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In this study, we evaluate the performance of a flow-based surface

evolution fiber tracking algorithm by means of a physical anisotropic

diffusion phantom with known connectivity. We introduce a novel

speed function for surface evolution that is derived from either

diffusion tensor (DT) data, high angular resolution diffusion (HARD)

data, or a combined DT-HARD hybrid approach. We use the model-

free q-ball imaging (QBI) approach for HARD reconstruction. The

anisotropic diffusion phantom allows us to compare and evaluate the

performance of different fiber tracking approaches in the presence of

real imaging artifacts, noise, and subvoxel partial volume averaging of

fiber directions. The surface evolution approach, using the full

diffusion tensor as opposed to the principal diffusion direction (PDD)

only, is compared to PDD-based line propagation fiber tracking.

Additionally, DT reconstruction is compared to HARD reconstruction

for fiber tracking, both using surface evolution. We show the potential

for surface evolution using the full diffusion tensor to map connections

in regions of subvoxel partial volume averaging of fiber directions,

which can be difficult to map with PDD-based methods. We then show

that the fiber tracking results can be improved by using high angular

resolution reconstruction of the diffusion orientation distribution

function in cases where the diffusion tensor model fits the data poorly.
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Introduction

Magnetic resonance diffusion imaging has a unique ability to

provide information about the organization of fibrous tissue

structures in vivo. It does so via the estimation of the 3D
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displacement distribution of diffusing water molecules, i.e., the

diffusion probability density function (diffusion pdf). Water

diffusion in fibrous tissue is anisotropic, with the preferred direction

of diffusion lying along the dominant fiber orientation. This is of

particular interest in the central nervous system (CNS), where

diffusion imaging has the potential to assess neuronal connectivity,

an application which has widespread implications for basic neuro-

anatomical research and for disease detection and assessment.

The first work on 3D fiber reconstruction in the CNS used

diffusion tensor (DT) data, so named because it is obtained by

modeling the diffusion pdf as an anisotropic 3D Gaussian

function, which can be described by a second order tensor (Basser

et al., 1994). The reconstruction of tracts was done by line

propagation using the principal eigenvector of the diffusion tensor

(Basser et al., 2000; Conturo et al., 1999; McGraw et al., 2004;

Mori et al., 1999; Vemuri et al., 2002). Such principal diffusion

direction (PDD) techniques can be confounded when there is more

than one fiber direction within a single imaging voxel. With voxel

sizes typical of diffusion acquisitions (10–30 mm2), there is

significant partial volume averaging of fiber directions in

anatomical regions of both research and clinical interest, such as

the association fibers near the cortex. This partial volume

averaging may be due to high curvature, crossing, branching, or

splaying of tracts.

A number of solutions have been proposed to deal with the

problem of subvoxel partial volume averaging of fiber directions.

The diffusion tensor itself contains information about multiple

fiber directions: for example, when the fibers are restricted to a

plane, a level set of the tensor-described diffusion pdf is a planar

ellipsoid. Although the principal eigenvector direction may not

reflect the fiber directions in this case, the full tensor may be used

for tracking, as has been proposed by several groups including

ourselves (Batchelor et al., 2001; Campbell et al., 2002a; Lazar

et al., 2003; O’Donnell et al., 2002; Tournier et al., 2003).

Alternatively, given sufficient diffusion weighted images

(DWIs), bootstrap methods may be used to estimate confidence

intervals or a marginal posterior distribution for the direction of
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Fig. 1. 2D schematic of flow-based surface evolution tractography. (a) The

input data consist of the normalized and thresholded diffusion ODF, Wt, at

each voxel (the voxels with no shape shown represent voxels with

isotropic diffusion, hence no fiber structure). The user defines a seed

region, and a surface S is initialized to be the outer edge of the seed

region (So). (b) The surface evolves at speed F along its normal n̂, with F

given by the value of Wt in the direction n̂. As S evolves, a scalar map T

of the time of arrival of the surface is constructed. (c) Gradient descent

through the time of arrival map (shown as grayscale) gives the fiber tract

reconstructions as curves.
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the principal eigenvector (Behrens et al., 2003; Jones, 2003).

Although the full tensor does give us more information than its

principal eigenvector alone, there has recently been increasing

interest in forgoing the classic tensor description of the diffusion

pdf in favor of high angular resolution diffusion (HARD) pdf

reconstruction to infer multiple fiber directions within single

voxels. HARD reconstruction techniques include multi-tensor

modeling (Tuch et al., 2002), diffusion spectrum imaging to

estimate the full 3D diffusion pdf using q-space methods

(Wedeen et al., 2000), and model-free extraction of the radially

persistent angular structure using either maximum entropy

solutions (Alexander and Jansons, 2002) or modified q-space

methods (Tuch et al., 2003). Additionally, regularization

techniques can be used to infer multiple fiber directions from

a single-tensor field (Cointepas et al., 2002; Ramı́rez-Manza-

nares and Rivera, 2003). In simple fiber systems involving

partial volume averaging of fiber directions, it has been shown

that the directions in which the high angular resolution diffusion

pdf is maximal coincide with fiber directions (Lin et al., 2002).

