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Abstract— We propose a system for visual simultaneous
localization and mapping (SLAM) that combines traditional
local appearance-based features with semantically meaningful
object landmarks to achieve both accurate local tracking and
highly view-invariant object-driven relocalization. Our mapping
process uses a sampling-based approach to efficiently infer the
3D pose of object landmarks from 2D bounding box object
detections. These 3D landmarks then serve as a view-invariant
representation which we leverage to achieve camera relocaliza-
tion even when the viewing angle changes by more than 125
degrees. This level of view-invariance cannot be attained by
local appearance-based features (e.g. SIFT) since the same set
of surfaces are not even visible when the viewpoint changes
significantly. Our experiments show that even when existing
methods fail completely for viewpoint changes of more than
70 degrees, our method continues to achieve a relocalization
rate of around 90%, with a mean rotational error of around 8
degrees.

I. INTRODUCTION

Visual simultaneous localization and mapping (SLAM)
has traditionally relied on matching image intensities or local
appearance-based features (e.g. SIFT [1], ORB [2]) between
image frames to localize the camera and to reconstruct a
point cloud map of the environment. While this approach has
been shown to yield excellent tracking accuracy and compu-
tational efficiency [3], [4], the low-level map representation
does not lend itself well to the relocalization task (global
localization) when the viewing angle changes significantly,
since the same surfaces are no longer visible.

In this paper we propose a SLAM system that builds a
semantic map of the environment consisting of objects rep-
resented as 3-dimensional cuboids, a classical representation
that has recently returned to favor for computer vision and
machine learning [5]-[9]. These cuboids are inferred from
2D observations of objects in the form of detected bound-
ing boxes. Since the presence of objects can be detected
regardless of viewpoint, our object-based maps are inherently
viewpoint invariant, and therefore well-equipped to support
view-invariant relocalization. Figure 1 shows an example of
the system operating on two video sequences of the same
scene taken from drastically different viewing directions.
The system is able to localize both camera trajectories in
a common coordinate frame by spatially aligning the objects
that are commonly visible in both sequences. Our method
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Fig. 1.  View-invariant relocalization: Given two RGB video sequences
of the same scene, our method first builds an object-based map using
each sequence separately. It then uses the 3D layout of co-visible object

landmarks to localize the camera poses of both trajectories in a common
frame of reference.

achieves this using only RGB images as input, without any
depth measurements or inertial sensing.

The use of natural objects can provide great robustness
across viewpoints, but the use of objects alone has several
disadvantages. Due to their sparsity and the limited field
of view of cameras, often very few objects are wholly
visible in any given image. In addition, their projections
onto the image plane are difficult to localize precisely —
modern object detectors can only produce bounding boxes
that roughly enclose the object in the image plane. Despite
some successes [10], [11], these characteristics often make
objects unsuitable for map initialization and local tracking
in the absence of other cues, especially in the initial phase
when only a few image frames are available.

Thus, instead of relying solely on object landmarks, we
propose a hybrid approach: we use local appearance-based
features to track the camera as it moves locally, and leverage
the estimated camera trajectory to simplify the estimation of
3D object landmarks during tracking. By having multiple ob-
servations of each object during this local mapping process,
we overcome the coarseness of bounding box measurements
and reduce the chance of poor landmark estimates due to



the camera’s narrow field of view. Then, during subsequent
localization where local appearance-based features becomes
less helpful due to the lack of co-visible surfaces, object
landmarks can facilitate higher-level reasoning and help
to establish data associations across very large viewpoint
changes. This synergistic integration between traditional vi-
sual SLAM and semantic landmarks is the key contribution
of this work.

Although this paper is focused on measuring the utility
of object landmarks for the relocalization task, having a
better semantic understanding of the world has many other
important applications in robotics, such as manipulation and
natural language understanding. Our cuboidal representation
of objects describes occupied regions in 3D space, which is
often more useful than point clouds for path planning and
obstacle avoidance.

