

Area and Length Minimizing Flows for Shape Segmentation

Kaleem Siddiqi Allen Tannenbaum Yves Bérubé Lauzière Steven W. Zucker

<u>Definitions</u>

• C(p) = (x(p), y(p)) is a smooth closed curve.

•
$$\mathcal{T} = (x_p, y_p) / \sqrt{x_p^2 + y_p^2}$$
 is the unit tangent.

• $\mathcal{N}=(-y_p,x_p)/\sqrt{x_p^2+y_p^2}$ is the unit normal.

$$\bullet \ \kappa \mathcal{N} = \frac{1}{\frac{\partial \mathcal{C}}{\partial p}} \frac{\partial}{\partial p} \left[\frac{\frac{\partial \mathcal{C}}{\partial p}}{\frac{\partial \mathcal{C}}{\partial p}} \right],$$

where κ is the Euclidean curvature.

Minimizing Euclidean Length

- C = C(p, t) is a smooth family of closed curves.
- 0 .
- C(0,t) = C(1,t).
- C'(0,t) = C'(1,t).

Length functional:

$$L(t) = \int_0^1 \|\frac{\partial \mathcal{C}}{\partial p}\| dp$$
$$= \int_0^1 (x_p^2 + y_p^2)^{1/2} dp.$$

$$L'(t) = \int_0^1 \frac{\partial}{\partial t} [(x_p^2 + y_p^2)^{1/2}] dp$$

$$= \int_0^1 \frac{2(x_p x_{pt} + y_p y_{pt})}{2(x_p^2 + y_p^2)^{1/2}} dp$$

$$= \int_0^1 \frac{\langle \frac{\partial \mathcal{C}}{\partial p}, \frac{\partial^2 \mathcal{C}}{\partial p \partial t} \rangle}{||\frac{\partial \mathcal{C}}{\partial p}||} dp.$$

Integration by parts:

Let
$$u = \frac{\mathcal{C}_p}{||\mathcal{C}_p||}$$
, $dv = \frac{\partial^2 \mathcal{C}}{\partial p \partial t} dp$.

$$L'(t) = \left\langle \frac{\mathcal{C}_p}{||\mathcal{C}_p||}, \mathcal{C}_t \right\rangle \bigg]_0^1 - \int_0^1 \left\langle \frac{\partial \mathcal{C}}{\partial t}, \frac{1}{\|\frac{\partial \mathcal{C}}{\partial p}\|} \frac{\partial}{\partial p} \left[\frac{\frac{\partial \mathcal{C}}{\partial p}}{\|\frac{\partial \mathcal{C}}{\partial p}\|} \right] \|\frac{\partial \mathcal{C}}{\partial p}\| \right\rangle dp.$$

$$L'(t) = -\int_0^{L(t)} \langle \frac{\partial \mathcal{C}}{\partial t}, \kappa \mathcal{N} \rangle ds.$$

Area functional:

$$A(t) = -\frac{1}{2} \int_0^L \langle \mathcal{C}, \mathcal{N} \rangle \, ds = -\frac{1}{2} \int_0^1 \langle \mathcal{C}, \begin{pmatrix} -y_p \\ x_p \end{pmatrix} \rangle \, dp.$$

Taking the first variation:

$$A'(t) = \underbrace{-\frac{1}{2} \int_{0}^{1} \langle \mathcal{C}_{t}, \begin{pmatrix} -y_{p} \\ x_{p} \end{pmatrix} \rangle dp}_{I_{1}}$$

$$\underbrace{-\frac{1}{2} \int_{0}^{1} \langle \mathcal{C}, \begin{pmatrix} -y_{pt} \\ x_{pt} \end{pmatrix} \rangle dp}_{I_{2}}$$

Integration by parts for I_2 :

Let
$$u=\mathcal{C}$$
, $dv=\left(egin{array}{c} -y_{pt} \\ x_{pt} \end{array} \right)$

$$I_{2} = -\frac{1}{2} \left(\langle \mathcal{C}, \begin{pmatrix} -y_{t} \\ x_{t} \end{pmatrix} \rangle \right]_{0}^{1} - \int_{0}^{1} \langle \mathcal{C}_{p}, \begin{pmatrix} -y_{t} \\ x_{t} \end{pmatrix} \rangle dp$$

$$= -\frac{1}{2} \int_{0}^{1} \langle \mathcal{C}_{t}, \begin{pmatrix} -y_{p} \\ x_{p} \end{pmatrix} \rangle dp = I_{1}$$

$$A'(t) = -\int_0^L \langle \mathcal{C}_t, \mathcal{N} \rangle ds.$$

 $\mathcal{C}(p,t): S^1 \times [0,\tau) \to \mathbf{R}^2$ is a family satisfying:

$$\left| \frac{\partial \mathcal{C}}{\partial t} = \Gamma \mathcal{N} \, . \right|$$

Let $\Psi: \mathbf{R}^2 \times [0,\tau) \to \mathbf{R}$ be a Lipschitz continuous function such that $\mathcal{C}(p,t)$ is its zero level set:

$$C(p,t) = \{(x,y) \in \mathbb{R}^2 : \Psi(x,y,t) = 0\}.$$

Differentiating with respect to t:

$$0 = \Psi_x x_t + \Psi_y y_t + \Psi_t$$

$$\Psi_t = -\langle \nabla \Psi, \mathcal{C}_t \rangle$$

Differentiating with respect to p:

$$\Psi_x x_p + \Psi_y y_p = 0$$

$$\nabla\Psi\perp\mathcal{T}\Rightarrow\mathcal{N}=-\frac{\nabla\Psi}{\|\nabla\Psi\|}$$

