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1 Introduction

Minimal surfaces are aesthetically beautifully, mathematically elegant and ubiq-
uitous in nature. They are found in lipid membranes of cells and various
other cell organelles[Terasaki et al., 2013] [Marshall, 2013], in the cuticle of in-
sects [Galusha et al., 2008], wings of butterflies [Michielsen and Stavenga, 2008]
[Saranathan et al., 2010], and various other organisms [Neville, 1993], and in
structures like somatopod dactyl club [Weaver et al., 2012] in crustaceans. They
are also found in the cochlea in the human ear and in the heart wall fibers
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[Savadjiev et al., 2012]. Many materials with various desirable physical and elec-
trical properties also have minimal surface structure [Torquato and Donev, 2004]
[Thomas et al., 1988]. Interestingly, there is an analogous widespread presence
of minimal surfaces in a variety of pure mathematical fields. Minimal surfaces
arise in seemingly unconnected fields of topology, differential Geometry, calculus
of variation, complex analysis, optimal transport and optimization.
The reasons of this extensive presence of such objects in various natural sturctures
is however, not completely understood. Historically, the minimal surface prob-
lem was first described by Joseph-Louis Lagrange in 1762 in “Essai d’une nou-
velle méthode pour déterminer les maxima et les minima des formules intégrales
indéfinie”, as a problem of variational calculus. Lagrange considered the prob-
lem of finding a surface of minimal area stretched across a given closed contour.
However, it was Jean Baptiste Marie Meusnier in 1776 who gave two solutions,
the catenoid (see figure 1a) and the helicoid (see figure 1b), to the problem. His
solution also led to an alternate definition of the problem as a surface with zero
mean curvature everywhere.

(a) Catenoid (b) Helicoid

Figure 1: First minimal surfaces to be discovered

In the following sections we discuss the equivalence of these two formulation,
as well as other equivalent definitions. We note that these traditional minimal
surfaces as well as their generalizations are extensively studied in Riemannian
geometry and geometric measure theory. This extensive body of literature in
these fields is beyond the scope of this report. We shall instead focus on a small
subset of literature at the intersection of differential geometry and computer
vision.
In computer vision, minimal surfaces arise in a variety of applications such as im-
age segmentation [Caselles et al., 1997b], stereo matching [Buehler et al., 2002],
shape matching [Windheuser et al., 2011] etc. In many such cases the problem
is reduced to its discretized version of finding a minimal-cut in a graph. The
problem of finding the minimal-cut is generally solved using maximum flow al-
gorithms. Such a solution relies upon duality theorems of linear programs. We
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give a brief review of the minimal-cut problem and its dual maximum flow in sec-
tion 3. Further, in section 5, we provide details of how this standard problem in
combinatorial optimization has been used in computer vision applications. We
also review some works which extend the discrete problem into the continuous
domain and the applications of this extension.
While the duality between the minimal-cut and the maximum flow problem has
been extensive studied in the discrete domain, the equivalent duality in contin-
uous domain between continuous flows and minimal surfaces has received scant
attention. Specifically, the potential repercussions of such a duality for minimal
surfaces found in nature has not been explored to the best of our knowledge.

2 Minimal Surfaces

2.1 Regular Surfaces

A surface u over a domain Ω is said to be regular at a point x ∈ Ω if the tangent
plane Txu is well defined at x. Further, the point x is said to be a regular point
if u is regular at x. For example, if u is a 2-dimensional surface then, at a
regular point x the wedge product of the partial derivatives u1, u2, w.r.t x1 and
x2 respectively, is non-zero. Equivalently, one may also define a regular point as
a point on n dimensional surface where the Jacobian matrix has maximal rank
n.
The unit normal n at a point p is defined as follows

n =
u1 ∧ · · · ∧ un

|u1 ∧ · · · ∧ un|

where ui is the partial derivative of u w.r.t xi at the point p. Note that the
normal is well defined at all the regular points. We assume that all surfaces to
be regular, except possible at isolated points.

