y))" = Rs(R) @

where E,(z,y) is the specular image intensity (normalized to lie be-
tween 0 and 1), k is a unit vector in the viewer direction, 3 is a unit
vector in the light source direction, 7 is the surface unit normal vector
and k is a unit vector that depends on 5 and #

h(z,y) = 2n(z,y) - $)A(e,y) - § )]
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The parameter m is a number corresponding to the sharpness of the
specularity. We also have the Lambertian shading component E;(#)
given by the Lambertian model

Ei(z,9) = (A(z,y) - 3) = Ru(R) ®)

The functions R,(#) and R;(7) are the reflectance maps for specular
and Lambertian surfaces respectively. Each of the image reflectance
components is, by itself, insufficient for the task of obtaining a unique
solution to the shape extraction problem, as in each case we have only
one equation for the two unknowns (the z and y components of the
surface unit normal vectors).

Using either the color based or polarization based methods of ex-
tracting specular and Lambertian reflectance we can obtain both E,
and E;. We therefore now have two equations for the surface nor-
mal, one from each reflectance component, and so theoretically there
is enough information to determine the two components of the surface
normal uniquely.

Combining the equations for the surface normal vectors as a func-
tion of the specular and Lambertian components we can see that (after
some algebra):

A(2) = a(8)5 + B(E)k +7(2)5 x k (4)
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with ¢Q = cosQ = k - 5 being the cosine of the angle between the
viewer direction and the light source, and sQ = sin{2. Note that there
is an ambiguity in the sign of v, which will manifest in an ambiguity
in the sign of the component of the unit normal vector in the direction
of § x k. This ambiguity cannot be resolved using ouly the specular
and Lambertian image components, since both R.(#) and Ri(f) are
symmetrical about & = 5 x k. Thus, in order to obtain a unique
surface normal, we must provide more information than just E, and
E;. In our implementation this information was put in by hand (i.e.
the sign of ¥ was predetermined from knowledge of the shape of the
synthetic surface used).

To investigate the uncertainty of the computed shape we see how
small changes in the input data affect the output. Suppose we have
perturbations éE; and 6E; in the input data. We then get changes in
the output of the fusional module given by

6 = (6)5+ (80)k + (67)s x k ®)

where
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It is clear from these equations that there will be instabilities as
Qe 0,E—0,E, — 0 and as 7 — 0. Since the instability as 7« 0
occurs when $, 2 and k are coplanar and ¥ = 0, it is non-generic in
the sense that any small perturbation of # will move one away from
the locus of instability. The instability as Q — 0, however, cannot
be avoided as this case occurs when k and § are parallel and occurs
independently of the value of A. In this situation information about
only one component of 7 is available. Similarly the instabilities as
E;— 0 and E, — 0 cannot be avoided.

A simple approach to the generation of uncertainty measures is to
look at the product of the uncertainty in the inputs with the sensitivity
of the computed surface normal to changes in the inputs. That is, we
linearize the variation of 67t with respect to §F, and §E; to give:

s (an(E,,E,,s,k)> 5B+ (Bn(E,{;EE,,s,k)) B (19)
1
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where 22 and :_l?z can be determined from equation (5) and the equa-
tions for éa, 843, and 87 to give:
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Our algorithm was run on a synthetic image of a sphere created
using the specular and Lambertian reflectance models of equations (1)
and (3), where it was assumed that the extraction of the specular and
Lambertian components has already been performed, and that we have
a module for computing the sign of v. We took, for the experiment,
m=15,5=(=1,0,1)/v2, k = (0,0,1). It was assumed that the noise
in the measurements of the specular and Lambertian image components
was white zero mean gaussian with variances o2 = .05 and o7 = .025.
Note that the Lambertian measurement is less noisy than the specular
measurement. The algorithm, however, does not use this information in
any way, as both measurements are absolutely required and we cannot
trade one off for the other. The original shaded image is shown in
figure 1. The resulting surface obtained from the algorithm is shown
in figure 2. To generate figure 2, we have moved the position of the
light source to § = (=1, 1,1)/v/3 to highlight the errors in the surface
normals. Note that the surface has been reconstructed only over a
fraction of the surface visible in the image. This is due to the fact that
the specular component E; becomes shadowed before the Lambertian
component does. Since both image components are required for the
surface reconstruction process, the surface normals are not computed
in the specular shadow area, even though the surface is visible due to
the Lambertian component. The reconstruction is essentially random
noise. The apparent step in the intensity of the reconstructed surface
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is due to the imposition of the correct sign of y. This creates a bias in
the mean value of the value of the y component of the reconstructed
surface normal map, leading to the difference in the mean brightness
for y < 0 and y > 0. The maximum error in the magnitude of the
surface normal was 1.22, and the errors were more or less uniformly
distributed.

