
Virtual Memory

Tabish Syed
COMP 273, Winter 2020



Virtual and Physical Memory

Virtual Memory

Hardware
map

Physical
Memory

• Each process operates in its own virtual space, as the only
program running.

• Memory Translation Hardware Translates virtual address to
physical address.

• Each process is protected from other running processes.
• OS(software) can decide where each process goes in the
physical memory.

1/12



Virtual and Physical Memory

Virtual Memory

Hardware
map

Physical
Memory

• Each process operates in its own virtual space, as the only
program running.

• Memory Translation Hardware Translates virtual address to
physical address.

• Each process is protected from other running processes.
• OS(software) can decide where each process goes in the
physical memory.

1/12



Virtual and Physical Memory

Virtual Memory
Hardware
map

Physical
Memory

𝑚𝑎𝑝 𝑚𝑎𝑝

• Each process operates in its own virtual space, as the only
program running.

• Memory Translation Hardware Translates virtual address to
physical address.

• Each process is protected from other running processes.

• OS(software) can decide where each process goes in the
physical memory.

1/12



Virtual and Physical Memory

Virtual Memory
Hardware
map

Physical
Memory

𝑚𝑎𝑝 𝑚𝑎𝑝

• Each process operates in its own virtual space, as the only
program running.

• Memory Translation Hardware Translates virtual address to
physical address.

• Each process is protected from other running processes.
• OS(software) can decide where each process goes in the
physical memory.

1/12



Virtual Memory Layout



MIPS Virtual Memory Map

32-bit user space (kuseg) 2GB

0x0000 0000

Unmapped cached (kseg0)
0x8000 0000

Unmapped uncached (kseg1)
0xA000 0000

Mapped kseg2

0xC000 0000

32 Bit MIPS memory map. 2/12



MIPS Virtual Memory Map

• kuseg: (0x000 000 - 0x7fff ffff) User segment is the
lower 2 GB of the 32-bit address space. These addresses are
allowed only in user mode. Mapped to physical memory by
(Memory Management Hardware/Unit)MMU

• kseg0: (0x8000 000 - 0x9fff fff) This 512 MB chunk are
translated to the lowest 512 MB of physical memory (by setting
MSB to 0). Used for OS kernel and access is through cache.

• kseg1: (0xa000 000 - 0xbfff fff Duplicate mapping of
lower 512 MB of physical memory. Mapped to physical memory
by setting 3 MSBs to 0. This region is not cached and therefore
behaves correctly at startup. Initial ROM is placed here.)

• kseg2: (0xc000 000 - 0xffff ffff) This 1 GB is only
accessible in kernel mode. Mapped to physical memory by MMU

2/12



MIPS Virtual Memory Map

• kuseg: (0x000 000 - 0x7fff ffff) User segment is the
lower 2 GB of the 32-bit address space. These addresses are
allowed only in user mode. Mapped to physical memory by
(Memory Management Hardware/Unit)MMU

• kseg0: (0x8000 000 - 0x9fff fff) This 512 MB chunk are
translated to the lowest 512 MB of physical memory (by setting
MSB to 0). Used for OS kernel and access is through cache.

• kseg1: (0xa000 000 - 0xbfff fff Duplicate mapping of
lower 512 MB of physical memory. Mapped to physical memory
by setting 3 MSBs to 0. This region is not cached and therefore
behaves correctly at startup. Initial ROM is placed here.)

• kseg2: (0xc000 000 - 0xffff ffff) This 1 GB is only
accessible in kernel mode. Mapped to physical memory by MMU

2/12



MIPS Virtual Memory Map

• kuseg: (0x000 000 - 0x7fff ffff) User segment is the
lower 2 GB of the 32-bit address space. These addresses are
allowed only in user mode. Mapped to physical memory by
(Memory Management Hardware/Unit)MMU

• kseg0: (0x8000 000 - 0x9fff fff) This 512 MB chunk are
translated to the lowest 512 MB of physical memory (by setting
MSB to 0). Used for OS kernel and access is through cache.

• kseg1: (0xa000 000 - 0xbfff fff Duplicate mapping of
lower 512 MB of physical memory. Mapped to physical memory
by setting 3 MSBs to 0. This region is not cached and therefore
behaves correctly at startup. Initial ROM is placed here.)

• kseg2: (0xc000 000 - 0xffff ffff) This 1 GB is only
accessible in kernel mode. Mapped to physical memory by MMU

2/12



MIPS Virtual Memory Map

• kuseg: (0x000 000 - 0x7fff ffff) User segment is the
lower 2 GB of the 32-bit address space. These addresses are
allowed only in user mode. Mapped to physical memory by
(Memory Management Hardware/Unit)MMU

• kseg0: (0x8000 000 - 0x9fff fff) This 512 MB chunk are
translated to the lowest 512 MB of physical memory (by setting
MSB to 0). Used for OS kernel and access is through cache.