2.2 Fundamental forms

Various metric properties such as length, area, curvature etc. of a surface may
be calculated using fundamental forms.
The first fundamental form I(·, ·) over the tangent plane Txu is equal to the
inner product of the tangent vector. For v, w ∈ Txu we have

I(v, w) := ⟨v, w⟩. (1)

The coefficients of the first fundamental form are given by

gij := ⟨ui, uj⟩ (2)

where, ui, uj are the partial derivatives of u along ith and jth cordinates. The
first fundamental form helps define a notion of length and area of a surface.
Specifically, let u be a surface, whose first fundamental form is given by gij .
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We define W = |u1 ∧ · · ·un|. The area element of u is given by dA = W dx1 ∧
... ∧ dxn.
The total area A[u] of surface u is obtained by integrating dA over the entire
domain Ω of the surface.

A[u] =

∫
Ω

dA =

∫
D

W dx1 ∧ ... ∧ dxn (3)

Note that we may equivalently write W =
√
g =

√
det(gij)

The second fundamental form is a symmetric bi-linear form on the tangent
plane, defined as follows

II(v, w) := ⟨Sv,w⟩ (4)

Where the Weingarten map S : Txu → Txu maps a vector Txu ∋ v = viui (with
implied summation over repeated index i according to the Einstein convention)
as follow

viui 7−→ −vini

where, ui/ni is the partial derivative of u/n is the ith coordinate direction. Note
that the set {ui} forms a basis for the tangent plane Txu.
The coefficients of the second fundamental form are given by

bij := −⟨ni, uj⟩ = ⟨n, uij⟩ (5)

The second equality in (5) follows from the fact the ⟨n, ui⟩ = 0, differentiation
both sides we have ⟨nj , ui⟩ + ⟨n, uij⟩ = 0. The second fundamental form is
useful in defining curvature of a surface.
Consider a surface u(x, y). The eigenvalues of the Weingarten map S at a point
p: κ1, κ2 are know as the principal curvatures of the surfaces at the point.
The Gauss curvature K is defined to be κ1κ2, and mean curvature H is defined
as κ1 + κ2 (we use sum instead of average of principal curvatures for ease of
generalization to higher dimensions).
Let G, B be the first and second fundamental forms matrices of a surface and
v be an eigen vector of S with eigen value κ. Then by definition of second
fundamental form we have for any vector w

⟨S(v), w⟩ = vTBw by definition

⟨kv, w⟩ = (BT v)Tw

κ⟨v, w⟩ = (Bv)Tw B is symmetric

κvTGw = (Bv)Tw

κ(GT v)Tw = (Bv)Tw

(κGv)Tw = (Bv)Tw G is symmetric

4



We therefore have the eigen system

Bv = κGv

Therefore
H = κ1 + κ2 = Trace(G−1B) = gijbij

and
K = κ1κ2 = det(G−1B)

2.3 Minimal Surfaces

Let u0 be a hyper-surface in Rn+1 and n its unit normal. Given a vector field
V : u → Rn+1 with compact support such that V (x) = 0 ∀ x ∈ ∂u, where ∂u is
the boundary of u. Let

us = {x+ sV (x) : x ∈ u0}

where, s is a scalar parameter. The first variation of (nD) area is given by

d

dt

∣∣∣∣
s=0

V ol(us) =

∫
u0

divu0 V (6)

where, the divergence divu0
is defined as follows

divu0
V =

n∑
i=1

⟨∇eiV, ei⟩ (7)

where, ei is an orthonormal frame for u. The divergence of the component of V
normal to u is given by

divu0
V ⊥ = divu0

⟨V,n⟩n
= ⟨∇ei(⟨V,n⟩n), ei⟩
= ⟨V,n⟩⟨∇ein, ei⟩
= H⟨V,n⟩

where H is the mean curvature scalar given by

H = divu0
(n) =

n∑
i=1

⟨∇ein, ei⟩

Example 2.1 (Mean Curvature of a plane). Show that the mean curvature of
the xy plane is 0.
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Proof. For the xy plane ⊂ R3, n = (0, 0, 1) at each point. Therefore

∇xn = ∇yn = ∇zn = 0

.

