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ABSTRACT

Head pose estimation has been receiving a lot of attention due
to its wide range of possible applications. However, most
approaches in the literature have focused on head pose es-
timation in controlled environments. Head pose estimation
has recently begun to be applied to real-world environments.
However, the focus has been on estimation from single im-
ages or video frames. Furthermore, most approaches frame
the problem as classification into a set of coarse pose bins,
rather than performing continuous pose estimation. The pro-
posed multi-layer probabilistic temporal graphical model ro-
bustly estimates continuous head pose angle while leveraging
the strengths of multiple features into account. Experiments
performed on a large, real-world video database show that
our approach not only significantly outperforms alternative
head pose approaches, but also provides a pose probability
assigned at each video frame, which permits robust temporal,
probabilistic fusion of pose information over the entire video
sequence.

Index Terms— Head pose, real-world video, local invari-
ant feature, probabilistic, graphical model.

1. INTRODUCTION

Head pose has been used as prior or contextual information
in many applications, such as human computer interaction,
face recognition, face verification and facial attribute classi-
fication. Considering the recent interest in real-world uncon-
strained videos (e.g. surveillance data) and the wide range of
possible applications, robust and automatic head pose estima-
tion from 2D images has been receiving such much attention
[2,3,4,5,6,7,8,9]. For example, in [4] head pose is used to
map real-world face images to a common coordinate system.

The literature on head pose estimation from 2D images
can grouped as: appearance template, manifold, subspace em-
bedding, geometric and tracking based methods [10]. How-
ever, many of these approaches rely on requirements or as-
sumptions that are not feasible in the context of unconstrained
environments: (i) assuming that the entire set of facial fea-
tures typical for frontal poses is always visible, (ii) manu-
ally labeling facial features in the testing data, (iii) relying on
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Fig. 1. Sample face images from McGill Real-World Face
Video Database: (a) Challenges of real-world environment
include wide variability in illumination conditions and back-
ground clutter, arbitrary head poses and scales, arbitrary par-
tial occlusions etc., (b) Head pose (yaw angle) labels of sam-
ple face images provided by the probabilistic labeling strategy
in [1].

a known initial head pose for video sequences, which must
be reinitialized (at times, manually) whenever the tracking
fails, (either due to a failure in the face detection or due to
occlusion) [10]. Some of the recent approaches developed
for real-world environments treat head pose estimation as a
classification task [5, 7]. That is, assigning a face image to
one of very coarsely defined discrete poses (pose bins). Fur-
thermore, they use single and low resolution video frames
collected from crowded scenes under poor lighting, although
some use relatively higher quality video frames/images and
perform classification on finer pose bins [3, 6]. Some other
works, on the other hand, define the pose estimation problem
as a continuous pose angle estimation task [8, 9]. Most of
these approaches either focus on only one set of features to
represent faces, or they do not leverage the temporal pose in-
formation available in video sequences in their frameworks.
Our hypothesis is that by using complementary, robust local
invariant features, and leveraging the dependencies between
the frames in the video sequence, one can substantially im-
prove head pose estimation in real world scenarios.

This paper addresses the problem of automatic continuous
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Fig. 2. An overview of the proposed graphical model.

head pose (yaw angle) estimation in real-world videos which
consider the joint occurrence of arbitrary face scales, extreme
head poses, non-uniform illumination conditions, partial oc-
clusions, motion blur, background clutter, wide variability
in image quality, and subject variability (Figure 1(a)). The
proposed multi-layer and temporal graphical model (Fig-
ure 2) uses spatial codebook representations obtained from
different local invariant features which have a high degree of
invariance to various transforms, such as changes in scale,
viewpoint, rotation and translation. The features are chosen
in a fashion such that they extract complementary information
from the tracked face image: (i) facial edge points obtained
from eyebrow, mouth etc., (ii) facial anatomical regions ex-
tracted from eyes, forehead, cheeks etc., and (iii) densely
sampled patch-based features over the whole face image (see
Figure 3(a)). The codebook statistics are used to calculate the
pose distribution for each feature type using Random Forests
(RF) [11], which are later used in a graphical model to es-
timate the single video frame pose probability distribution.
Next, the framework temporally models these continuous
head pose probabilities over a video sequence using Belief
Propagation (BP) [12]. Finally, the method performs density
estimation over the discrete head pose probabilities inferred.
The experiments are performed on a large, challenging, pub-
lic video database, namely the McGill Real-World Face Video
Database [1] (see Figure 1) . The probabilistic labeling mod-
ule in [1] is employed to collect the pose ground truth (leading
to 9 MAP pose estimates (bins) (see Figure 1(b))), which are
used for the classification tasks . The results show that that
the proposed framework outperforms alternative approaches
[3,9,13,8,6].