II. RELATED WORK

Recently there has been considerable interest in improving
the robustness of place recognition and visual localization
tasks. Earlier work such as FAB-MAP [12], [13] that is based
purely on matching local appearance-based features have
been shown to be susceptible to changes in condition (e.g.
changes in illumination, weather, season, time of day) [14].
Consequently a variety of methods have been proposed for
condition-invariance, including matching image sequences
[15]-[17], training location-specific image detectors [18]—
[20], predicting environmental changes in images [21]-
[23], and transforming images to become more illumination
invariant [24]-[26]. Features extracted using convolutional
neural networks (ConvNet) trained for image classification
have also been shown to be robust to condition and drastic
scale changes [27], [28]. Compared to these prior works, our
method aims to handle a much greater degree of viewpoint
invariance (over 125 degrees of viewpoint change).

The use of objects as landmarks for visual localization
tasks has also been studied since they can be detected
regardless of viewpoint and environmental condition, and are
therefore highly useful for robust data association [10], [11],
[29]-[38]. The adoption of this approach is in part due to the
recent advancement of ConvNet-based object detectors [39]—
[41]. While depth cameras have been leveraged to simplify
the object detection task [33]-[35], in our approach we opt to
use only RGB images as input, which makes our algorithm
applicable to a wider range of hardware platforms due to the
ubiquity of RGB sensors.

We are particularly inspired by the work of Bao et al.,
which also infers 3D cuboids from 2D bounding boxes under
the structure from motion setting [30]. Our object mapping
method is highly related the semantic SLAM system of
Bowman et al., which also uses an expectation maximization
scheme for iteratively solving data association and object
pose update [37]. Our work puts greater emphasis on the re-
localization problem and we directly measure relocalization
performance under large viewpoint changes. In our own prior
work, we have shown wide-baseline camera pose estimation
using objects detected in two far-apart images [10], [11]. In

this paper we extend this line of work and propose a full
SLAM pipeline that is built on top of the popular ORB-
SLAM framework.

III. METHOD

A. Problem Statement

Our method consists of two components which we will
discuss in turn: 1) a semantic mapping algorithm that tracks
the 3D pose of objects from frame to frame and produces
a metric map containing objects; and 2) a relocalization
algorithm, which, given two semantic maps of the same
scene, aligns the two maps together and in doing so also
produces the relative camera transformation.

B. Semantic Mapping

Given an RGB video sequence, we aim to compute the
3D poses of visible objects represented as bounding cuboids.
A bounding cuboid is expressed as a 9-dimensional vector
containing its position (X, y, z), orientation (roll, pitch, yaw),
and scale (length, width, height).

Our mapping process, shown in Algorithm 1, processes
image frames sequentially, and incrementally builds a se-
mantic map as images stream in. Each image frame contains
2D bounding box detections, which we use to infer the 3D
pose of objects. To facilitate object pose estimation, we use
ORB-SLAM 2 [3], an existing visual SLAM technique, to
track the camera pose during mapping. ORB-SLAM relies
on matching local appearance-based features (ORB features
[2]) between image frames to compute camera extrinsic
parameters, and performs reliably given continuous video
input. Having obtained known camera poses from ORB-
SLAM, observations of objects in 2D can be triangulated
probabilistically to allow lifting to full 3D object cuboids,
through our sampling-based inference procedure.

We use Faster-RCNN [41] trained on the COCO dataset
[42] to compute object observations in the form of 2D
bounding box detections. To simplify the inference of 3D
object geometry, we assume that objects are aligned with the
scene layout. The scene layout consists of three orthogonal
major axes, which can typically be reliably detected in urban
environments. We use the method of Lee et al. [43] in our
pipeline to compute the scene major axes, and restrict our
inferred 3D object bounding cuboids to align with them.

To continuously refine the estimated pose of object land-
marks as more observations become available, we use an
expectation maximization scheme involving data association
followed by object pose update in each iteration of the
algorithm. Data association involves matching 3D landmarks
with 2D object detections. During pose update we then use
the matched detections to refine the 3D pose of landmarks,
while also ensuring that the landmarks conform to object-
to-object contextual relationships. Below we discuss each
algorithmic component in turn. Corresponding line numbers
of Algorithm 1 are shown in parentheses following each
section header.