⇒ H =

3∑
i=1

⟨∇ein, ei⟩ = 0

■

From stokes theorem we have∫
u0

divu0
V T = 0

therefore,

d

dt

∣∣∣∣
s=0

V ol(us) =

∫
u0

H⟨V,n⟩ (8)

From equation (8) we have the following definition for a minimal surface.

Definition 2.1. u is called a minimal surface if it has zero mean curvature
everywhere.

If u is the graph of a function u : Rn → R, then the upward-pointing normal
is given by

n =
(−∇u, 1)√
1 + |∇Rnu|2

and the mean curvature of u is given by

H = −divRn

(
∇Rnu√

1 + |∇Rnu|2

)
We then have the following alternative definition of a minimal surface

Definition 2.2. A surface u is a minimal surface if it satisfies the following
differential equation.

−divRn

(
∇Rnu√

1 + |∇Rnu|2

)
= 0 (9)

Corollary 2.0.1. For u : R2 → R to be minimal , we have from (9)

(1 + u2
y)uxx + (1 + u2

x)uyy − 2uxuyuxy = 0 (10)

If we assume the surface to be constant upto first order, i.e ux, uy ≈ 0,
equation (10) approximates to uxx + uyy = 0 or ∆u = 0, the Laplace equa-
tion. Therefore, the minimal surface equation may be interpreted as a non-
linear generalization of the Laplace equation. We return to a discussion on the
Laplace equation in section 2.4 to understand the relation between this “linear-
approximation” and the original problem.
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Example 2.2. Show that a helicoid is a minimal surface

Proof. A helicoid in R3 is given by z = arctan( yx ), then

∇z =

(
−y

x2 + y2
,

x

x2 + y2

)
⇒ |∇z|2 =

1

x2 + y2
=

1

r2

⇒ H = −div

(
−y√
1 + r2

,
x√

1 + r2

)
= y · 1

(1 + r2)
3
2

· 2x − x · 1

(1 + r2)
3
2

· 2y

= 0

■

Definition 2.3. From equation (6) we have, that u is minimal if and only if
for all the vector fields V with compact support and vanishing on boundary of
u ∫

u

divu V = 0

2.4 Harmonic Functions

Let u : Rn → R be a differentiable function, then we define the Dirichlet integral
as follows

E[u] =
1

2

∫
|∇u|2. (11)

Let ϕ be an arbitrary smooth function with compact support and t be a param-
eter, then

E[u+ tϕ] =
1

2

∫
|∇(u+ tϕ)|2

=
1

2

∫
|∇u|2 + t

∫
⟨∇u,∇ϕ⟩+ t2

2

∫
|∇ϕ|2.

Differentiating w.r.t t at t = 0 we have

d

dt

∣∣∣
t=0

E[u+ tϕ] =

∫
⟨∇u,∇ϕ⟩

= −
∫

ϕ∆u using green’s identity

From the above we may conclude that at critical point of Dirichlet integral we
have

∆u = 0. (12)

The solutions of equation (12) are known as harmonic functions.
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Theorem 2.1. A[u] ≤ E[u]

Proof. The result follows from the definition of A[u] and E[u] ■

Let u be a surface bounded by a curve Γ. Then if u minimizes E[u] among
harmonic surfaces, it can be shown that u minimizes A[u]. Unlike the area
function A[u], the energy E[u] does not contain any square roots terms, and is
therefore easier to work with. Further, equation (12) is a differential equation
which may be solved numerically. The relation between energy and area, there-
fore, gives a practical method for working with minimal surfaces.
In addition to using the Laplace equation or the energy functional, the problem
of finding a minimal surface may also be solved by either discretizing the prob-
lem and then reducing it to a discrete maximum flow problem, or transforming
the problem into a continuous maximum flow problem and then solving the
max-flow problem in continuous domain. Both these methods have been used
in various applications in computer vision. In the following sections we intro-
duce the minimal cut and maximum flow problems, discuss some applications
of these problems in computer vision and indicate the relation to the minimal
surface problem.

