EPICS: Experimental Physics and Industrial Control System

Overview

- What, Why and Who?
- The Subsystems
- Performance
- Conclusions

What is EPICS and Why?

- Scaleable "real-time" remote control
 - distributed systems
 - small test stands
- Client / Server Model
 - Server: low-level hardware
 - Client: user interface
- Control: supervisory, closed-loop and sequential
- "Configuration tools in place of programming"
- Large installed base of tested software
- Modular design that supports incremental upgrades
- Well defined interfaces for extensions at every level

June 23, 2004

Who is Using EPICS?

Over 90 independent projects in North America, Europe and Asia

- Los Alamos National Laboratory
- Argonne National Laboratory
- Lawrence Berkeley Laboratory
- Superconducting Super Collider Laboratory
- Continuous Electron Beam Accelerator Facility
- University of Saskatchewan, UBC
- <u>Duke University</u>, <u>Stanford</u>
- Scientific Instrument Limited

Accelerators: Think BIG!

EPICS Subsystems (2)

Stepper motors

June 23, 2004

Distributed Database (Servers)

- <u>Database:</u> local control
 - Highest level on each IOC
 - Above hardware drivers
 - Simple config file
- Data Acquisition
- Data Conversion
- Alarm Detection
- Closed Loop Control
- 4-100 kHz PID loops

Display Manager (Client)

- Interface to Operator
- X-Windows
- Strip Charts, etc.

Monitors

Controls

Control Architecture Reading Group

June 23, 2004

Alarm Manager (Client)

- "Fault Trees"
- Steady State
 Operation
- Give guidance to operator

Archiver (Client)

- Data to Disk
- Select Channels to Retrieve
- 5000 Channels / sec
- Multiple Archivers at once on network

Sequencer (Client)

- Execute State Machines
- Runs on each IOC
- "State Notation Language"
- Switches Op. Modes
- Handles Exceptions
- C code can be added

Channel Access

- Controls how clients and servers talk to each other
- "Software Bus"
- Over TCP or UDP
- Establish connections
- Get, Put, Monitor Info

Event Synchronization

- "Real Time" across network
 - millisecond time-stamps
- Measure same event across network
- Based on individual local machine clock
- Avoid Ethernet "collisions"

I/O & Network Performance

- 4-100 kHz IOC low-level loops
- < 60 Hz Channel Access Loops
- 10,000 Channel Access monitors per second on 10 MBit Ethernet
- Ethernet load < 30% (for determinism)
- <u>Signal latency on network: 2ms+</u>
 - 68040 on 10 Mbit Ethernet
- "Network bandwidth is the primary limiting factor"
- The Ground Test Accelerator (old stats)
 - 2,500 physical connections
 - 10,000 database records in 14 IOCs
 - 8 workstations
 - 5-7% of 10 Mbit Ethernet.

June 23, 2004

Reliability

- Accidents are Expensive!
- 95% uptime
- Lots of testing, been around for years
- Not a toy or pet project

June 23, 2004

Portability

- VxWorks, Linux, Windows, RTEMS, Darwin, Solaris
- Control Net, PCI, CAN-Bus, Industry Pack, VME, VXI, PCI, ISA, CAMAC, GPIB, Profibus, Bitbus, Serial, Allen-Bradley, Modbus, Yokogawa, G-3, Ethernet/IP
- 500kB+ Server Executable
- RTEMS vs. VxWorks
 - IOC
 - Critical: Hard real-time
 - RTEMS as fast as VxWorks
- Linux ("all-in-one")
 - non-critical systems

June 23, 2004

Conclusion

- Scaleable
- Distributed
- Deterministic & relatively fast
 - (1ms time-stamps)
- Reliable
- Ethernet-based control architecture
- Standard open-source Unix tools

June 23, 2004

Further Reading

- "Recommended" Documents
- <u>http://lansce.lanl.gov/lansce8/Epics</u>
 <u>csX5Farch-1.html</u>
- <u>EPICS Architecture</u> (a) ANL
- EPICS: Recent Developments and Future Perspectives
- <u>EPICS on the RTEMS real-time</u> executive for multiprocessor systems

June 23, 2004