Algorithm 1 Semantic Mapping
1: landmarks < empty list

2: while True do

3: I < next image from camera

4:  ORB-SLAM.track_monocular(I)

5. if ORB-SLAM has not initialized then

6: continue

7.  end if

8: keyframes <— ORB-SLAM.get_keyframes()
9: for k in keyframes do

10: detections <~ DETECTOBIJECTS(k)

11: MATCH(k, landmarks, detections)

12: end for

13:  for o in landmarks do

14: K, < keyframes in which o is detected
15: D, <« detections of o in keyframes K,

16: H, + GENHYPOTHESES(K,, D,)

17: Add o to H,

18: end for

19:  for o in landmarks do

20: 0 < argming . SCORE(h, landmarks)
21:  end for

22:  new_k < newest keyframe
23:  new_detections <~ DETECTOBJECTS(new K)
24:  for d in new_detections do

25: if d not matched with any o € landmark then
26: 0 < INITLANDMARK(d, layout)

27: Add o to landmarks

28: end if

29:  end for
30: end while

1) Initialization (lines 3-8): During each iteration of our
algorithm, we obtain a new image and ask ORB-SLAM
to track the image. We wait until ORB-SLAM initializes,
upon which estimated camera poses for keyframes become
available. ORB-SLAM is designed to run in real time, and
as such, it does not maintain the camera pose at every
frame. Instead, bundle adjustment operates on a sparser set
of keyframes, which reduces the computational load.

2) Data Association (lines 9-12): Once ORB-SLAM has
initialized, we update the 3D pose of our object land-
marks during each iteration. We start by projecting the
landmarks (3D bounding cuboids) into each keyframe image
as bounding boxes, and matching these projections with the
detections. Matching is performed by using the Hungarian
algorithm [44] which finds the optimal solution in O(n?)
time given the cost of matching each projection with each
bounding box, where n is the number of landmarks to be
matched. The cost ¢(p, d) of matching a projected bounding
box p with a detected bounding box d is

—di| + |ps — di| + |pr — d| + |py — dy]
d, —d;

where the subscripts [, ¢, 7, b denote the left, top, right, and
bottom sides of the bounding box in pixel coordinates.

e(prd) = 7

(D

The denominator normalizes the cost by the width of the
detected bounding box to prevent larger bounding boxes from
dominating the overall matching cost.

3) Object Pose Update (lines 13-21): The object pose
update step addresses the most challenging aspects of our
problem, which involves optimizing each object’s pose and
scale over a highly non-convex search space. The non-
convexity arises from the complex 3D geometry of cuboids
and their ambiguous projection into the image plane. A naive
application of Markov chain Monte Carlo (MCMC) sampling
techniques will result in very long run times as the sampler
will need to traverse numerous local minima.

Our proposed strategy is to first efficiently generate mul-
tiple object hypotheses in a reduced search space, and then
leverage them to quickly explore multiple local minima in
the full search space. To this end, we begin by representing
an object landmark as a single 3D point (x, y, z). From the
previous step, we know its correspondence to detections in
multiple keyframes. Since we know the keyframe camera
poses from ORB-SLAM, we can triangulate the 3D point
location of the landmark by intersecting rays extending from
the camera centers through the detected bounding boxes. A
key question is how to select a point in the bounding box
to extend the ray through. A natural choice is to use the
center of the bounding box, but we find that this often is
not the best choice since the bottom of objects often become
occluded when the camera is held at eye-level. Instead, we
use the top-center point of the bounding box, which means
that the triangulated point should be near the top surface of
our object landmark. For simplicity, we will think of this
triangulated point as approximating the top center point of a
3D landmark.

We follow the approach described by Hartley and Zisser-
man [45] and model the probability of the top center point
X of a 3D landmark being projected onto the image point
x) in keyframe k as a normal distribution

exp (=5 (fu(X) — 21) TS (fr(X) — a4))
(2m)? det X

p(re|X) =
)

where fj, projects X into the image associated with keyframe
k, and ¥ is the 2 x 2 covariance matrix of x in image
space. We wish to compute the a posteriori distribution
p(X|x1,..,x,), and assuming a uniform p(X) and indepen-
dent observations between views, we have

p(X |21, ..ty) = p(a1, .20 | X)p(X) /(21 ...
~p(x1y e, Tp| X)
= p(x1|X)...p(xn] X). 3)

Thus, to obtain point-location hypotheses of our landmark,
we can draw samples from p(X|z,...xz,), and the above
equation allows us to compute the unnormalized probability
of a sample. Several sampling techniques can be applied
here. If a random walk Monte Carlo sampling method is
used, it is possible to first triangulate the landmark using a
method such as direct linear transform (DLT) [45] and then
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use the triangulated value as the initial sample to bootstrap
the random walk. In order to achieve more efficient sampling,
in our implementation we use importance sampling, and only
draw samples that lie along the rays extending from the
camera centers.