3 Minimal cut and Maximum Flow over Dis-
crete Graphs.

3.1 Maximum Flow Over a Discrete Network

Consider a discrete graph G(V,E), where V is the set of vertices and E the set
of edges. Let cij ∈ R+ be the edge costs, interpreted as capacity, i.e, each edge
(i, j) may support a flow fij ≤ cij (Capacity Constraint), where flow is a map
f : E → R+.
We require that the total flow into a vertex equals the total flow out. This
constraint is violated at 2 special vertices s, t called the source (with excess out
flow) and sink (with excess in flow) respectively. In other words, for each vertex
v ∈ V \ {s, t}, net flow fv vanishes:

fv =
∑
j

fjv −
∑
i

fvi = 0 Conservation Constraint

Consider a partition of the vertex set into collection ΓS = {Vs, Vt} such that
Vs∩Vt = ϕ and Vs∪Vt = V where s ∈ Vs and t ∈ Vt. We associate a cost C(ΓS)
to each partition ΓS , equal to the sum of the costs of edges crossing from Vs to
Vt:

C(ΓS) =
∑

i∈Vs j∈Vt

cij

The set of edges (i, j) ∈ E such that i ∈ Vs and j ∈ Vt, is called the cut-set Ex.
The cost C(ΓS) may then be defined as the capacity of the cut-set Ex.
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Definition 3.1. The s-t minimal cut problem seeks a partition which minimizes
the cost such that nodes s (source) and t (sink) ∈ V lie in disjoint sets.

Definition 3.2. The maximum s-t flow f in a graph G(V,E) is the maximum
amount of flow that may be routed from vertex s to vertex t, subject to the
capacity and conservation constraints.

We now state a fundamental theorem regarding the minimal cuts and max-
imal flows in a graph, originally by [Ford and Fulkerson, 1956]

Theorem 3.1 (Min cut-Max Flow theorem). The maximal flow in the graph
is equal to the minimal capacity cut. Furthermore, the maximum flow saturates
the capacity of edges in the cut.

max f = minC(ΓS)

The original flow problem considered in [Ford and Fulkerson, 1956] is moti-
vated by physical rail networks. However, there are a wide variety of problems
which may be reduced to discrete network flow problem. In computer Vision, for
example, the problem of image segmentation or stereo matching may reduced
to a network flow problem over an appropriately defined graph. The continuous
analogue of this problem, however, was studied in [Strang, 1983], [Iri, 1976] for
the first time.

4 Minimal Surfaces and Continuous Maximum
Flow

4.1 Maximum Flow Over Continuous Domains

The continuous extension of the max flow(P ∗) - min cut(P ) dual problems may
be stated as follows.

(P ∗) max λ,

s.t |σ|∗ ≤ c,

σ · n = λf,

div σ = −λF.

(P ) min

∫ ∫
|∇u|c dx dy

s.t

∫ ∫
uF dx dy +

∫
uf ds = 1.

Where F (x, y) gives the strength of sources distributed in the interior of domain
Ω and f(x, y) is the strength of sources along the boundary of the domain ∂Ω
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(assumed to be a simple closed Lipschitz curve).
We observe that the constraint div σ = −λF (x, y) on smooth flow vector field
σ(x, y) is equivalent to the Conservation Constraint of the discrete setting. Note
that for source free domains (F (x, y) = 0) , the Conservation Constraint reduces
to div σ = 0
The Capacity Constraint of the discrete setting manifests as a bound |σ|∗ ≤
c(x, y) on the l∗-norm (dual to norm of ∇u in problem P) of σ in the continuous
case. For feasibility we have [Strang, 1983]