We note that there are also methods for measuring the apparent

diffusion coefficient (ADC) profile at high angular resolution

(Alexander et al., 2002; Frank, 2002; Zhan et al., 2003),

however, the maxima of the ADC profile do not necessarily

coincide with fiber directions (Tuch et al., 2002; von dem

Hagen and Henkelman, 2001), hence further processing is

necessary for fiber tracking applications.

In this paper, we extend our previously proposed flow-based

fiber tracking approaches (Campbell et al., 2002a,b) in order to

use the information in the full diffusion pdf estimated using either

HARD or DT techniques. This algorithm is a modification and

extension of the Fast Marching Tractography (FMT) technique

(Parker et al., 2002a), which uses the principal diffusion direction

only, and is similar to several surface evolution approaches that

use the full diffusion tensor (Batchelor et al., 2001; O’Donnell et

al., 2002; Tournier et al., 2003). Our extension of the FMT

technique consists of using all of the information in the diffusion

tensor or, if available, HARD measurements. The surface

evolution approach has the advantage that it allows tracking to

proceed in a continuum of directions, as may be desired in cases

where there is uncertainty and/or multiple fiber directions. We

show fiber tracking results using both HARD and DT data in the

human brain, noting that the diffusion tensor can provide more

information than that given by its principal eigenvector only and

that HARD reconstruction can give us more information still.

Additionally, we quantitatively compare the performance of the

flow-based approach to that of line propagation using the PDD.

To do so, we designed a physical phantom with known con-

nectivity from excised rat spinal cord. Previous validation studies

have been done using a single excised cord (Campbell et al.,

2002b; Vemuri et al., 2002) and in the macaque (Parker et al.,

2002b): in this study, complex known configurations of subvoxel

curvature and fiber crossing are created and scanned at a standard

human imaging resolution. While simulated data can provide a

gold standard to which tracking results can be compared (Lazar

and Alexander, 2003; Lori et al., 2002; Tournier et al., 2002), it is

of additional value to evaluate the results of tracking on real MRI

data in the presence of normal imaging artifacts, noise character-

istics, and voxel size limitations. Doing so allows us to validate

the fiber tracking process from acquisition of the MRI data, to

estimation of the diffusion displacement distribution, and to the

tracking algorithm itself.
Materials and methods

Flow-based fiber tracking: implementation

Flow and assignment of connectivity index

For flow-based fiber tracking, we use the level set surface

evolution techniques of Osher and Sethian (1988), which were first

applied to fiber tracking by Parker et al. (2002a). Let S(x, t) be a

surface with initial value So = S(x, 0) given by the boundary of a

user-defined seed voxel or region. S is evolved outward with speed

F along its normal, n̂ = (1, hn, /n):

@S

@t
¼ Fn̂n: ð1Þ

The speed function F (xAn̂) is set equal to our confidence that

a tract exists in the direction n̂. Our speed function uses all of the

information in the diffusion tensor or, if available, HARD

measurements. The definition of F is described in more detail

in the next section. The evolution of S is equivalent to

simultaneously propagating a continuous field of curves outward

from the seed So. As S passes through a voxel, a time of arrival T

is assigned to that voxel. T is the solution of the Eikonal equation,

ATAF = 1. To calculate putative tracts as 3D curves, we retrace

the path of normals to S that led to each voxel reached: this path

is given by gradient descent through the map of the time of arrival

of the surface, T(x), from each point x to the seed. The curves

obtained through this surface evolution approach should be

similar to those obtained by a Monte Carlo or iterative tracking

approach such as those described in Behrens et al. (2003),

Björnemo et al. (2002), Hagmann et al. (2003), and Koch et al.

(2002). With surface evolution, the propagation of all the curves

is simultaneous and continuous and therefore potentially faster,

especially as the number of putative paths increases. Fig. 1 shows

a schematic of the tracking algorithm. We note that this surface

evolution scheme is the first to accept either DT or HARD data as

input.

In order to quantify our confidence in the existence of each

reconstructed tract, we define a connectivity index (CI). We have a

discrete array Fn of speed function values at each step along each
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tract. We define the CI to be the lowest value in the array of speed

functions values:

CI ¼ min Fnð Þ: ð2Þ

The CI is a measure of our certainty in a tract’s existence given

the measurements we have made. It reflects uncertainty due to

partial volume averaging of tract directions in cases of crossing,

branching, curvature, and tracts forming a ‘‘bottleneck’’; partial

volume averaging of fibers with isotropic material, which leads to

low anisotropy; and imaging noise, which can confound the fiber

directions. The CI map gives a relative certainty in the existence of

all tracts reconstructed through one seed voxel or region.