Having sampled a set of object landmark hypotheses as 3D
points, we instantiate a 3D bounding cuboid for each point,
anchoring the center of the top face of the bounding cuboid at
the 3D point. We align the cuboid with the major axes of the
room layout to prevent having to search over the full space
of orientations. To initialize the scale of an object, we use the
average length, width, and height of that object type, and then
apply an isotropic scaling to all three scale dimensions such
that the projection of the cuboid aligns as well as possible
with the detected bounding boxes in the relevant keyframes.
Note that this gives an imprecise initial cuboid estimate since
the top center face of a cuboid typically does not project
onto the top center point of a bounding box, and the scale
dimensions of an object instance may be very different from
the average. Nevertheless, this process gets us close to a
local minimum, which allows us to then refine the cuboid
hypothesis with Metropolis-Hastings MCMC [46] over the
pose (x,y,z) and scale (length, width, height) jointly. This
process of generating a list of cuboid hypotheses corresponds
to GENHYPOTHESES in the algorithm listing.

We now score the cuboid hypotheses we have generated.
Let L be the set of landmarks, and H, be the hypotheses
of o € L. The score S(h) of an object hypothesis h for
landmark o is

S(h) = % Z c(fr(h), 0k) +

keK,

min T'(h, h').

ot h'EH,
hgH,

“)
Here, K, contains the keyframes in which o has an asso-
ciated detection, J, is the associated detection in k, and f
projects h into keyframe k. The cost function c is as describe
in equation 1. « is a tuning factor used to scale the first
sum. I' measures the coherence of object cuboids i and A’/
based on their typical contextual relationship (e.g. mouse and
keyboard tend to lie on the same surface). More details of
contextual modelling will be given in the next section. Here,
a lower score indicates a better hypothesis.

Finally, after having scored every hypothesis for all the
landmarks, we update each landmark with the best-scoring
hypothesis. Note that this is only done if the best-scoring
hypothesis achieves a better score than the score of the
existing estimate.

4) Contextual Coherence (line 20): We use contextual
constraints to regularize the estimation of object pose by
encouraging collections of object landmarks to conform to
typical spatial relationships. Our prior work on object-to-
object context modelling [10], [11], [47] show that copla-
narity between objects (e.g. tables and chairs tend to lie on
the same surface) is a highly reliable constraint for object
pose estimation [10], and so for this work we define I" as

L(h,h') = LcopLanar(h,n)BOTTOMDIST(h, h')  (5)

where BOTTOMDIST(h,h’) gives the distance between the
bottom surfaces of two cuboids and COPLANAR indicates
whether two objects typically lie on the same surface. For
example, keyboards and monitors tend to lie on the same
surface where as keyboards and chairs do not.

5) Landmark Initialization (lines 22-29): Thus far, we
have discussed how existing landmark estimates are refined
in each iteration of our algorithm. At each iteration, if
a detected bounding box is not matched to any existing
landmark during the data association step, then a new object
landmark is instantiated for this detection. To do this, we
simply generate a cuboid whose projection aligns well with
the detection. The accuracy of the cuboid matters little,
since the camera will not have moved very much in the
subsequent keyframes, and therefore the cuboid’s projection
in subsequent keyframes will be good enough to establish
data association. Once multiple views of the landmark are
available, our algorithm will be able to quickly refine the
landmark’s pose and scale.

In summary, our semantic mapping process creates a
map containing 3D object landmarks. Having two semantic
maps taken from the same environment, we can align the
landmarks in the two maps to achieve view-invariant relo-
calization. We discuss this in the next section.