λ =

∫ ∫
Ω

σ · ∇u dx dy ≤
∫ ∫

Ω

|∇u|c dx dy

Further for strong duality (equality) to hold, we require

σ = c
∇u

|∇u|
∇u ̸= 0

Then the min cut - max flow duality theorem for continuous case may be ex-
pressed as follows.

maxλ = inf

∫ ∫
|∇u|c dx dy

4.2 Continuous Max flow For Minimal Surfaces

Motivated by the Push-relabel algorithm [Goldberg and Tarjan, 1986] for com-
puting discrete maximum flow [Appleton and Talbot, 2006] proposed a method
for computing continuous maximum flows by constraints relaxation.
Let σ be the flow in surface Ω containing source s and n be the normal to
the surface Ω, such that div σ = 0 (Conservation Constraint) and and |σ| ≤ c
(Capacity Constraint). For σs, the net flow out of source s, we have

σs =

∮
Ω

⟨σ,n⟩dΩ ≤
∮
Ω

cdΩ

In order to solve for maximum flow, the authors relax the conservation constraint
and consider the following system of partial differential equations

∂V

∂t
= −div σ

∂σ

∂t
= −∇V

s.t |σ| ≤ c

Where P is a scalar field such that at source s and at sink t: Vs = 1 and Vt = −1.
This scalar field acts as a ‘store’ for the excess flow (div σ). The minimal surface
Smin is obtained from the zero level set of P .
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4.3 Continuous Maximal Flows with anisotropic capacity
constraints

[Zach et al., 2009] extend the isotropic flows considered in [Appleton and Talbot, 2006]
to anisotropic capacity constraints.
Let ϕ : Rn → R be a convex and positively 1-homogeneous (i.e ϕ(λx) = λϕ)(x))
function. The Wulff shape Wϕ is the set

Wϕ = {y ∈ Rn : ⟨y, x⟩ ≤ ϕ(x) ∀ x ∈ Rn}

Given a Wulff shape Wϕ of function ϕ. The original function ϕ may be recon-
structed by

ϕ(x) = max
y∈Wϕ

⟨y, x⟩ = max
−y∈Wϕ

⟨−y, x⟩

Consider a binary valued function V : Ω → {0, 1}. We define an energy function

E[V ] =

∫
Ω

ϕx(∇V )dx (13)

where V (x) = 1 ∀ x ∈ S and V (x) = 0 ∀ x ∈ T . Since ϕ is convex and positively
1-homogeneous, we have ϕ(∇V ) = maxy∈Wϕ

⟨−y,∇V ⟩. Then,

E[V ] =

∫
Ω

max
−y∈Wϕ

⟨−y,∇V ⟩dx

Let σ : Ω → −Wϕ be a vector field, so that we may re-write the above equation
and obtain the following optimization problem.

min
V

max
σ

E(V, σ) = min
V

max
σ

∫
Ω

⟨−σ,∇V ⟩ (14)

Differentiating we have

∂E

∂V
= div σ

∂E

∂σ
= −∇V

s.t − σ(x) ∈ Wϕx ∀x ∈ Ω

V (x) = 1 ∀x ∈ S

V (x) = 0 ∀x ∈ T

The gradient descent/ascent updates for the minimax optimization problem
respectively are given by

∂V

∂τ
= −div σ

∂σ

∂τ
= −∇V

The gradient updates are then used to solve the optimization problem in equa-
tion (14) with generalized capacity constraints σ(x) ∈ Wϕ ∀ x ∈ Ω on σ .
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Figure 2: Continuous max flow with generalize constraints (Taken from
[Zach et al., 2009])

Further [Zach et al., 2009] also obtain the dual energy to energy in equation
(13) is given by

E∗(σ) =

∫
S

div σ dx

s.t σ ∈ −Wϕx

div σ = 0 ∀ x ∈ Ω \ {S, T}

Thus, the dual energy measures the net outflow from the source, which is a
manifestation of the min-cut/max flow duality.