Speed function for surface evolution

For the speed function F in Eq. (1), we desired a function that

reflected our confidence that a fiber is oriented in the direction of

the surface propagation. This function should reflect subvoxel

partial volume averaging of fiber directions due to branching,

crossing, and curvature, as well as measurement errors. Ideally, this

function should handle the presence of a distribution of fiber

directions in each voxel, such that the resulting connectivity

indices for the reconstructed tracts can be interpreted as proba-

bilities. The rigorous estimation of such a fiber orientation

distribution function (fiber ODF) for both DT and HARD data is

beyond the scope of this paper, however, we propose a speed

function based on the diffusion orientation distribution function

(diffusion ODF). In the case of crossing fibers, the ODF measured

using HARD techniques can be expected to have maxima along the

fiber directions (Lin et al., 2002), and the ODF measured using the

DT technique can be expected to be ‘‘flat’’, i.e., to give some

information about the fiber orientations and to give more

information than the principal diffusion direction only. The speed

function estimated from HARD data will be similar to that from

DT data in the case of subvoxel curvature. This case is particularly

suited to surface evolution because there are no discrete fiber

orientations within the voxel, but a continuum of directions. The

diffusion ODF will be high along all of these directions.

We define the diffusion orientation distribution function, W, to

be the normalized projection of the 3D diffusion pdf on the surface

of the unit sphere:

W uð Þ ¼ W4 uð Þ
W̄4

; ð3Þ

where

W4 uð Þ ¼
Z V

0

P ru)sdð Þdr: ð4Þ

Here, u = (1, h, /) is a unit vector, and P(rAsd) is the

probability that a water molecule displaces by vector r during the

time over which diffusion is observed, sd. W̄* is the mean value of

W* over all values of u. W can be obtained from either diffusion

tensor or high angular resolution diffusion measurements. We set

the speed function, F, for surface evolution equal to the diffusion

ODF value in the direction of the surface normal, n̂:

F n̂nð Þ ¼ W n̂nð Þ: ð5Þ

This generalized diffusion ODF formulation for the speed

function F is an extension of previous full-tensor approaches for

flow-based fiber tracking (Batchelor et al., 2001; Campbell et al.,

2002a; O’Donnell et al., 2002). Using the full diffusion ODF to
drive the flow, even in the diffusion tensor case, should improve

results over those using the principal eigenvector only, as was used

in Parker’s FMT implementation (Parker et al., 2002a).

Using F, as defined in Eq. (5), allows the evolving surface S to

flow through regions where there is ambiguity or low confidence in

fiber direction: for example, regions of partial volume averaging of

fiber directions due to subvoxel crossing, Fbottlenecks_, or

bending; regions of partial volume averaging of isotropic gray

matter and fiber structure (e.g., the thalamus); or voxels corrupted

by noise and/or imaging artifacts (where the pdf maximum may be

slightly shifted from the correct direction). The speed of

propagation is simply reduced in these regions, and the ambiguity

at these points will be reflected in the connectivity index. When

diffusion tensor measurements are used, F is suitable even when

there is partial volume averaging of fiber directions: when there are

multiple fiber directions in one plane, the tensor will be ‘‘flat’’. The

fiber direction within this plane is unknown, and the speed of

surface evolution will reflect this by being nonzero everywhere in

this plane and zero outside of it. However, HARD data can be

useful for refining the speed function further by giving it clear

maxima along the fiber directions in the case of fibers crossing

within a voxel. This refinement can make the flow more controlled

and more accurate, especially in cases where the maximum of the

tensor-described ODF does not lie along either fiber direction.

In many cases in the human brain, we can expect the diffusion

tensor model to be adequate, and the use of HARD data may

increase susceptibility to noise-induced artifacts because it is

model-free, whereas the tensor ODF can be described with only

five parameters. When HARD data are available, we propose to

first calculate the diffusion tensor and use the HARD data for

surface evolution only in cases where the diffusion tensor model

fits the data poorly. We do this by calculating the v2 statistic for the

linear regression used to calculate the diffusion tensor (Shrager et

al., 2002), and using HARD reconstruction when Q(v2) is low

(Press et al., 1992) (in our implementation, when Q(v2) < 0.001).

The standard deviation is estimated by measuring the mean of the

signal intensity in a region outside of the object being imaged and

multiplying by
ffiffiffiffiffiffiffiffi
2=p

p
(Henkelman, 1985). In this paper, we use q-

ball imaging (QBI) to obtain high angular resolution estimates of

the diffusion ODF (Tuch et al., 2003).We shall refer to the surface

evolution algorithm run with diffusion tensor data as surface-DT,

the algorithm run with QBI data only surface-QB, and the surface

evolution run with diffusion tensor data where the diffusion tensor

fit is good and QBI data elsewhere will be called surface-hybrid.