C. Relocalization

Given two semantic maps L; and Ly both consisting of
a set of object landmarks, relocalization can be summed up
with the following maximization problem

Q(é)(ol, Ly), 1/1(57 0(o2, L2))>
(6)

where 6(o, L) returns a new set of landmarks in which the
poses of objects in L are expressed in the coordinate frame of
o, and (s, L) returns a set of landmarks where L is scaled
by s.

The function Q(Lq,Ls) performs two operations. The
first operation is running the Hungarian algorithm [44] to
compute an optimal matching between the two sets of object
landmarks. The Hungarian algorithm requires the cost of
matching a pair of objects o1 € Li and oy € Lo, which
in this case is the Euclidean distance between the centroids
of 07 and oy. We are able to directly compare their poses
because the transformations performed by € and 1 ensure
that the two sets of landmarks are expressed in a common
frame of reference. To ensure objects with different detected
labels do not match, we simply add a constant to the
matching cost if their labels are not the same.

The second operation is to identify inliers to the matching.
The Hungarian algorithm will try to match as many objects as
possible, which entails that an object only visible in the first
trajectory can be matched to an object that is only visible
in the second trajectory. Correctly matched objects should
have close proximity in 3D space so we filter out matches
where the inter-object Euclidean distance is greater than a
threshold. The remaining matches are called the inliers of

s*, 07,05 = argmax

8,01€L71,02€L2



this match. The function Q(L;, L) returns the number of
inliers.

Intuitively, equation 6 seeks a pair of cuboids o] and 03,
one from each semantic map, such that by expressing the
maps in their reference frames and applying a scaling s* to
the second map, we get good spatial alignment between the
two sets of object landmarks. Sometimes multiple pairs of
cuboids will tie for the maximal number of inliers. In this
case, we choose the set of inliers that contain less frequently-
occurring object categories since these are less susceptible to
ambiguous layouts.

Note that by having identified o] and o5 and knowing
the relative transformation between their respective frames
of reference, we have implicitly also obtained the relative
transformation between the two camera trajectories. This is
because the rigid transformation between camera poses and
landmark objects are known.

An alternative approach to handling scale differences in
the two maps is to first leverage the typical known size of
objects to scale both semantic maps to be at absolute scale.
However, note that many objects have large variances in size
(e.g. bottles). Therefore, if two semantic maps do not contain
the exact same set of objects, as is often the case under large
viewpoint changes, the two maps are likely to end up being
scaled differently anyway.

IV. DATASET

Our dataset consists of 14 RGB video sequences: 6
are videos from the UWv2 dataset [48]; one video is the
freiburg2_desk sequence of the TUM dataset [49]; and 7 are
collected by us using the camera of a commodity smartphone
(Huawei Honor 6X) in realistic indoor environments (apart-
ment, computer lab, and lounge). Our goal here is to collect
video sequences that capture a set of static objects over a
large span of viewing angles.

To prepare each sequence, we use ORB-SLAM to compute
the camera pose at every single image frame, which we will
use as ground truth. This is done by first running ORB-
SLAM in mapping mode, and then processing all image
frames in ORB-SLAM’s relocalization mode. In other words,
we will be comparing our relocalization performance against
ORB-SLAM’s ability to localize given a continuous video
when there are no gaps in viewpoint. ORB-SLAM has
been shown to achieve centimeter accuracy for short video
sequences and is sufficient for our evaluation [3].

Next, we decompose each sequence into even segments
Q = (s1,s9,83,...5,), and keep every other segment
Q* = (1,93, ¢5---9n). We can then pick any two segments
(gi,q;) € Q* to evaluate relocalization since (g;,q;) are
now discontinuous (e.g. the views connecting (g;,q;) are
not given to the system). The system first builds a map
using the video segment g;, then builds a map using ¢;, and
finally attempts to relocalize using the two maps. In total we
evaluate our method on a dataset that contains 52 pairs of
segments.
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Fig. 2. Rotational error in camera pose estimation during relocalization,
as a function of the amount of actual viewpoint change. For our method,
we do not observe a large increase in error even as the viewpoint changes
by more than 125 degrees, which demonstrates the view-invariant nature of
our method. ORB-SLAM does not produce answers beyond 30 degrees due
to the lack of feature matches. The proportion of false matches produced
by ASIFT feature matching increases as viewpoint change increases, which
leads to increased errors.
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Fig. 3. Relocalization success rate of various methods. Traditional
methods based on local appearance-based features (ORB-SLAM, ASIFT)
stop working when viewpoint changes by more than 70 degrees, since the
same set of surfaces are no longer visible. Our object-based method is robust
to much larger viewpoint changes.