Substituting for C_t and $\nabla \Psi$ in $\Psi_t = \langle C_t, -\nabla \Psi \rangle$:

$$\Psi_t = \langle \Gamma \mathcal{N}, \|\nabla \Psi\| \mathcal{N} \rangle$$

$$|\Psi_t = \Gamma ||\nabla \Psi||.|$$

Example of a level set flow:

$$\Psi_t = \left(eta_0 + eta_1 \mathrm{div} \left(rac{
abla \Psi}{\|
abla \Psi\|}
ight) \right) \|
abla \Psi\| \ .$$

•
$$\Psi_t = \phi(x, y) \left(\beta_0 + \beta_1 \operatorname{div} \left(\frac{\nabla \Psi}{\|\nabla \Psi\|} \right) \right) \|\nabla \Psi\|$$
.

Caselles *et al.* 93, Malladi *et al.* 94, Tek and Kimia 95

• $\Phi(x,y): \mathbf{R}^2 \to \mathbf{R}^+$ has local minima at "edges":

$$\phi = \frac{1}{1 + \|\nabla G_{\sigma} * I\|^n}$$

• Euclidean metric: $ds^2 = dx^2 + dy^2$.

• Conformal metric: $ds_{\phi}^2 = \phi^2(dx^2 + dy^2)$.

• $\phi: \mathbf{R}^2 \to \mathbf{R}^+$ is differentiable

 ϕ -Length functional:

$$L_{\phi}(t) = \int_{0}^{1} \phi \| \frac{\partial \mathcal{C}}{\partial p} \| dp.$$

First variation and integration by parts:

$$L'_{\phi}(t) = -\int_{0}^{L_{\phi}(t)} \langle \frac{\partial \mathcal{C}}{\partial t}, \phi \kappa \mathcal{N} - \langle \nabla \phi, \mathcal{N} \rangle \rangle ds.$$

$$\mathcal{C}_{t} = (\phi \kappa - \langle \nabla \phi, \mathcal{N} \rangle) \mathcal{N}.$$

$$\Rightarrow \Psi_{t} = \left(\phi \kappa + \langle \nabla \phi, \frac{\nabla \Psi}{\|\nabla \Psi\|} \rangle \right) \|\nabla \Psi\|.$$

 ϕ -Area functional:

$$A_{\phi}(t) = -\frac{1}{2} \int_{0}^{L(t)} \phi \langle \mathcal{C}, \mathcal{N} \rangle \, ds = -\frac{1}{2} \int_{0}^{1} \phi \, \langle \mathcal{C}, \begin{pmatrix} -y_{p} \\ x_{p} \end{pmatrix} \rangle \, dp.$$

Taking the first variation:

$$-2A'_{\phi}(t) = \underbrace{\int_{0}^{1} \phi_{t} \langle \mathcal{C}, \begin{pmatrix} -y_{p} \\ x_{p} \end{pmatrix} \rangle dp}_{I_{1}} + \underbrace{\int_{0}^{1} \phi \langle \mathcal{C}_{t}, \begin{pmatrix} -y_{p} \\ x_{p} \end{pmatrix} \rangle dp}_{I_{2}} + \underbrace{\int_{0}^{1} \phi \langle \mathcal{C}, \begin{pmatrix} -y_{pt} \\ x_{pt} \end{pmatrix} \rangle dp}_{I_{2}},$$

$$I_{1} = \int_{0}^{L} \langle \nabla \phi, \mathcal{C}_{t} \rangle \langle \mathcal{C}, \mathcal{N} \rangle ds,$$

$$I_{2} = \int_{0}^{L} \phi \langle \mathcal{C}_{t}, \mathcal{N} \rangle ds,$$

$$I_{3} = \int_{0}^{1} \langle \phi \mathcal{C}, \begin{pmatrix} -y_{pt} \\ x_{pt} \end{pmatrix} \rangle dp.$$

Use integration by parts on I_3 ...

$$A'_{\phi}(t) = -\int_{0}^{L} \langle \mathcal{C}_{t}, \left(\phi + \frac{1}{2} \langle \mathcal{C}, \nabla \phi \rangle\right) \mathcal{N} \rangle ds.$$

$$\mathcal{C}_{t} = \left(\phi + \frac{1}{2}\langle \mathcal{C}, \nabla \phi \rangle\right) \mathcal{N}$$

$$\Rightarrow \Psi_{t} = \left(\phi + \frac{1}{2}\langle \mathcal{C}, \nabla \phi \rangle\right) \|\nabla \Psi\|$$

$$\Psi_{t} = \frac{1}{2} \operatorname{div} \left(\left(\frac{x}{y}\right) \phi\right) \|\nabla \Psi\|.$$

 \bullet ϕ surface area minimizing flow:

$$\Psi_t = \left\{ \phi \ \operatorname{div} \left(\frac{\nabla \Psi}{\|\nabla \Psi\|} \right) + \langle \nabla \phi, \frac{\nabla \Psi}{\|\nabla \Psi\|} \rangle \right\} \|\nabla \Psi\|$$

 \bullet ϕ volume minimizing flow:

$$\Psi_t = rac{1}{3} \ \mathrm{div} \left(\left(egin{array}{c} x \\ y \\ z \end{array}
ight) \phi
ight) \, \|
abla \Psi \| \; .$$