We note that in order to obtain the fiber ODF from the diffusion

ODF, we must deconvolve the diffusion ODF with the single-fiber

response function. However, the single-fiber response function is

not known. The exact mechanisms responsible for the observed

white matter diffusion signal remain a topic of research. Simple

models are currently being investigated for the estimation of the fiber

ODF (Tournier et al., 2004), however, the response to a single fiber

can be expected to change throughout the white matter in the brain

due to microstructural differences between, for example, association

and commissural fibers, and could also change in the presence of

pathology. This issue was not addressed in this work, however, the

surface evolution algorithm we have described was originally

designed to use the fiber ODF, if available. We note that the use of

the diffusion ODF to drive the flow results in a connectivity index

that is highly weighted by diffusion anisotropy. Additionally, tracts

passing through regions of partial volume averaging of fiber

directions will necessarily be assigned lower connectivity indices.
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The definition of a fiber ODF that assigns equal values to all fiber

directions independent of the number of fibers (but dependent on

other sources of uncertainty) would improve the interpretability of

the connectivity indices. We note also that the relationship between

the HARD diffusion ODF and the fiber ODF can be expected to be

monotonic, meaning the voxels assigned the highest connectivity

indices using the HARD diffusion ODF should also be those

assigned the highest connectivity indices using a true fiber ODF.

Implementation details

Using the diffusion ODF to define the speed function F, Eq. (5)

can be problematic in regions of high curvature such as the

scenario illustrated in Fig. 2. Hence, we first threshold the

normalized ODF at its mean in order to restrict flow in regions

of isotropic diffusion:

W44 n̂nð Þ ¼ W n̂nð Þ if W n̂nð Þ > 1

¼ 0 if W n̂nð Þ V 1; ð6Þ

and use W** in Eq. (5) instead of W. The threshold is necessary

only in regions of high curvature because, in other regions, flow in

directions where the diffusion ODF is less than or equal to its mean

will result in tracts with low connectivity indices. We wish to be

able to track through structures with low anisotropy, such as the

thalamus and regions near the cortex, therefore a threshold of

significantly greater than 1 is also undesirable. The more

anisotropic the underlying diffusion pdf, the smaller the solid

angle in which F(n̂ ) will be assigned a nonzero value.

We use stopping criteria based on both the fractional anisotropy

(FA) (Pierpaoli and Basser, 1996) and the tract curvature. The

speed function is set to zero when FA < 0.1, and the CI is set to

zero if the tract curvature from voxel to voxel (calculated after the

gradient descent step) exceeds 80. The FA threshold of 0.1 should

allow tracking through regions of low anisotropy, such as deep

gray matter structures, but should stop the flow in voxels with

isotropic diffusion, for instance, the ventricles (Parker et al.,

2002b). We note that, given a suitable speed function F, the

threshold on anisotropy is not actually necessary but is used in this

comparison with line propagation so as to use the same anisotropy

threshold for both algorithms.

Before calculating the connectivity index Eq. (2), we first

smooth the array of speed function values (Fn) with a one

dimensional Gaussian kernel with a full width at half its maximum

of three voxels. This step is essentially a regularization step that

reduces sensitivity to isolated corrupted voxels, to which this

worst-case connectivity index is susceptible, by blurring along the

tract direction only.
Fig. 2. Thresholding the diffusion ODF: the threshold of W > 1 is in place

to eliminate the case, possible in regions of high curvature, where the flow

from point A reaches point B by path ii or iii before path i.
Line propagation using PDD: implementation

For comparison with the flow-based tractography approach,

we chose the FACT (Fiber Assignment with Continuous

Tracking) algorithm (Mori et al., 1999). The FACT method is

well documented in the literature (Mori et al., 2001, 2002;

Stieltjes et al., 2001; Wakana et al., 2003; Xue et al., 1999) and

has been compared to other integration methods such as RK4 and

Euler’s method: it has been shown to have higher precision in

synthetic divergent diffusion tensor fields and, along with RK4,

to have superior accuracy in synthetic curved fields (Lazar and

Alexander, 2003). We expect both divergent and curved fields in

the human brain, therefore this integration method was a

reasonable choice for comparison. The stopping criteria described

above for the flow-based tracking were used. For each voxel in

the seed region, we assigned multiple subvoxel seed points: 27

evenly spaced seed points were positioned on a grid within the

voxel. This allows for branching of tracts from a single-voxel

seed point. From each seed point, the reconstructed tract follows

the direction of the principal eigenvector e1 of the diffusion

tensor in that voxel until it enters another voxel, at which point

the direction of propagation immediately changes to that of e1 of

the new voxel, and tracking continues until the stopping criteria

occur. Voxels are assigned CI = 1 if a reconstructed tract passes

through them and CI = 0 if not. In this paper, the FACT

algorithm is run only with diffusion tensor data and will be called

FACT-DT for clarity.

Anisotropic diffusion phantom experiments

Construction

For evaluation of the surface evolution with DT and HARD

data and for comparison to line propagation, a physical phantom

with known connectivity was constructed from excised rat spinal

cord. We desired a phantom that restricts or hinders water diffusion

on a length scale we can probe in a diffusion MR experiment (i.e.,

on the order of 10 Am) and that has suitable MR relaxation times

and signal strength. Phantom construction and scanning were

performed on two separate occasions. On each occasion, two

Sprague–Dawley rats, aged 4–12 months, were euthanized and

their spinal cords surgically excised. The fresh cords were

embedded in 2% agar in a configuration designed to have curved,

straight, and crossing tracts. The cordswere 7–12 cm long and 5mm

in diameter. A third formalin fixed cord was added to one of the

phantoms in order to explore the option of using fixed tissue in a

phantom for repeated measurements. The fixed cord was not used in

this study. The phantom is shown in Fig. 3.