One problem that was encountered in the application of the al-
gebraic algorithm to shape recovery from noisy images was a lack of
stability. This lack of stability is due to the fact that the range of the
mapping R from surface normals # to image components E,, E; does
not cover the area (0,1) x (0,1). Thus, there are pairs of E,, E; values
in the area (0,1) x (0,1) for which there is no corresponding surface
normal. For such (E,, E}) pairs the value of 4 will be imaginary. In a
noise free situation the pathological image component pairs that do not
have corresponding surface normals will not be observed. If the values
of E, and E; are noisy, however, then these values can be observed.
It is clear that these pathological values are most likely to arise when
the surface normals map to E, E; values near the boundary of the re-
gion containing allowable values. The form of the allowable brightness
component pairs is described in [2]. In our implementation a heuristic,
described in detail in [2], was used to associate a unique surface nor-
mal with a pathological image pair. This heuristic has the drawback
of allowing the algorithm to behave discontinuously to some smooth
variations in the input (i.e. when we have image pairs that are near
the boundary of the allowable region).

The shape from shading algorithm we have just described illus-
trates a major drawback of all algebraic fusional algorithms. In such
algorithms all sources of information are absolutely required. There is
no way to reduce the dependence of the solution on a unreliable source
of data. Thus, in situations where one, or more, of the sources of data
is very unreliable, the output of the module will likewise be very un-
reliable. In order to be able to minimize the effect of an unreliable
source of data in such a case we must replace the unreliable source of
data with some other, more reliable, source of information. Since, in
the application that we are examining, the specular and Lambertian
image components are the only scene dependent sources of information
we have available, any additional sources of information must be in the
form of a priori (scene independent) constraints.

2 Fusing Specular and Lambertian
Information Through Energy
Functional Minimization

As we have noted, there is no way, in general, to embed more constraints
in an algebraic formulation of a fusional problem than are needed to
obtain a unique solution. A Bayesian or energy function formulation
of data fusion, however, has the advantage over the algebraic method
that we can add additional constraints on the solution. This approach
will result in an algorithm which is more robust away from speculari-
ties than the algebraic algorithm that was described in the preceding
section.

To show how we can implement such an algorithm let us begin
by casting the algebraic solution of the previous section as an energy
function minimization problem. Consider:

A <—rr}'in/ [ex - i 8)2 + (BF — k- + u(llal] - 1)?) dA (16)

This equation is similar to the one described by Horn and Brooks [4].
The third term in the integrand is required to maintain the length of
the surface normals near unity.

1t is evident, in the noise free case, that the global minimum of this
energy functional occurs when /(%) is given by equation (5). Hence the
solution obtained through the energy minimization process is the same



as for the algebraic process. The energy function approach, however,
has the advantage that it is possible to embed additional constraints
on the problem, which can be used to reduce dependence on unreliable
data. For example we could include a smoothness term, of the form
[IV#||2 = (|0~/dz|?+|07/By|?) into the energy functional given above.