2. METHODOLOGY

The proposed framework has two main levels (see Fig. 2). As
a preprocessing step, the robust algorithm in [1] is used to
locate and track faces in real-world video sequences. Then
in Level 1, complementary local invariant facial features are
extracted from the detected faces. The relationship between
features extracted and their corresponding pose beliefs are
modelled. In Level 2, for each single frame, the head pose

distribution is inferred based on the different feature-based
pose beliefs inferred at Level 1. The temporal information is
leveraged to estimate the most likely head pose configuration,
which can be achieved through BP.

2.1. Level 1: Estimation of Pose Distribution from Single
Video Frames

We assume that a video sequence (or clip) contains 7' video
frames. Once the pre-processing steps are complete (e.g.
tracking, detection), the face is assumed to be properly de-
tected and localized in each frame. Each tracked face can
be represented using a variety of complementary representa-
tions (e.g. patches, edges, regions), and then modelled us-
ing a variety of local invariant feature detectors/descriptors.
One can use different types of local invariant feature detec-
tors/descriptors to model each face representation. However,
it is crucial to choose complementary representations which
could provide high accuracy in terms of pose classification
performance when all features are combined ( see Section 3
for selected features). Facial image patches, for example,
achieve dense sampling and modelling of the facial character-
istics whereas the facial edges model the facial lines, such as
the eyebrow line and mouth line. Facial regions, on the other
hand, model the anatomical regions, such as eye, eyebrow,
mouth, nose and cheek. Once these features are detected
and descriptors are extracted, corresponding spatial-Bag-of-
Words (BOW) representations are learned. Rather than using
the patch index as the spatial information as done in [1], here
we directly use the extracted feature location in the coding
and pooling phases. Because faces are aligned in the prepro-
cessing step, this mapping provides better modelling for the
face vocabulary. Finally, each face image at frame ¢ is repre-
sented by the codebook occurrences for each corresponding
feature type, ie. X, ., Xlegion and X[, .. Once each
frame is represented by patch, edge and region based code-
book occurrence statistics, for each codebook type, a RF [11]
is trained to estimate the corresponding pose distributions:

{y;atch, Yedger yﬁegion}. The motivation behind the use of

RFs is due to its high generalization power, fast computation,
ease of implementation, embedded feature selection property,
and its high classification performance [14].

2.2. Level 2: Estimation of Video Pose Distribution

Given the patch, edge and region based pose probabil-
ity distributions for a video frame at time ¢, i.e. Y; =

{y;atch,ygdge,yf,egion}, we want to estimate the proba-
bilities for a set of head pose angles 8; = {¢1, d2, -+ , dar}-
The ultimate goal is to estimate an entire set of pose prob-

ability density functions throughout a video, ie. © =
{01,02,--- ,0:,--- ,0r}. The posterior distributionis p(©|Y)

- %’Where? = {Y17Y27"' 7}/;7 7YT} andp(?)



is a n_grmalization constant Z with respect to ©, such that
p(OfY) = ;7p(©,Y). Note that, if Z can not be calculated

directly, p(@,}?) becomes an approximation. Computing
this posterior distribution can be difficult without any ap-
proximations [15]. Thus, we use the graphical model shown
in Figure 2 to model the head pose over a video sequence
©. So, the posterior distribution is expressed as an MRF

with pairwise interactions: p(Q|Y) = £ (Hf:1 9(6", Yt)) :

( oo, 9”1)), where 9(6%,Y'?) is the unary compat-
ibility function accounting for local evidence (likelihood)
for 6 and (6%, 0*F1) is the pairwise compatibility function
between 6" and 61,