MRI acquisition and diffusion ODF estimation

The cords were scanned 1 h after the surgeries with a Siemens

1.5T Sonata MR scanner (Siemens Medical Systems, Erlangen,

Germany) using a knee coil. A single-shot spin-echo echo planar

sequence with twice-refocused balanced gradients, designed for

minimization of eddy current artifacts, was used (Reese et al., 2003).

For diffusion tensor reconstruction, four coregistered datasets were

acquired, consisting of 90 diffusion weighted images with isotropi-

cally spaced diffusion weighting directions (b = 1300 s/mm2, TR =

8s, TE = 110 ms, 2.5 mm isotropic voxels, 40 slices), as well as 10

images with b = 0 s/mm2 and otherwise identical imaging

parameters. The scanning time for the diffusion base images was

approximately 15 min. The diffusion encoding directions were
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Fig. 3. Anisotropic diffusion phantom: the phantom is constructed from

excised rat spinal cords embedded in 2% agar. Top: Photograph of one of

the two phantoms. Bottom: T1 weighted images of both phantoms. The

tracts, two per phantom, are numbered for future reference in this paper.
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calculated using an electrostatic repulsion algorithm similar to that

described in Jones et al. (1999). A 1 mm isotropic resolution T1-

weighted gradient echo scan was also performed (TR = 22 ms, TE =

9.2 ms, a = 30-). The data were log-transformed, and the diffusion

tensor was fitted using least-squares linear regression.

Q-ball data were acquired only for one of the two phantoms.

The same 90 diffusion weighting directions used for the diffusion

tensor acquisition were used, with b = 3000 s/mm2, q = 0.35 Am�1,

TR = 8 s, TE = 110 ms, 2.8 mm isotropic voxels, and 30 slices.

Four signal averages were acquired. The value of W(u) is given by

the Funk Radon transform of the signal (Tuch et al., 2003):

W uð Þ S uq
� �� �

¼
Z
uq8u

S uq
� �

duq; ð7Þ

where S(uq) represents the diffusion weighted signal strength

measured with q = quq.

This QBI acquisition is of significantly lower angular resolution

than the 492-direction scheme introduced by Tuch et. al., but the

90-direction scheme was deemed sufficient to see multiple fiber

crossings and is feasible in a clinically acceptable scanning time

(13 min for one signal average). The different voxel sizes used for

DTI and QBI were chosen because they are representative of voxel
sizes used in the literature (Jones et al., 2002; Tuch et al., 2003)

and reflect the inevitable tradeoff between spatial and angular

resolution for any fixed scanning time.

Tractography evaluation

For each phantom, digital gold standard maps (GS) of each of

the two tracts were defined. GS is a binary map with a value of one

in all voxels identified to lie on that tract. The gold standard maps

were defined by combined automatic and manual segmentation of

the scalar image of the trace of the diffusion tensor, using a

threshold of trace (D) < 1.0 E-6 mm2/ms. The trace map was

generated from the average of all signal averages of the b = 1300 s/

mm2, 2.5 mm isotropic voxel size, dataset. The two tracts crossed

in one region, therefore some voxels were identified to lie in both.

In each gold standard tract, five seed regions of interest (ROIs),

evenly spaced along the cord, were defined: these consisted of one

voxel thick cross-sections of the cord. To evaluate the performance

of surface evolution with q-ball reconstruction, the gold standard

and seed ROI maps defined for the 2.5 mm isotropic dataset were

resampled using trilinear interpolation to match the 2.8 mm

isotropic dataset.

For evaluation, the CI map obtained from the surface evolution

was converted to a binary map by assigning a value of one to all

voxels with CI above an optimized threshold and zero to all voxels

with CI below this threshold. For each binary CI map, we calculated

an error measure d, given by the sum of the Euclidian distances

between each gold standard voxel and the nearest tracked voxel and

the Euclidian distances between the remaining tracked voxels and

the gold standard. d was then normalized by dividing by the sum of

the distances between the gold standard GS and the seed region.

Hence, the error measure is equal to 1 if the tracking goes nowhere

and is zero in the case of perfect tracking. The error measure

penalizes both going off track (‘‘false positives’’) and incomplete

tracking (‘‘false negatives’’). The degree to which these errors are

weighted depends on the Euclidian distance by which the tracking

was incorrect. This error measure is one of many possible error

measures: another option would have been the more standard kappa

coefficient, but we desired a measure that reflects the Euclidian

distance between the gold standard and reconstructed pathways.

This is similar to the distance measure used for evaluation of

synthetic tracking experiments by Tournier et al. (2002).

