
COMP-417 Assignment Ø

The objective of this assignment is for you to become familiar with the Robot Operating System
(ROS) middleware, which you will be using in future assignments to program various
fundamental algorithms in robotics.

IMPORTANT: If at any time you run into problems, please do not hesitate to contact the TA for
assistance (malika@cim.mcgill.ca and msandeep@cim.mcgill.ca). The class on Wed. September
18th, 2013 will cover various ROS-related topics, so you will be expected to have fully completed
this assignment prior to then.

1. Installing ROS
ROS is officially supported on Ubuntu Linux (www.ubuntu.com), so if you would like to install
ROS on your personal computer, we highly recommend that you install it alongside the latest
version of Ubuntu, 12.04 LTS / Precise Pangolin. If you would like to install Ubuntu Linux on your
personal computer (or dual-booting or triple-booting), but are experiencing difficulties, please
contact the TA for support. The following assume that you are installing ROS on Ubuntu.

The Ubuntu Linux computers in Trottier 3rd floor should all have ROS Fuerte installed already, so
you may choose to use those machines to solve your assignments. Please notify us if you need a
particular ROS package that is not installed on these machines. If you plan to use these
computers for your assignments, you may skip to part 2.

 Please follow the following instructions to install ROS:

http://www.ros.org/wiki/fuerte/Installation/Ubuntu

If you have sufficient hard drive space, ideally you should install ros-fuerte-desktop-full version.

2. Learning ROS
Now go through the following tutorials to learn the basics of ROS:

http://www.ros.org/wiki/ROS/Tutorials

Whenever an exercise is offered in both Python and C++, please go through the C++ version.
Also, pay particular attention in completing Section 3 of Tutorial 1, even if you are using the
Trottier 3rd floor computers.

Note: When running the tutorials always select fuerte and rosbuild. DO NOT USE catkin.

As we discussed in class, we will be providing sample code in C++ for future assignments, but
you are allowed to solve the assignment in any language that you like, as long as your solution
demonstrates the correct results.

mailto:malika@cim.mcgill.ca
mailto:msandeep@cim.mcgill.ca
http://www.ubuntu.com/
http://www.ros.org/wiki/fuerte/Installation/Ubuntu
http://www.ros.org/wiki/ROS/Tutorials

3. Installing and learning StageROS
We will be using the Stage robot simulator software for most of our assignments in this class.
The StageROS ROS package allows ROS programs to interact with Stage, and is packaged with
the ros-fuerte-desktop-full package distribution. Please go through the following StageROS
tutorial:

http://www.ros.org/wiki/stage/Tutorials/SimulatingOneRobot

Note that in step 2 of the tutorial, you are asked to install the teleop_base ROS package. In the
future, you may need to install new ROS packages. We recommend that you first try installing a
package through your OS' packaging tool (e.g. Apt / Synaptic). If that is not an option, then you
can also try installing it semi-automatically using rosws. We will now install additional ROS
packages that are needed by the StageROS tutorial using both methods.

3.1 Installing ROS package using OS' package manager

Assuming that you are using Ubuntu Linux, you can install the ROS joystick package, called Joy,
by running the following commands in a terminal:

> sudo apt-get install ros-fuerte-joystick-drivers

As a side-note, you can search for available packages in Linux by executing:

> apt-cache search [query terms, e.g. “ros joystick drivers”]

You may alternatively choose to use a number of alternative GUI/command-line package
managers (e.g. Ubuntu Software Centre, Synaptic) to search for and install packages.

3.2 Installing ROS packages using rosws

 Next we will install the control_toolbox and teleop_base ROS packages:

1. Go to www.ros.org

2. Search for control_toolbox in the top-right search box

3. Make note of the following line on the control_toolbox ROS webpage:

 Source: svn https://code.ros.org/svn/wg-ros-

pkg/stacks/pr2_controllers/branches/pr2_controllers-

1.4/control_toolbox

This tells us that the control_toolbox package is using SVN as its revision control software,

and also provides us with the corresponding repository link.