The smoothness term will reduce the effect of noisy inputs on the
resulting surface normal values. In addition, since the smoothness con-
straint allows the solution of the problem even if only one of the sources
of data are present (i.e. either E, only or Ej only), we can weight the
relative contributions of the input sources of data. Thus, if we know
that one source of data is much more reliable than the other, then we
can weight that source more highly than the unreliable source. For
example, we want to find (2, y) which minimizes:

/[wx(Ez—ﬁ'5)’+ws(En—("f-fl)'")z+/t(||ﬁ||'1)2+«\(IIVﬁl|2)]dA an

where w; and w, are weights related to the reliability associated with
the input data sources E; and E,. The weight ) determines the amount
of smoothing done on the resulting surface normal field.

The energy based fusion algorithm described above was run on the
same synthetic sphere data as was the algebraic algorithm in the previ-
ous section. The iterative approach described in (1] is used to minimize
the energy functional as follows. First, the Euler equations for the
surface normal components associated with the energy functional are
found to be:

w,(E, — R,(n)) R,(ﬁ))% +AVIH —pa =0 (18)
where
% i (19)
and
%’Z’ = [2k( - 8) + 25(h - B)lm[2(R - k)(R - 8) - (G- B)I™1 (20)

We then discretize the Euler equations and rearrange according to the
procedure given in [1] to yield the iteration equations:
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The purpose of the third equation above is to ensure that the surface
normal vector obtained has unit magnitude. Thus, the term involving
p does not appear in the iterative formulation. The indices (ij) index
into the spatial lattice of the input arrays E, and E;. The index k is
an iteration counter.

The above iterative method requires that boundary conditions on
the solution be specified. These are typically obtained from the occlud-
ing contour and the self-shadow line. If the reflectance function at the
self-shadow line is Lambertian only, then we have that # - § = 0. This
constraint, along with the constraint imposed by the perpendicular to
the self-shadow line in the image plane is enough to specify the surface
normal along the self-shadow line (this assumes that the image plane
is not parallel to the illumination direction, and that the self-shadow
boundary lies in a plane that is perpendicular to the illumination di-
rection [5]). We will ignore, for the purposes of this paper, the problem
of distinguishing self-shadow lines from occluding contours.

An important aspect to consider in the implementation of the itera-
tive solution to the Euler equation is the determination of the weights,
w, and w;. Ideally, we would like w, and w; to reflect our confidence
in the specular and Lambertian data sources. In practice, however, the
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value of these weights relative to the A term affect both the amount of
smoothness applied to the reconstructed surace normal field and the
stability of the iterative process. As the value of A decreases the incre-
ment added to ﬁ,‘-}’) in the iteration equation becomes larger. If A is too
small the iteration will become unstable and convergence will not be at-
tained. If, on the other hand, the value of X is too large, the increment
added to ﬁ(J) will be negligble and the resulting solution will depend
only on the boundary conditions. Thus, we would like to adjust A so
that it is small enough to prevent excessive smoothing of the surface,
but still large enough to ensure that the iteration process converges.
If we had only one data source, the determination of a suitable value
for A would be fairly straighforward; a trial and error process could be
used, at the very least, to determine, for a given weight on the data
term, the minimum value of A for which the iteration converges. With
two or more sources of data, however, the problem of determining A
is complicated by the presence of multiple terms being added to ﬁg-‘).
We must ensure that each of these terms always be less than a certain
level, else instability will arise. The simplest way to do this is to set
the weights on each of the terms (i.e. w, and w;) to be equal to the
inverse of the maximum possible value of the data dependent update
term, and then determine A correspondingly (i.e. by trial and error
given these w, and w; values). That is, in our case we would have:

1 1

T max|(B, - BB ' max|(Bi- R 24)

1) G|
The max operator in the above equations is taken over all possible
normal vectors (i.e all unit vectors) and over the three components of
the argument of the max operator (i.e. we use the component with
largest absolute value). We can determine these weights by assuming
that max(E, — R,) = max(E; — R;) = 1 and differentiating R, /97
and OR; /Bn with respect to # and set the result equal to zero to obtain
the maximum value attained by OR,/d# and 8R;/d4. Doing so for
the illumination parameters of the example we have been using of the
sphere yields:

[\/2'] 14
15v/2

w=v2=1414, w, = =6.034 (25)