The surface-DT and FACT-DT algorithms were evaluated for

the following datasets: (i) diffusion tensor reconstruction of the 90

diffusion encoding direction acquisition, b = 1300 s/mm2 (for

which we have 4 separate datasets consisting of one signal average

each); (ii) diffusion tensor reconstruction of a subset of 30 of the 90

diffusion encoding directions used in (i); (iii) diffusion tensor

reconstruction of the average of the four 90 diffusion encoding

direction acquisitions, b = 1300 s/mm2; and (iv) diffusion tensor

reconstruction of the average of the four 90 diffusion encoding

direction acquisitions with b = 3000 s/mm2. Surface-QB and

surface-hybrid were then evaluated using the average of the four 90

diffusion encoding direction acquisitions with b = 3000 s/mm2.

The region Q(v2) < 0.001 consisted of the crossing region, most of

the curved parts of tract #2, and some parts of the straight tract #1.

The high v2 in some parts of the straight cord was most likely due

to partial volume averaging of nerve roots with the spinal column.

For all tracking experiments, the raw data were first super-

sampled to half the original voxel size in each dimension using

trilinear interpolation. For a single seed region, FACT and surface

evolution took approximately 10 min each on a 1533 MHz AMD
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Fig. 4. Evidence of subvoxel partial volume averaging of fiber directions in

the anisotropic diffusion phantom. (a) Crossing region. (b) Preferred direc-

tion of diffusion as given by the principal eigenvector of the diffusion tensor.

Vectors are shown only within the gold standard map. (c) DTI reconstruction

of the diffusionODF. (d) Zoom of central region. (e) QBI reconstruction from

the same diffusion weighted images. (f) Zoom of central region. There is

support for a fiber running through the crossing region from bottom left to top

right in the QBI data, but streamline tracking using the principal eigenvector

can easily be confounded by the presence of a perpendicular fiber. The DTI

shapes in this region are pancake-like, so flow in all directions above the

mean of the ODF will result in both tracts being reconstructed.

Table 1

Summary of results of quantitative phantom studies comparing FACT-DT,

surface-DT, surface-QB, and surface-hybrid

Algorithm Number of

DWIs

b value

(s/mm2)

Voxel size

(mm3)

Error measure d

(dimensionless)

FACT-DT 90 1300 2.53 0.34 T 0.03

Surface-DT 90 1300 2.53 0.18 T 0.02

FACT-DT 4 � 90 1300 2.53 0.24 T 0.05

Surface-DT 4 � 90 1300 2.53 0.21 T 0.02

Surface-QB 4 � 90 3000 2.83 0.28 T 0.07

Surface-DT 4 � 90 3000 2.83 0.23 T 0.05

Surface-hybrid 4 � 90 3000 2.83 0.17 T 0.05
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Athlon processor, however, neither implementation was optimized.

The FACT tracking was implemented in MatlabR (The Math-

works, Inc., Natick, MA) and can be sped up by implementation in

C. The surface evolution was implemented C but can be sped up

by using efficient narrow-band level set methods (Osher and

Sethian, 1988).

Human brain experiments

Human brain tractography is demonstrated using data acquired

for one healthy subject and the same imaging protocol given

above for both diffusion tensor and q-ball reconstruction. One

signal average was acquired for both the b = 1300 s/mm2 and b =

3000 s/mm2 acquisitions. An eight-channel phased-array head coil

equipped with a custom immobilization device was used instead of

a knee coil. The b = 1300 s/mm2 and b = 3000 s/mm2 datasets

were acquired in separate sessions and were subsequently

registered using semi-automatic techniques (Collins et al., 1994).
Informed consent was obtained prior to participation in the study.

Tracking was performed with surface evolution and FACT, and the

tracking results from each algorithm were compared to each other

and to known human anatomy. Both the FACT-DT and surface-DT

tracking were performed with the optimized b = 1300 s/mm2

acquisition, while surface-hybrid tracking was performed using the

b = 3000 s/mm2 acquisition.
Results

Phantom experiments

Surface evolution compared to line propagation: diffusion tensor

model

In our first experiments, we compared the performance of

surface evolution using the tensor ODF (the ODF is shown in Figs.

4c and d) to the performance of FACT using the principal

eigenvector of the diffusion tensor (Fig. 4b). These results are

included in Table 1. For a single signal average of diffusion

weighted measurements in 90 directions, surface-DT performs

significantly better on average (P < 0.001), with a mean d of 0.18 T
0.02 versus 0.34 T 0.03 for FACT-DT. These results are for a 15 min

acquisition time, which is accepted to be a reasonable acquisition

time for clinical diffusion scans for fiber tracking.

Figs. 5b–c show examples of the tracking results obtained

using FACT-DT and surface-DT. The same data and seed ROI were

used for each algorithm. The voxels identified to be connected to

the seed are shown as a contiguous volume, rendered as a surface.

There was a large amount of variability in tracking performance

over seed ROI and over data acquisition. For tracts #1 and #2, the

standard deviation of d over acquisition was r(d) = 0.15 T 0.06 for

FACT-DT (overall mean d of 0.38) and r(d) = 0.10 T 0.09 for

surface-DT (overall mean d of 0.17). The variability over seed

point was comparable for both algorithms, with r(d) = 0.14 T 0.05

for FACT-DT and r(d) = 0.09 T 0.07 for surface-DT.