• kseg1: (0xa000 000 - 0xbfff fff Duplicate mapping of
lower 512 MB of physical memory. Mapped to physical memory
by setting 3 MSBs to 0. This region is not cached and therefore
behaves correctly at startup. Initial ROM is placed here.)

• kseg2: (0xc000 000 - 0xffff ffff) This 1 GB is only
accessible in kernel mode. Mapped to physical memory by MMU

2/12



MIPS Virtual Memory Map

32-bit user space (kuseg) 2GB

0x0000 0000

Unmapped cached (kseg0)
0x8000 0000

Unmapped uncached (kseg1)
0xA000 0000

Mapped kseg2

0xC000 0000

Virtual Memory Map

512 MB

3.5 GB

0x2000 0000

Physical Memory
2/12



MIPS Virtual Memory Map

32-bit user space (kuseg) 2GB

0x0000 0000

Unmapped cached (kseg0)
0x8000 0000

Unmapped uncached (kseg1)
0xA000 0000

Mapped kseg2

0xC000 0000

Virtual Memory Map

512 MB

3.5 GB

0x2000 0000

Physical Memory
2/12



MIPS Virtual Memory Map

32-bit user space (kuseg) 2GB

0x0000 0000

Unmapped cached (kseg0)
0x8000 0000

Unmapped uncached (kseg1)
0xA000 0000

Mapped kseg2

0xC000 0000

Virtual Memory Map

512 MB

3.5 GB

0x2000 0000

Physical Memory
2/12



Kernel and User Segments

Privilege level of a program

• User Privilege: In User mode program addresses above 2GB
(𝑀𝑆𝐵 = 1) are illegal. Additionally, some instructions, like some
CPU control instructions, are illegal.

• Kernel Privilege: In this mode a program can do anything.
Generally OS runs in this mode.

3/12



Kernel and User Segments

Privilege level of a program

• User Privilege: In User mode program addresses above 2GB
(𝑀𝑆𝐵 = 1) are illegal. Additionally, some instructions, like some
CPU control instructions, are illegal.

• Kernel Privilege: In this mode a program can do anything.
Generally OS runs in this mode.

3/12



Kernel and User Segments

On
ly
ac
ce
ss
ib
le
by
OS

Kernel Code (.ktext)

Kernel data (.kdata)

IO registers

Per-process data

Available to all processes

Kernel Segment. 3/12



Kernel and User Segments

Us
er
Se
gm

en
t(
ku
se
g)

Program Code (.text)

static data (.data)

heap

stack

User Segment. 3/12



Mapping To Physical Memory



Virtual to Physical Address Mapping

• Mapping Virtual program addresses is done by OS when
program is loaded.

• Mapping also allows OS to discriminate and therefore protect
different parts of memory.

• The Kernel part of a processes address space is shared by all
processes and therefore maps to fixed location.

4/12



Virtual to Physical Address Mapping

• Mapping Virtual program addresses is done by OS when
program is loaded.

• Mapping also allows OS to discriminate and therefore protect
different parts of memory.

• The Kernel part of a processes address space is shared by all
processes and therefore maps to fixed location.

4/12



Virtual to Physical Address Mapping

• Mapping Virtual program addresses is done by OS when
program is loaded.

• Mapping also allows OS to discriminate and therefore protect
different parts of memory.

• The Kernel part of a processes address space is shared by all
processes and therefore maps to fixed location.

4/12



Hardware Memory Translation

Memory Translation hardware should achieve the following:

• Relocation: The Memory translation system allows a program to
run anywhere in physical memory.

• Protection: Programs with user level privilege can only access
the kuseg segment. Regions of memory can be write protected.

• Demand Paging: Programs can run as if all the memory
resources they needed were already allocated, but OS actually
allocates the space when needed.

5/12



Hardware Memory Translation

Memory Translation hardware should achieve the following:

• Relocation: The Memory translation system allows a program to
run anywhere in physical memory.

• Protection: Programs with user level privilege can only access
the kuseg segment. Regions of memory can be write protected.

• Demand Paging: Programs can run as if all the memory
resources they needed were already allocated, but OS actually
allocates the space when needed.

5/12



Hardware Memory Translation

Memory Translation hardware should achieve the following:

• Relocation: The Memory translation system allows a program to
run anywhere in physical memory.

• Protection: Programs with user level privilege can only access
the kuseg segment. Regions of memory can be write protected.