4. In a terminal, execute the following command:

http://www.ros.org/wiki/stage/Tutorials/SimulatingOneRobot
http://www.ros.org/

 > rosws set control_toolbox --svn https://code.ros.org/svn/wg-ros-

pkg/stacks/pr2_controllers/branches/pr2_controllers-1.4/control_toolbox

> rosws update control_toolbox

5. Repeat steps 1-3 for the teleop_base ROS package, and then execute the following
commands in a terminal:

> rosws set teleop_base --svn https://code.ros.org/svn/wg-ros-

pkg/branches/trunk_cturtle/sandbox/teleop_base

 > rosws update teleop_base

6. Next you will need to re-initialize your ROS environment:

 > source ~/fuerte_workspace/setup.bash

7. You will likely experience in the future that some ROS packages may need to be updated
or tweaked to make them compatible with the latest versions of other dependent
libraries. Assuming that we are using Ubuntu Linux 12.04 LTS and ROS Fuerte, we will
need to make the following modifications due to changes in the APIs for tinyxml and Joy
ROS packages:

 Remove line 9 in ~/fuerte_workspace/control_toolbox/manifest.xml:

<depend package=”tinyxml” />

 Change line 38 of ~/fuerte_workspace/control_toolbox/src/pid.cpp from:

#include “tinyxml/tinyxml.h”

to:

#include <tinyxml.h>

 Change line 41 of

~/fuerte_workspace/control_toolbox/include/control_toolbox/sinusoid.

h from:

#include <tinyxml/tinyxml.h>

to:

#include <tinyxml.h>

 Change line 8 in ~/fuerte_workspace/teleop_base/manifest.xml from:

<depend package=”joy”/>

to:

<depend package=”sensor_msgs”/>

 Change line 37 in ~/fuerte_workspace/teleop_base/teleop_base.cpp from:

#include “joy/Joy.h”

to:

#include “sensor_msgs/Joy.h”

 Change line 121 in ~/fuerte_workspace/teleop_base/teleop_base.cpp from:

void joy_cb(const joy::Joy::ConstPtr& joy_msg)

to:

void joy_cb(const sensor_msgs::Joy::ConstPtr& joy_msg)

 In ~/fuerte_workspace/teleop_base/teleop_base.cpp, find and change all

instances of the following:

from joy_msg->get_buttons_size() to joy_msg->buttons.size() [lines 126 and 132]

from joy_msg->get_axes_size() to joy_msg->axes.size() [lines 137, 141, and 145]

 Change line 104 in

~/fuerte_workspace/teleop_base/src/teleop_base_keyboard.cpp from:

boost::thread t = boost::thread::thread(boost::bind(&TBK_Node::keyboardLoop,

&tbk));

to:

boost::thread t = boost::thread(boost::bind(&TBK_Node::keyboardLoop, &tbk));

8. You can now build both ROS packages by running:

> rosmake control_toolbox

> rosmake teleop_base

4. Learning StageROS
Now go through the following tutorial (from step 3 onwards):

http://www.ros.org/wiki/stage/Tutorials/SimulatingOneRobot

Note that you will need to execute roscore, stageros, teleop_base, and rviz

simultaneously in separate terminals. Also, in step 6 you will need to use an updated rviz

configuration file, which you can download from:

http://www.cim.mcgill.ca/~yiannis/COMP417_2012_A0P4.vcg

Assuming that you have saved 417A0.vcg to your Desktop, you can start rviz using the

following terminal command:

> rosrun rviz rviz -d ~/Desktop/COMP417_2012_A0P4.vcg

You may need to move/zoom the world in the Stage window (using the left/middle mouse

buttons) to see a large red box and a smaller blue square robot:

Your teleop_base commands will affect the blue robot only. Also, as you move the robot

around, you should observe updated laser scan points in the rviz window, which should look like

the following:

http://www.ros.org/wiki/stage/Tutorials/SimulatingOneRobot
http://www.cim.mcgill.ca/~yiannis/COMP417_2012_A0P4.vcg