The noise in the diffusion tensor reconstruction depends on the

number of base diffusion weighted images acquired, as well as

other factors such as the directions themselves (Jones et al., 1999).

We investigated the dependence of each algorithm’s performance

on the number of base diffusion weighted images by computing the

average error measure for two, three, and four averages of the 90

direction diffusion weighting scheme, as well as a subset of 30

directions from one dataset. The results are shown in Fig. 6, where

the total number of DWIs is the number of signal averages times

the number of diffusion encoding directions.
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Fig. 5. Surface rendering of connected voxels: (a) Voxels identified as gold standard voxels: tract #1 (red) and tract #2 (green). Voxels reached using (b) FACT-DT

and (c) surface-DT using the tensor computed from one signal average of 90 diffusion encoding directions with b = 1300 s/mm2. (d) Results of surface-DT using

four signal averages of the protocol used for (b) and (c), (e) surface-QBwith the same four-average acquisition except using b = 3000 s/mm2, and (f) surface-hybrid

using the same data as in panel (e).
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Surface evolution: DTI reconstruction compared to QBI

reconstruction

The diffusion ODF calculated using q-ball reconstruction is

shown in Figs. 4e and f. These data were used to compare surface-

QB to surface-DT using the tensor ODF computed using an equi-

valent number of diffusion encoding directions and an optimized b

value of b = 1300 s/mm2. The surface-QB approach had poorer

results (Table 1), with d = 0.28 T 0.07. To determine whether the

difference was due to the acquisition parameters or to the ODF

reconstruction, we did tracking with surface evolution using the

tensor reconstruction of the b = 3000 s/mm2 data. DT reconstruc-

tion of these data performed as well as DT reconstruction of the b =

1300 data s/mm2 (Table 1).

Surface-hybrid tracking was done using only the b = 3000 s/

mm2 data. The data (Table 1) suggest a trend toward better

performance with the hybrid approach, which has a lower mean d

(0.17 T 0.05) than either the q-ball or tensor reconstruction alone.
Fig. 6. Comparison of FACT-DT and surface-DT at different noise levels. The e

images (DWIs) taken from the data acquired at b = 1300 s/mm2.
Figs. 5d–f show the best tracking results obtained with surface-DT,

surface-QB, and surface-hybrid using four signal averages of 90

diffusion encoding directions.

Human brain experiments

Fig. 7 shows the diffusion ODF calculated using the DTI and

QBI reconstruction approaches in the cortical margin. This

illustrates the additional information that can be gained from

QBI reconstruction: note that in cases where two fibers cross, the

tensor-derived ODF is planar, whereas the QBI ODF has clear

maxima along the fiber directions. Where the crossing is not

orthogonal, the maximum of the tensor-derived ODF does not lie

along either direction.

Figs. 8–10 show fiber tracking results in the human brain for

surface-DT, surface-hybrid, and FACT-DT. These figures illustrate

tracking in major commissural fiber tracts (Figs. 8 and 9) and more
rror measure d is shown for different numbers of base diffusion weighted
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Fig. 7. Diffusion ODF computed using (left) QBI and (right) DTI

reconstruction in an area of complex neuronal architecture in the cortical

margin. The shapes have been squared and renormalized in order to

accentuate anisotropy for visualization purposes, and the insets have been

rotated slightly in order to show the directions clearly. Note that, in cases

where two fibers cross, the tensor-derived ODF is planar, whereas the QBI

ODF has clear maxima along the fiber directions. Where the crossing is not

orthogonal, the maximum of the tensor-derived ODF does not lie along

either direction.
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subtle sub-cortical pathways (Fig. 10). All connectivity index maps

are maximum intensity projections (MIPs) through the entire

volume. The connections themselves, displayed as curves, are

shown as frames from 3D display software. The view is looking

straight at one of three orthogonal planes of the underlying

anatomical image. The user may interactively adjust the con-

nectivity index threshold determining which tracts are displayed.

The tracts are 3D structures and are not restricted to one plane.
Discussion

We have shown that flow-based surface evolution can be used

to perform fiber tracking using both DT and HARD data. In order

to quantify the performance of this tractography, we have designed

a physical phantom with known connectivity. We have shown that

the flow-based approach, which allows for tract propagation in

multiple directions, can improve fiber tracking results in the
presence of partial volume averaging of fiber directions. A hybrid

approach using QBI data in regions where the diffusion tensor fit is

poor can further improve the tracking results.

In the case of partial volume averaging of fiber directions which

we created in our phantom, many of the tracts propagated using the

FACT-DT algorithm did not pass through the crossing region (see

Fig. 5b), probably because the principal eigenvector direction did

not lie along the tract direction. Additionally, the tracts that did

pass through the crossing region stopped before reaching the ends

of the cord because noise and/or imaging artifacts caused the

principal eigenvector direction to be slightly deflected, hence

leading the path out of the cord. Surface evolution was better able

to overcome these issues: most of the errors in the tracking were

due to bleeding down the perpendicular tract, despite the curvature

constraint, as can be seen in Fig. 5c. The crossing region in this

dataset spans many voxels, and reconstructed tracts can therefore

turn slowly from one tract to another without exceeding the

curvature constraint. Such scenarios can often occur with typical

voxel sizes in vivo. With the tensor approach, the disc-like

diffusion ODF makes it difficult to control the flow in these cases.