This approach, however, does not allow us the liberty of trading
off the Lambertian data over the specular data if it is known that one
data source is more reliable than the other. We can, however, use the
weights given in the above equations as upper bounds, and use the
information regarding the relative reliabilities of the data sources to
reduce one of them. For example, if the uncertainty in E, was twice
that of E; we would want the relative weighting of E, to be half that
of E;. In order to keep the amount of smoothing as low as possible we
would set w; to be the upper bound give above in equation (24) and
set w, to be half of the upper bound. Hence for our example in which
the variance in the noise added to E, is 0.05, and the variance of the
noise added to E; is 0.025 we would set w, = 3.017 and keep w; at its
upper bound, 1.414. With these weights it was found that A needed to
be at least 35 to ensure stability of the iterative process.

A shaded view of the resulting reconstructed surface is shown in
figure 3. Compare this surface to that produced by the algebraic al-
gorithm. Note that we have surface normal values over the entire il-
luminated portion of the sphere, as the smoothness constraint along
with the Lambertian component is sufficient to solve for the surface
normals in the specular shadow region. The maximum surface normal
error magnitude, after 1100 iterations, is about 0.73, corresponding to
an angular error of about 36 degrees. The average error is about 0.085,
corresponding to an average angular error of about 5 degrees. Observe
that the largest part of the error in the resulting surface surface nor-
mals occurs near the specular shadow boundary, where the specular
data is mostly noise. Note the distortion of the specularity (which
for the second light source direction happens to lie near the specular
shadow line for the first light source position). The best reconstruction
of the surface occurs near the maximum of the specular image.



Whatever the drawbacks of the regularization type approach to the
solution of the shape extraction problem, it is clearly better than the
algebraic approach. The improvements over the algebraic method are
mainly due to the effect of smoothing on the surface normal field, the
elimination of the stability problems inherent in the algebraic method
and in a very small amount to the relative weighting of the Lambertian
data over the specular data. In addition, the surface area over which the
surface normal is obtained is greater than in the algebraic method since
we can obtain solutions even where there is no specular information,
which was not possible in the algebraic method.

Ia order to improve onr surface reconstruction even further we necd
to use a data fusion algorithm that will control the weighting applied
to the input data as a function of its Jocal reliability, rather than only
globally applying weighting values.

3 An Adaptive Weighting Approach To
Shape From Shading

The data fusion algorithm described in the previous section uses only
the information about the reliability of the input data E, and E; in
determining weights for the two sources of data. It does not use any
information regarding the sensitivity of the shape from shading algo-
rithm to errors in the inputs. It therefore can have problems in areas
of the image where the sensitivity of the shape from shading algorithm
to errors in the input data is high (such as near the specular shadow
boundary). Ideally we would like to reduce the weighting of the data
consistency terms when the sensitivity to errors in the data is high, as
well as when the errors in the data are large. We could consider hav-
ing a separate module whose task was to take in the values of E, and
E; and compute the shape from shading algorithm sensitivities. These
sensitivities would then be fed into the fusional module. The sensi-
tivities would be used by the fusional module to adaptively determine
weights to be applied to the data consistency terms for E, and Ej.

The energy function formulation of the adaptive fusion approach to
shape from shading is identical to that of the previous section (equation
(17)), however, now the weights w, and w; are no longer be constant
over the image but are now some function of the sensitivities to noise
that were derived earlier (i.e. equations 14 and 15). We must still
be careful to ensure that the iterative solution to the Euler equation
is stable, by proper scaling of the weight values. As in the previous
section we do this by setting the maximum value of w, and w; to the
values given in equation (24) and reduce these weights by an amount
related to the relative uncertainty in the data. It is not clear exactly
what form should be used to express the weight values in terms of the
sensitivities, save for a general rule that the weights should decrease as
the noise sensitivities increase. We use the following law:

1

min(o?, 0?)

0,(2,9) = s ] A (26)
’ of 1 iyiog(1+1%54)
min(o‘,’,af)] 1
w(e9) = v, | : (21)
( af 1+ log (1+|%§;;—”2|)

where 07/OE, and 97 /E; are given by equations (14) and (15), and
where w,,,,. and W,,,, are the upper bounds given in equation (24).
The log function was used to compress the sensitivity functions in order
to retain some data dependent terms in the energy function near the
boundaries, otherwise the surface would be excessively smoothed near
the boundary of the sphere and near the shadow line.