• Demand Paging: Programs can run as if all the memory
resources they needed were already allocated, but OS actually
allocates the space when needed.

5/12



Paged Mapping

• Mapping is generally done in pages of 4KB.

• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

• Mapping is generally done in pages of 4KB.
• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

• Mapping is generally done in pages of 4KB.
• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

• Mapping is generally done in pages of 4KB.
• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

Page Table Register

Virtual page number (VPN) Page offset

0111231

Virtual Address

Valid Physical Frame Number

Page Table

Physical Frame Number (PFN) Page offset

0111231

Physical Address

0 if page not in memory

Mapping Virtual Addresses to Physical Addresses 6/12



Paged Mapping

Page Table Register

Virtual page number (VPN) Page offset

0111231

Virtual Address

Valid Physical Frame Number

Page Table

Physical Frame Number (PFN) Page offset

0111231

Physical Address

0 if page not in memory

Mapping Virtual Addresses to Physical Addresses 6/12



Paged Mapping

Page Table Register

Virtual page number (VPN) Page offset

0111231

Virtual Address

Valid Physical Frame Number

Page Table

Physical Frame Number (PFN) Page offset

0111231

Physical Address

0 if page not in memory

Mapping Virtual Addresses to Physical Addresses 6/12



Paged Mapping

Page Table Register

Virtual page number (VPN) Page offset

0111231

Virtual Address

Valid Physical Frame Number

Page Table

Physical Frame Number (PFN) Page offset

0111231

Physical Address

0 if page not in memory

Mapping Virtual Addresses to Physical Addresses 6/12



Paged Mapping

Page Table Register

Virtual page number (VPN) Page offset

0111231

Virtual Address

Valid Physical Frame Number

Page Table

Physical Frame Number (PFN) Page offset

0111231

Physical Address

0 if page not in memory

Mapping Virtual Addresses to Physical Addresses 6/12



Paged Mapping

Virtual Page Number

Physical page or Disk addressValid

1
1
1
1
0
1
1
1
0
1
1

Page Table

Valid Dirty Tag PFN

Translation Lookaside buffer

Physical Memory

Disk

Page Table

7/12



Paged Mapping

Virtual Page Number

Physical page or Disk addressValid

1
1
1
1
0
1
1
1
0
1
1

Page Table

Valid Dirty Tag PFN

Translation Lookaside buffer
Physical Memory

Disk

Page Table

7/12



Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer 0111231

Physical Frame Number (PFN) Page offset
Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12



Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer

0111231
Physical Frame Number (PFN) Page offset

Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12



Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer 0111231

Physical Frame Number (PFN) Page offset

Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12



Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer 0111231

Physical Frame Number (PFN) Page offset
Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12



Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer 0111231

Physical Frame Number (PFN) Page offset
Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12



Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer 0111231

Physical Frame Number (PFN) Page offset
Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12



Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Miss Hit Hit

• TLB Misses, but entry present in Page Table. Data found in cache.

9/12



Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Miss Hit Hit
Miss Hit Miss

• TLB Misses, but entry present in Page Table. Data not in cache.

9/12



Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Miss Hit Hit
Miss Hit Miss
Miss Miss Miss

• TLB Misses, followed by page table miss (Page Fault). Always
followed by Compulsory Cache miss

9/12



Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Hit Miss Miss

• Cannot have entry in TLB if page is not in memory.

10/12



Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Hit Miss Miss
Hit Miss Hit

• Cannot have entry in TLB if page is not in memory.

10/12



Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Hit Miss Miss
Hit Miss Hit
Miss Miss Hit

• Cannot have data in cache if page is not in memory.

10/12



Summary

Caches
• Cache Block(Line)

• Cache Miss
• Cache Size: 32-64 B
• N-Way set associative

Virtual Memory
• Memory Page

• Page Fault
• Page Size: 4KB
• Fully Associative

11/12



Summary

Caches
• Cache Block(Line)
• Cache Miss

• Cache Size: 32-64 B
• N-Way set associative

Virtual Memory
• Memory Page
• Page Fault

• Page Size: 4KB
• Fully Associative

11/12



Summary

Caches
• Cache Block(Line)
• Cache Miss
• Cache Size: 32-64 B

• N-Way set associative

Virtual Memory
• Memory Page
• Page Fault
• Page Size: 4KB

• Fully Associative

11/12



Summary

Caches
• Cache Block(Line)
• Cache Miss
• Cache Size: 32-64 B
• N-Way set associative

Virtual Memory
• Memory Page
• Page Fault
• Page Size: 4KB
• Fully Associative

11/12



⌣

12/12


	Virtual Memory Layout
	Mapping To Physical Memory