5 Applications of Minimal Surfaces

We now describe some applications, in computer vision, which use minimal
surfaces theory to solve problems. A common thread among these applications
is that they solve the minimal surface problem in a space where the metric is
derived from the image content. While these applications do not provide any
direct theoretical insights into the minimal surface problem, they do provide
effective practical techniques for computing the solution of the problem.

5.1 Minimal Surfaces for segmentation

Geodesic active contours [Caselles et al., 1997a] is a classical object segmenta-
tion method which poses the object segmentation problem as one of finding
a geodesic curve in a Riemannian space with metric derived from the image.
The method uses curvature flows to evolve a deformable contour into an op-
timal boundary for image segmentation. In the 3D extension of the method
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[Caselles et al., 1997c], [Caselles et al., 1997b] a deformable surface is used. The
object boundary in this case is given by a minimal surface defined in a manner
that is analogous to the 2D case. They pose the 3D image segmentation prob-
lem as one of minimizing a ‘weighted’ area, where ‘weight’ is derived from the
image. Posing image segmentation as minimizing a weighted area essentially
reduces the problem to the minimal surface problem. They show that the Euler
Lagrange equation for the problem is

St = (gH −∇g · n)n

where g is the image dependent metric, H is the mean-curvature and n is the
unit normal to 3D surface St. The solution of this Euler-Lagrange equation gives
us a 3D minimal surface S, which forms the segmentation boundary. Using level
set representation the evolution equations reduce to

∂u

∂t
= g(I)|∇u|

(
∇u

|∇u|

)
+∇g(I).∇u.

The level set representation moves the (3D) problem to one higher (4D) dimen-
sion, and obtains a solution in the higher dimension. The solution of the original
problem can then be computed from the zero level set of the higher dimensional
problem. In the above equation, u is a 4D function with S as its 3D zero level
set.
While the original motivation of this work is that of solving the image segmenta-
tion problem, the work gives a practical method for computing minimal surfaces
directly (without using dual max-flow formulation).

5.2 Graph Cuts for Computing Minimal Surfaces

Section 5.1 describes the relation between optimal segmentation of an image and
minimal surfaces with image derived metric. [Boykov and Kolmogorov, 2003]
uses the well known graph cut segmentation technique [Boykov et al., 2001] to
compute minimal Surfaces in 3D. They demonstrate the method by segmentat-
ing 3D structures in images. They use the Cauchy-Crofton formula, as described
below, to estimate the length of a curve and minimize the length to obtain the
final minimal surface.
The Cauchy-Crofton formula of integral geometry relates the Euclidean “length”
of a curve to the measure of set of lines intersecting it. If nc(L) is the number of
times any given line L intersects the curve C then the length |C|ϵ of the curves
is given by

|C|ϵ =
1

2

∫
ncdL

where dL is the Lebesgue measure of the set of lines. Further, interpreting a
cut C of a graph embedded in Rn as a closed surface, they define a cut-metric
for graph given by

|C|G =
∑
e∈C

we
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where C is a cut of the graph. Relating the length of curves to this cut met-
ric, the problem of finding minimum cut is equivalent to finding “length/area”
minimizing surface.
The authors use the this to pose image segmentation as a problem of finding an
area mininimizing surface, where the “area” is derived based on image content.

6 Conclusion

In this report we gave a brief mathematical introduction to minimal surfaces
and discussed their relation to maximum flows. We also discussed some appli-
cation of minimal surfaces in computer vision.
We introduced, in section 2, the basic mathematical background for minimal
surface. In sections 3, 4 we described the relation between the minimal sur-
faces, min cut problem and the max-flow problem and how the relations have
been exploited in various applications (section 5). We pointed out in the in-
troduction (Section 1) that physical minimal surfaces are ubiquitous in nature.
While minimal surfaces have been studied extensively, the implications of dual
maxumum flow for physical minimal surfaces has not been explored to the best
of our knowledge. We plan on exploring the applications of the dual maximum
flow in such physical minimal surfaces in future.
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