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Virtual and Physical Memory

Virtual Memory
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map

Physical
Memory

• Each process operates in its own virtual space, as the only
program running.

• Memory Translation Hardware Translates virtual address to
physical address.

• Each process is protected from other running processes.
• OS(software) can decide where each process goes in the
physical memory.
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Virtual Memory Layout



MIPS Virtual Memory Map

32-bit user space (kuseg) 2GB

0x0000 0000

Unmapped cached (kseg0)
0x8000 0000

Unmapped uncached (kseg1)
0xA000 0000

Mapped kseg2

0xC000 0000

32 Bit MIPS memory map. 2/12



MIPS Virtual Memory Map

• kuseg: (0x000 000 - 0x7fff ffff) User segment is the
lower 2 GB of the 32-bit address space. These addresses are
allowed only in user mode. Mapped to physical memory by
(Memory Management Hardware/Unit)MMU

• kseg0: (0x8000 000 - 0x9fff fff) This 512 MB chunk are
translated to the lowest 512 MB of physical memory (by setting
MSB to 0). Used for OS kernel and access is through cache.

• kseg1: (0xa000 000 - 0xbfff fff Duplicate mapping of
lower 512 MB of physical memory. Mapped to physical memory
by setting 3 MSBs to 0. This region is not cached and therefore
behaves correctly at startup. Initial ROM is placed here.)

• kseg2: (0xc000 000 - 0xffff ffff) This 1 GB is only
accessible in kernel mode. Mapped to physical memory by MMU
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Kernel and User Segments

Privilege level of a program

• User Privilege: In User mode program addresses above 2GB
(𝑀𝑆𝐵 = 1) are illegal. Additionally, some instructions, like some
CPU control instructions, are illegal.

• Kernel Privilege: In this mode a program can do anything.
Generally OS runs in this mode.
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Kernel and User Segments

On
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Kernel Code (.ktext)

Kernel data (.kdata)

IO registers

Per-process data

Available to all processes

Kernel Segment. 3/12



Kernel and User Segments
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Mapping To Physical Memory



Virtual to Physical Address Mapping

• Mapping Virtual program addresses is done by OS when
program is loaded.

• Mapping also allows OS to discriminate and therefore protect
different parts of memory.

• The Kernel part of a processes address space is shared by all
processes and therefore maps to fixed location.
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Hardware Memory Translation

Memory Translation hardware should achieve the following:

• Relocation: The Memory translation system allows a program to
run anywhere in physical memory.

• Protection: Programs with user level privilege can only access
the kuseg segment. Regions of memory can be write protected.

• Demand Paging: Programs can run as if all the memory
resources they needed were already allocated, but OS actually
allocates the space when needed.
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Paged Mapping

• Mapping is generally done in pages of 4KB.

• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

• Mapping is generally done in pages of 4KB.
• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

• Mapping is generally done in pages of 4KB.
• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

• Mapping is generally done in pages of 4KB.
• Mapping translates virtual page number (VPN) into physical
frame number (PFN).

• To allow for efficient mapping we maintain a page table
containing entries for each page.

• To improve translation speed (part of) the page table resides in
a fast cache called Translation lookaside buffer (TLB) (Which
part?).

6/12



Paged Mapping

Page Table Register

Virtual page number (VPN) Page offset

0111231

Virtual Address

Valid Physical Frame Number

Page Table

Physical Frame Number (PFN) Page offset

0111231

Physical Address

0 if page not in memory

Mapping Virtual Addresses to Physical Addresses 6/12
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Paged Mapping

Virtual Page Number

Physical page or Disk addressValid

1
1
1
1
0
1
1
1
0
1
1

Page Table

Valid Dirty Tag PFN

Translation Lookaside buffer

Physical Memory

Disk

Page Table
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Cache and Virtual Memory

Virtual page number (VPN) Page offset
0111231

Virtual Address

Valid Dirty Tag Physical Frame Number

⊜
⊜
⊜
⊜
⊜
⊜
Translation Lookaside buffer 0111231

Physical Frame Number (PFN) Page offset
Physical Address Tag index offset

⊜
Cache Miss?

ValidCache Tag

Cache Data

Virtual Memory And Caches 8/12
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Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Miss Hit Hit

• TLB Misses, but entry present in Page Table. Data found in cache.
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Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Miss Hit Hit
Miss Hit Miss
Miss Miss Miss

• TLB Misses, followed by page table miss (Page Fault). Always
followed by Compulsory Cache miss
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Cache Misses, TLB Misses and Page Faults

TLB Page Table Cache
Hit Miss Miss

• Cannot have entry in TLB if page is not in memory.
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Summary

Caches
• Cache Block(Line)

• Cache Miss
• Cache Size: 32-64 B
• N-Way set associative

Virtual Memory
• Memory Page

• Page Fault
• Page Size: 4KB
• Fully Associative
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