V. EXPERIMENTAL RESULTS
A. Pose Estimation

To evaluate the accuracy of relocalizing segments (g;, ¢;),
we measure the rotational error of the estimated camera
transformation between the first keyframe obtained when
mapping ¢; and the first keyframe obtained when mapping
q2. We do not measure translational error since we compute
our ground truth using monocular ORB-SLAM, which does
not produce absolute scale. However, we find that transla-
tional error and rotational error are highly correlated.

Figure 2 shows the rotational error of our method in
degrees for all 52 relocalization attempts. The horizontal axis
shows the amount of ground truth rotation between the two
frames in ¢q; and ¢, that have the most similar viewpoint.
From the figure we see that our method robustly handles
over 125 degrees of camera rotation, which demonstrates our
method’s robustness to very large viewpoint changes. Figure
4 shows successful relocalization in six different scenes.

In Figure 2 we see a few clearly incorrect estimates
with very high errors. We find that this is usually due to

TABLE I
RELOCALIZATION MEAN ROTATIONAL ERROR
Mean Stdev
(degrees) (degrees)
ORB-SLAM 10.6 11.5
ASIFT 16.8 14.8
Ours 8.3 5.4
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viewpoint change between the two trajectories, as well as the relocalization error measured as the rotational error in the relative transformation between

the first keyframes of the two trajectories.

highly cluttered scenes with lots of partial occlusion, which
leads to poor map estimates and incorrect data associations
accidentally aligning.

B. Comparison with ORB-SLAM and ASIFT

We compare with two existing methods that rely on local
appearance-based features to solve for camera transformation
between images. The first method is ORB-SLAM’s relo-
calization module, which hinges on the matching of ORB
features. During relocalization, candidate image frames are
first retrieved based on the bag of words [50] representation,
and then checked for geometric consistency by matching
image features with the existing map using the PnP algorithm
[51], which also produces a camera transformation. Given a
pair of segments, we let ORB-SLAM map using the first
segment, and attempt relocalization using all images of the
second segment.

The second method we compare against is fundamental
matrix estimation using ASIFT [52] feature matches. ASIFT
is a state-of-the-art affine-invariant local image descriptor
that is highly robust to rotation and tilt. Given a pair of
segments, we take the 50 image pairs (each pair consists of
one image from each segment) that are the most similar in
viewpoint. We attempt to compute ASIFT matching on each
pair, and if matching is successful we estimate a fundamental
matrix using the 8-point algorithm [45].

Figure 2 shows relocalization errors for both ORB-SLAM
and ASIFT. Note that these methods do not always produce
an answer since the feature matching step could simply
fail to produce any matches. Additionally, we measure the
relocalization rate of all methods, which is shown in Figure
3. To qualify as successful relocalization, an algorithm must
1) produce an answer, and 2) the estimated camera transfor-
mation must have a rotational error of less than 40 degrees.
From the figure we see that ORB-SLAM and ASIFT fail
beyond 70 degrees of viewpoint change, while our method
continues to perform reliably beyond 125 degrees. Table
I gauges the precision of the three methods by showing
the mean and standard deviation of the rotational error for
successful relocalization attempts. We see that although local
appearance-based features are excellent for tracking, they
become less reliable when relocalizing over large baselines.
Our method demonstrates not only robustness to viewpoint,
but also superior precision.

VI. CONCLUSION

In this paper we have demonstrated view-invariant relocal-
ization using object landmarks. For future work we intend to
experiment in outdoor scenes and larger scale environments,
and use the geometrically-detailed semantic map produced
by our method for other robotic tasks such as manipulation
and natural language direction following.



