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Sheets in the heart

I Muscle fibers in the heart
are arranged along laminar
sheets.

I Sheet like organization also
plays an important role in
electrophysiology.

Histological section showing sheet
like organization of myocytes.
LeGrice et al., Amer. J. Physiology,
1995.
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Sheets in the brain

I White matter tracts in the
mammalian brain are
hypothesized to lie along
sheets, which intersect at
right angles.

I This sheet like organization
is localized within regions.

Sheet like organization of fiber
tracts in the monkey brain. Van J.
Wedeen et al. Science, 2012.
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Sheet Probability Index

I Tax et al. have proposed a
sheet probability index, as a
measure of sheet likelihood
in the brain from DTI.

I Ankele et al., have used the
eigenvectors of diffusion
tensors directly.

Tax et al., Medical Image Analysis,
2017.
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Motivation

I A sheet-like organization of fibrous tissues is seen across
organs and across species.

I Claims of such organization have been based on qualitative
descriptions.

I Quantitative descriptions, such as the sheet probability index,
use the second and third principle directions from DTI, which
may be unreliable.
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Non-Holonomicity Energy

I Consider two orthogonal
unit vector fields: u which
is fixed,

and v which is free
to move in the plane
orthogonal to u.

I We define the
non-holonomicity energy E
for the pair of fields u and v̂
as follows
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Non-holonomicity with rotation

I Non-holonomicity of vector
fields u and v, say ρuv is
given by

ρuv = 〈u× v, [u, v]〉.

I non-holonomicity of u and
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Minimization

I Given a fixed input field u
we pose the estimation of
field v as the following
minimization problem

v∗ = arg min
v

E (u, v, θ)

subject to 〈u, v〉 = 0.

I Gradient descent update for
parameter θ
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Non-local Energy

I The energy function E = ρ2

is non-local as it depends
on values of v at
neighbouring points as well.

I The non-local holonomicity
energy may or may not
decrease after a gradient
descent update!
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Convergence of Gradient Descent
I Gradient descent update

θ1 = −η∂E
∂θ

.

I Gradient of Energy is given by

∂E

∂θ
= 2
(
ρs(θ) +∇uθ

)(
(ρun − ρuv) sin 2θ + 2αuv cos 2θ + div u

)
.

=⇒ ∂E

∂θ

∣∣∣
θ≡0

= 2ρuv (2αuv + div u) = Eρ0 .

=⇒ θ1 = −ηEρ0 .

I Consider a smaller region of convergence where
|∇uEρ0 | < 8(αuv).

I A smoother energy function will have a larger region of
convergence.

Therefore, the modified energy given below has
better convergence properties

Ê (x) =

∫
x∈Nbd(x)

ρ(x)dx.

I η should be chosen based on smoothness properties of the
input vector field.
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Convergence of Gradient Descent
I For the energy to decrease, the following should be true for

some positive η

E
(
θ = 0

)
> E

(
θ = −ηEρ0 ).

After substituting the value of θ and approximating sin θ ≈ θ,
cos θ ≈ 1 the condition reduces to:
There exists a positive η such that energy decreases if

4αuv (2αuv + div u) +∇uEρ0 > 0.

For an input field which doesn’t fan in or out, we have

−8(αuv)2 < ∇uEρ0 .
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Ê (x) =

∫
x∈Nbd(x)

ρ(x)dx.

I η should be chosen based on smoothness properties of the
input vector field.



Convergence of Gradient Descent
I For the energy to decrease, the following should be true for

some positive η

E
(
θ = 0

)
> E

(
θ = −ηEρ0 ).

After substituting the value of θ and approximating sin θ ≈ θ,
cos θ ≈ 1 the condition reduces to:

There exists a positive η such that energy decreases if

4αuv (2αuv + div u) +∇uEρ0 > 0.

For an input field which doesn’t fan in or out, we have

−8(αuv)2 < ∇uEρ0 .

I Consider a smaller region of convergence where
|∇uEρ0 | < 8(αuv).

I A smoother energy function will have a larger region of
convergence.

Therefore, the modified energy given below has
better convergence properties
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Convergence Rate and Runtime

I With η = 0.1 the error flattens out in about 500 iterations.
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Convergence Rate and Runtime

I The algorithm converges to a reasonable minimum in a few
seconds for small datasets and in a few minutes for larger
datasets.
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A synthetic example - 1

A short axis slice of circumferential streamlines.



A synthetic example - 1

The tangent vector field to the circumferential streamlines.



A synthetic example - 1

A randomly seeded vector field in the plane perpendicular to the
circumferential vector field.



A synthetic example - 1

Minimizing non-holonomicity on the aforementioned vector fields



A synthetic example - 1

Sheets fit to the original and estimated vector fields.



A synthetic example - 2

A set of streamlines along the long axis.



A synthetic example - 2

The tangent vector field to the streamlines.



A synthetic example - 2

A randomly seeded vector field in the plane perpendicular to the long axis
streamlines.



A synthetic example - 2

Minimizing non-holonomicity on the aforementioned vector fields.



A synthetic example - 2

Sheets fit to the original and estimated vector fields.



An ex-vivo rat heart

Sheets fit to a short axis slice of DTI from a rat heart.



The Fornix Tract

Fornix tract streamlines from an HCP atlas.
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Fornix tract streamlines from an HCP atlas.



The Fornix Tract

The vector field tangent to the Fornix tract streamlines.



The Fornix Tract

Sheets estimated on the vector field tangent to the Fornix tract
streamlines.



The Fornix Tract

Volume rendering of error of fit (non-holonomicity).



Conclusion

I Previous work has proposed sheet probability measures by
considering the normal component of the Lie bracket.

I We have asked whether a single direction field derived from
fibrous tissue supports sheet-like geometries.

I We designed an efficient algorithm to minimize
non-holonomicity that:

I converges,
I provides actual reconstructions and high quality visualizations

of sheets in the heart and in the brain,
I and gives a local measure of sheet likeliness.

I Our algorithm could now be used to study the geometric
organization of tract systems.

I Our efficient GPU based implementations using PyTorch can
be shared.
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