One way to estimate the most likely head pose con-
figuration is by calculating the MAP estimate, i.e. ©* =
argmaxgp(©|Y), which can be achieved through BP [12].
BP is an inference method developed for graphical models,
which can be used to estimate the marginals or the most
likely states. In our experiments, we adapt the “sum-product”
BP algorithm which estimates the probability distributions.
BP provides the exact solution if there is no loop (cycle) in
the graph, i.e. if the graph is a chain or a tree [12], which
is the case here. In order to estimate the marginal distribu-
tions, the BP algorithm creates a set of message variables
which are updated iteratively via passing between neigh-
bours. mt7t+1(9t+1) corresponds to the message sent from
node ¢ to node ¢ + 1 about the degree of its belief that node
t+ 1 should be in state 641 (see Figure 2). The BP algorithm
updates the messages according to:
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where Zia

and the set of nodes in the neighbourhood of ¢ is denoted by
N(t). (¢ + 1) and (q) represent the iteration indices. The
initial messages mg?t) +1(.) are typically initialized to uniform
positive values. In a general graph, the update procedure is
repeated iteratively until the messages converge to a consen-
sus, then the marginals (beliefs) are calculated (Equation 2).
Since our graph here is acyclic, two passes are sufficient to
compute all messages, making the algorithm efficient. The
belief (by) is an estimate of the marginal distribution, derived
from converged message variables as follows:

by(601) = Ziqs(et, vty T mas(@) @
t kEN (t)

where Z, is a normalization factor guaranteeing that 3", b;(6")
= 1. Since our graph does not have loops, the beliefs are guar-
anteed to be the true marginals p(#?[Y). Note that in the case
of “sum-product” BP, the belief is an estimate of marginals
whose maximal point indicates the most likely state. The
pairwise compatibility function (6%, 0*1) is assumed to be
a Gaussian distribution N (u, A) with mean p and covariance

matrix A. Furthermore, we define the unary compatibility
function for each node i, i.e. 9(0*,Y"), as the joint distribu-
tion p(0",Y") = p(0", Ypusens Yedge Yregion)s Which is equal
to:
tot t t £t t t
p(9 > Ypatehs Yedger yregion) = p(e |ypatch7 Yedges yregion)'

t t t
p(ypatcha yedgev yregion)
3)
where the posterior probability is p(0° |y} .hs Ybdges Yregion)
1
Z(y;at(;h’yédge ’yf‘cgion
notes the normalization function and the energy function U is

defined as:

U= Bll/ Gt’yzt)atch) + 62V<9t5 yédge)—i_

B3V(6t7 yfnegion) + 64V(9ta y;toatchv yfzdge)+

55V(9t7 y;atcfw yiegion) + Bﬁy(et’ yédgw y'ﬁegion)—‘r
B7V(Qt7 y}iatch? yidge? yft*egion) “)
where {f1,---, 7} are weights, which are learned on the
training data using 2-fold cross validation. The potential func-
tion ¥ models the possible cliques of ¢-th frame pose distri-
bution with estimates from three different feature represen-
tation, such as pairwise (e.g., (0, y},,,.,)) and triplet (e.g.,
(0%, Ybaten» Yage)) cliques. v is defined by the corresponding
probability distribution functions:

)ewp{—U}, where as before Z de-

V(etv y‘zt)atch) = - IOg {p(et |y;atch)p(y;atch)} (5)
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(N
The probabi]ities p(y;fmtch)’ p(y]taatch7 yfzdge) andp(y;atch7
Yedger Yregion) C€an either be assumed to be uniform or
they can be calculated using the training database. For in-
stance, p(y]t)atch’yédge) X k(y]t)atch’ynge) + dy, where
k(Ypatens Yeage) is the count of the joint occurrence event
(Yhaten Yage)s and d; is the Dirichlet regularization pa-
rameter required to compensate for the sparsity. Because
a uniform prior is assumed, d; is constant for all ¢. Note
that other pairwise, triplet and quadruplet probabilities,
for all combinations, is calculated in a similar fashion.
The posterior probabilities p(6°[y7,scn)> PO |Ybatens eage)
andp(0' Yy 4scns Yedge Yregion)» ON the other hand, are cal-
culated using the RFs [11]. Next, the entire pose density is
estimated for 1° intervals in the range [—90°, +90°]. Gaus-
sian kernel-based model fitting is used since the initial pose
densities do not follow any specific parametric distribution.

3. IMPLEMENTATION AND EXPERIMENTS

In our experiments, we use the challenging McGill Real-
World Face Video Database [1] consists of 18,000 video



Table 1. Comparison of the different pose classification ap-
proaches over all folds (mean = std).