[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, pp. 91-110,
2004.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in International Conference on Computer
Vision (ICCV). 1EEE, 2011, pp. 2564-2571.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardés, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision
(ECCV), September 2014.

S. Helmer, D. Meger, P. Viswanathan, S. McCann, M. Dockrey,
P. Fazli, T. Southey, M. Muja, M. Joya, J. Little, D. Lowe, and
A. Mackworth, “Semantic robot vision challenge: Current state and
future directions,” arXiv preprint arXiv:0908.2656, 2009.

S. Song and J. Xiao, “Deep Sliding Shapes for amodal 3D object
detection in RGB-D images,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

J. Ku, M. Morzifian, J. Lee, A. Harakeh, and S. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”
arXiv preprint arXiv:1712.02294, 2017.

W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-
to-end 3d detection, tracking and motion forecasting with a single
convolutional net,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 3569-3577.

H. Chu, W.-C. Ma, K. Kundu, R. Urtasun, and S. Fidler, “Surfconv:
Bridging 3d and 2d convolution for rgbd images,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

J. Li, D. Meger, and G. Dudek, “Context-coherent scenes of objects
for camera pose estimation,” in International Conference on Intelligent
Robots and Systems (IROS), 2017.

J. Li, Z. Xu, D. Meger, and G. Dudek, “Semantic scene models for
visual localization under large viewpoint changes,” in Conference on
Computer and Robot Vision (CRV), Toronto, Canada, May 2018.

M. Cummins and P. Newman, “Fab-map: Probabilistic localization
and mapping in the space of appearance,” The International Journal
of Robotics Research, vol. 27, no. 6, pp. 647-665, 2008.

——, “Appearance-only slam at large scale with fab-map 2.0,” The
International Journal of Robotics Research, vol. 30, no. 9, pp. 1100-
1123, 2011.

C. Valgren and A. J. Lilienthal, “Sift, surf and seasons: Long-term
outdoor localization using local features,” in 3rd European conference
on mobile robots (ECMR), 2007, pp. 253-258.

M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based naviga-
tion for sunny summer days and stormy winter nights,” in International
Conference on Robotics and Automation (ICRA). 1EEE, 2012, pp.
1643-1649.

E. Johns and G.-Z. Yang, “Feature co-occurrence maps: Appearance-
based localisation throughout the day,” in International Conference on
Robotics and Automation (ICRA). 1EEE, 2013, pp. 3212-3218.

T. Naseer, L. Spinello, W. Burgard, and C. Stachniss, “Robust visual
robot localization across seasons using network flows.” in AAAI
Conference on Artificial Intelligence, 2014, pp. 2564-2570.

C. Linegar, W. Churchill, and P. Newman, “Made to measure: Bespoke
landmarks for 24-hour, all-weather localisation with a camera,” in
International Conference on Robotics and Automation (ICRA). 1EEE,
2016, pp. 787-794.

C. McManus, B. Upcroft, and P. Newmann, “Scene signatures :
localised and point-less features for localisation,” in Robotics: Science
and Systems (RSS), University of California, Berkeley, CA, July
2014. [Online]. Available: https://eprints.qut.edu.au/76158/

J. Hawke, A. Bewley, and 1. Posner, “What makes a place? building be-
spoke place dependent object detectors for robotics,” in International
Conference on Intelligent Robots and Systems (IROS), Sept 2017, pp.
5100-5107.

S. Lowry, M. Milford, and G. Wyeth, “Transforming morning to after-
noon using linear regression techniques,” in International Conference
on Robotics and Automation (ICRA). 1EEE, 2014, pp. 3950-3955.
P. Neubert, N. Sunderhauf, and P. Protzel, “Appearance change predic-
tion for long-term navigation across seasons,” in European Conference
on obile Robots (ECMR). 1EEE, 2013, pp. 198-203.

(23]

[24]

[25]

[26]

(27

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

P. Neubert, N. Siinderhauf, and P. Protzel, “Superpixel-based ap-
pearance change prediction for long-term navigation across seasons,”
Robotics and Autonomous Systems, vol. 69, pp. 15-27, 2015.

P. Corke, R. Paul, W. Churchill, and P. Newman, “Dealing with shad-
ows: Capturing intrinsic scene appearance for image-based outdoor
localisation,” in International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2013, pp. 2085-2092.