To compare the performance of the adaptive fusion algorithm with
the two weakly coupled algorithms described earlier, we ran the adap-
tive algorithm on the sphere data that was used in the previous sections.
The exact iterative equations are used as in the implementation of the
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energy functional algorithm described in the previous section. In the
present case, however, the weights w, and w; were functions of posi-
tion as indicated by equations (26) and (27). A shaded view of the
resulting surface is shown in figure 4. Compare this to the results of
the previous two methods. The reconstruction is very good. There is
significant improvement towards the boundary of the specular zone due
to the reduction of w, in this region. The maximum surface error nor-
mal error magnitude for this algorithm was 0.17 after 1500 iterations,
corresponding to a maximum angular error of 9.6 degrees. The average
surface normal error magnitude was 0.057, corresponding to an aver-
age angular error of 3 degrees. The effect of the specular data is felt
most strongly near the specularity. To see this, we compared the error
map obtained with the adaptive fusion algorithm with the error map
(not shown) produced by running the adaptive algorithm with w, fixed
to be zero everywhere (i.e. no influence by the specular component,
only the Lambertian component). The error is slightly lower near the
specularity when we take the specular data into account than when we
do not. The maximum surface normal error magnitude in the Lamber-
tian only case, after 1500 iterations was again 0.17, while the average
surface normal error magnitude was 0.062.

4 Discussion

We have presented a data fusion approach to the determination of
object surface normals given the specular and Lambertian components
of the illumination reflecting from the object surface. We derived a
closed form expression for the components of the surface normal vectors
as functions of a known light source direction, known surface albedos,
and known specular and Lambertian reflectance images.

The sensitivities of the components of the algebraically reconstructed
surface normal vectors to perturbations in the values of the specular
and Lambertian reflectance images were derived. It was shown that
the algebraic surface reconstruction process is ill-posed in the respect
that a small change in the input data can result in a large change
in the derived surface normal vector. This results from the fact that
there can exist, in the presence of noise, pairs of values of the specular
and Lambertian images that do not have any corresponding surface
normal vector. In order to assign such a surface normal vector it is
neccessary to employ a heuristic, such as finding the surface normal
vector which has the corresponding theoretical specular/Lambertian
reflectance value pair which is nearest to the actual pair of values. The
application of this heuristic can cause the aforementioned ill-posedness.

The algebraic fusional method was observed to perform very poorly
on noisy synthetic data, and is expected to work poorly in any appli-
cation in which there is noise present. A fusional method involving the
minimization of an energy functional was introduced. This method had
the advantage over the algebraic method that the recovered surface cov-
ers the whole of the visible portion of the sphere, as reconstruction was
possible in the regions containing only a Lambertian image component.
In addition, the stability of the energy functional based algorithm was
much better than the algebraic method due to the regularizing proper-
ties of the smoothness term.

The first energy functional minimization fusion method that was
presented weighted the Lambertian and specular data consistency terms,
with respect to a smoothing term, uniformly over the image area. This
weighting procedure, however, does not take into account that the sen-
sitivity of the surface normal reconstruction process varies over the
image. It is preferable to perform more smoothing in regions of the
image wherein this sensitivity is high than where it is low. We pre-
sented an adaptively weighted energy functional minimization based
fusion algorithm wherein the weights on the specular and Lambertian
data consistency terms were made to be functions of the sensitivity
of the algebraic surface normal reconstruction to noise in the specular
and Lambertian images. This algorithm reduces the error in the recon-
structed surface normal in the regions of low specular and Lambertian
reflectance than in the uniform weighting algorithm.
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Figure 1: The original image (both specular Figure 2: The algebraic reconstruction.

and Lambertian components).

Figure 3: The surface obtained via energy function minimization. Figure 4: The surface obtained with the

adaptive energy minimization scheme.
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