Accuracy (%)

Aghajanian and Prince [9] (BMVC’09) || 20.68 & 3.55
BenAbdelkader [13] (ECCV’10) 15.50 £2.73
Demirkus et al. [6] (ICIP’11) 40.12 £ 7.45
Demirkus et al. [8] (CVPRW’12) 55.04 +6.53
Zhu and Ramanan [3] (CVPR’12) 57.49 +£0.91
Proposed Model 73.09+3.61

frames from 60 unconstrained videos of different subjects.
Individual video frames exhibit wide variability in head pose:
45.8% of the frames are beyond 0°, i.e. non-frontal, of which
58.1% go beyond +45°. Although in this paper the head
pose density function is estimated for each pose angle at each
frame in the sequence, we are bounded by the precision of
the manual labeling of the database. Since it is not possible
to collect the “absolute head pose angle” label from fully un-
controlled real-world data, we use the robust 2-stage labeling
strategy introduced in [1] to collect ground truth pose labels.
This leads to 9 pose labels (see Figure 1(b)) which are used in
the evaluation phase. Furthermore, the faces are tracked and
localized through the tracking algorithm explained in [1].

SIFT [16], Geometric Blur (GB) [17] and Boundary-
preserving Local Region (BPLR) [18] features are used in
our graphical model due to their high performance. The
patch representation achieves a dense sampling and models
each image patch with robust SIFT features [16]. To detect
the key facial edge points and to calculate the corresponding
descriptor around each edge point, the GB framework in [17]
is used. Anatomical regions, such as the mouth, the eyes,
the ears and the eyebrows, can provide some pose informa-
tion. Local region detectors and descriptors are used to model
anatomical regions. To achieve this, boundary-preserving
local regions (BPLRs) [18] are chosen. BPLRs are densely
sampled local regions obtained from a given face image, and
they preserve the shape of the facial structure on which they
are detected (for details, see [16, 17, 18]).

To compare the performance of the proposed approach
against alternative approaches, we perform 10-fold cross val-
idation on the McGill Real-World Face Video Database. For
the patch-based probabilistic regression framework in [9] and
the Bayesian models in [8, 6], the MAP of the probability
density function serves as the estimated angle. The imple-
mentation and the proper training parameters for [3, 9] and
[8, 6] are provided by the authors. Thus, the reported re-
sults are not affected by errors in implementation or in al-
gorithm learning step. Since [9, 13, 8] provide continuous
pose estimation, their pose spaces are discretized to be able to
compare their accuracy with the other approach. In Table 1,
the mean and standard deviation (std) statistics over the head
pose classification performance for different approaches over
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Fig. 3. Sample tracked faces images depicting the extracted
facial features and pose estimates: (a) Location of some of
the sample facial edge (GB), patch (SIFT) and facial region
(BPLR) features. On the top right, the pose ground truth label
(in yellow) is obtained via [1]. On the top bottom, the pose
distribution (in the range of [—90°, 490°]) calculated by the
proposed approach is in blue, and the MAP estimate is in red,
(b) Example tracked face images with the corresponding pose
ground truth labels, estimated pose distributions and the MAP
estimates.

all folds are provided. BenAbdelkader’s supervised manifold-
based approach [13] is chosen since manifold learning meth-
ods are reported to provide the highest head pose accuracy
[10]. However, it performs the poorest since pose manifold
is created using pixels intensities, which are not the optimal
features for the real-world environments. The work by Zhu
and Ramanan [3], which is a unified model for face detection,
pose estimation and landmark localization using a mixture of
trees with a shared pool of parts, provides the best accuracy
(57.49%) among the competitors. The proposed framework,
on the other hand, “significantly” (p-value of 2.8137e-13) out-
performs the comparable approaches. The high classification
accuracy (73.09%) is achieved using the probabilistic tempo-
ral model which takes the advantage of multiple features to
model head pose distribution. Figure 3 shows some qualita-
tive results along with estimated pose distributions, MAP es-
timates and the pose ground truth labeling obtained using [1].
It is observed that in the presence of bad face tracking and
motion blur, the proposed model might fail due to the lack of
reliable facial features.

4. CONCLUSIONS AND FUTURE WORK

We proposed a novel multi-layer temporal graphical model
to use multiple features to infer continuous head pose angle
from real-world videos, unlike most approaches. Experiments
performed on a large real-world video database showed that
our approach significantly outperformed the state-of-the-art
approaches. We are currently investigating how to incorpo-
rate feature-level fusion with the current classifier-level fusion
model to further improve our pose estimation performance.
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