B. Upcroft, C. McManus, W. Churchill, W. Maddern, and P. New-
man, “Lighting invariant urban street classification,” in International
Conference on Robotics and Automation (ICRA). 1EEE, 2014, pp.
1712-1718.

W. Maddern, A. Stewart, C. McManus, B. Upcroft, W. Churchill, and
P. Newman, “Illumination invariant imaging: Applications in robust
vision-based localisation, mapping and classification for autonomous
vehicles,” in Proceedings of the Visual Place Recognition in Changing
Environments Workshop, IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, vol. 2, 2014, p. 3.

N. Siinderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell,
B. Upcroft, and M. Milford, “Place recognition with convnet land-
marks: Viewpoint-robust, condition-robust, training-free,” in Robotics:
Science and Systems (RSS), 2015.

A. Holliday and G. Dudek, “Scale-robust localization using general
object landmarks,” in International Conference on Intelligent Robots
and Systems (IROS), 2018.

P. Espinace, T. Kollar, A. Soto, and N. Roy, “Indoor scene recognition
through object detection,” in International Conference on Robotics and
Automation (ICRA). 1EEE, 2010, pp. 1406-1413.

S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese, “Semantic structure
from motion with points, regions, and objects,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

D. Meger, C. Wojek, J. J. Little, and B. Schiele, “Explicit occlusion
reasoning for 3d object detection.” in British Machine Vision Confer-
ence (BMVC). Citeseer, 2011, pp. 1-11.

R. Frampton and A. Calway, “Place recognition from disparate views,”
in British Machine Vision Conference (BMVC). BMVA, 2013.

R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at
the level of objects,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

B. Mu, J. L. Shih-Yuan Liu, Liam Paull, and J. P. How, “Slam with
objects using a nonparametric pose graph,” in International Conference
on Intelligent Robots and Systems (IROS), 2016.

Y. Xiang and D. Fox, “Da-rnn: Semantic mapping with data associated
recurrent neural networks,” in Robotics: Science and Systems (RSS),
2017.

F. Chayya, D. Reddy, S. Upadhyay, V. Chari, M. Zia, and K. Krishna,
“Monocular reconstruction of vehicles: Combining slam with shape
priors,” in International Conference on Robotics and Automation
(ICRA), 2016.

S. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Probabilis-
tic data association for semantic slam,” in International Conference on
Robotics and Automation (ICRA), 2017.

A. G. Toudeshki, F. Shamshirdar, and R. Vaughan, “Robust uav
visual teach and repeat using only sparse semantic object features,”
in Conference on Computer and Robot Vision (CRV), Toronto, ON,
Canada, May 2018.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
Conference on Computer Vision (ECCV). Springer, 2016, pp. 21-37.
J. Redmon and A. Farhadi, “Y0lo9000: Better, faster, stronger,” in
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017, pp. 6517-6525.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS), 2015.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 740-755.

D. C. Lee, M. Hebert, and T. Kanade, “Geometric reasoning for single
image structure recovery,” in Conference on Computer Vision and
Pattern Recognition (CVPR). 1EEE, 2009, pp. 2136-2143.

J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32-38, 1957.



[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97-109, 1970.
J. Li, D. Meger, and G. Dudek, “Learning to Generalize 3D Spatial
Relationships,” in International Conference on Robotics and Automa-
tion (ICRA), Stockholm, Sweden, May 2016.

P. Henry, D. Fox, A. Bhowmik, and R. Mongia, “Patch volumes:
Segmentation-based consistent mapping with rgb-d cameras,” in 2013
International Conference on 3D Vision (3DV). 1EEE, 2013, pp. 398—
405.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in International
Conference on Intelligent Robots and Systems (IROS), Oct. 2012.

D. Gélvez-Lopez and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188-1197, 2012.

V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o
(n) solution to the pnp problem,” International Journal of Computer
Vision, vol. 81, no. 2, p. 155, 2009.

G. Yu and J.-M. Morel, “Asift: An algorithm for fully affine invariant
comparison,” Image Processing On Line, vol. 1, pp. 11-38, 2011.