However, the use of q-ball data in the crossing region improved the

results, which suggests that the multi-peaked ODFs in this region

(see Figs. 4e and f) caused the flow to be fast only along the tract

directions, as opposed to flowing at comparable speeds in all

directions in the plane of the crossing, as would occur with the

tensor approach. In the QB case, if the flow bends down the wrong

tract, it is more likely to be stopped by the curvature constraint.

A limitation of both the surface-QB and surface-hybrid

approaches is that there is necessarily a tradeoff between angular

resolution and spatial resolution. Here, the high b values necessary

for QBI necessitated using larger voxels in the base diffusion

weighted images. Some widening of the reconstructed tract

structures because of the larger voxel size is evident, for example,

in the reconstruction of the splenium of the corpus callosum in vivo

shown in Fig. 8b. We note that tracking using q-ball data only, as

done in the surface-QB approach, performed less well than did

surface-DT using the same base diffusion weighted images, which

performed comparably to surface-DT using base diffusion

weighted images with lower b values. The poor performance of

surface-QB was therefore not attributed to the lower SNR of the

base DWIs, the larger voxel size, or the increased eddy current

induced artifacts due to higher slew rates, but rather to the QBI

reconstruction itself. Using the q-ball ODF when the tensor fit is

good only increases susceptibility to noise, however, when the

tensor fit is poor, the high angular resolution ODF obtained with

QBI can help control the flow and assign more reasonable

connectivity indices. We note that the larger voxel size used for

the QBI acquisition might confound reconstruction of even smaller

tracts but was sufficient for the tracts created in this phantom.

Imaging noise can cause tracking to stop or proceed down the

wrong path in either tracking approach. The results suggest that

surface evolution using the full tensor is more robust than line

propagation in the presence of noise, as evidenced by its superior

performance with low numbers of base DWIs (Fig. 6). Hence,

when tracking using datasets acquired with low SNR, either

because of small voxel sizes, short acquisition times, or significant

partial volume averaging of fibers with isotropic material, surface

evolution should be preferred. However, the two algorithms

plateau at the same performance level at higher SNR, meaning

the advantages and disadvantages are balanced for the two

algorithms at this point. The choice of which algorithm to use
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Fig. 8. Tracking results: Top: Maximum intensity projection (MIP) of connectivity index map. Bottom: User-thresholded tracts projected on a 2D plane. From

left to right: surface-DT, surface-hybrid with threshold of Q(v2) = 0.001, and FACT-DT: the connectivity index map in the case of FACT-DT is binary. The

single-voxel seed point (crosshair) was placed in the splenium of the corpus callosum. For surface evolution, the CI maps are windowed to show the most likely

connections: there are non-zero CI values elsewhere.
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depends on the type of fiber structure expected in any fiber

tracking application: for example, if many subvoxel crossings are

expected, using the full tensor should be superior. Additionally, it

may be possible to reduce the noise sensitivity of line propagation

by using regularization techniques (McGraw et al., 2004).

In the human brain experiments, FACT-DT showed a tendency

to jump incorrectly from one tract system to another: in Fig. 8c,

FACT-DT reconstructs a false connection to the optic radiation,

which originates in V1, while in Fig. 10c, the FACT-DT tracking

was confounded by the large fibers of the pyramidal tract and turned

incorrectly down through the internal capsule. Fig. 10d shows a

drawing of the known human anatomy in this region: the corpus

callosum (A) and the internal capsule (B) are indicated. It can be

seen that the fibers from the corpus callosum and pyramidal tract,

although part of distinct pathways, can be expected to cross on a

subvoxel scale in the region where FACT-DT fails. This causes a

slow curvature to be implied by the PDD, whereas QBI shows

multiple fiber directions and the full diffusion tensor is flat. Hence,

voxels reached by the incorrect connection had very low

connectivity indices in both the surface-hybrid and surface-DT

approaches: this is a case where assigning a non-binary connectivity

index can help identify uncertain pathways that are reconstructed

due to partial volume averaging of fiber directions or to noise. We

note that we could assign the same connectivity index to the tracts

reconstructed with FACT-DT propagation: we propagate only along

the principal diffusion direction (the maximum of the tensor-

described diffusion ODF W), note the magnitude of C in this

direction, and define the minimum along the tract of this value to be

the tract connectivity index. While this approach could help narrow

down which of the tracts that are reconstructed have high likelihood

of existence, it would fail whenever a connection is not
reconstructed with the PDD approach, for example, in the case of

Fflat_ tensors, where the principal diffusion direction may not

coincide with the tract direction. Using the full tensor, as in the

surface-DT approach, can deal with these problems to an extent,

however, in cases where the maximum of the tensor-described ODF

is incorrect (e.g., the nonorthogonal crossings shown in Fig. 7), the

use of q-ball data should be more accurate.

The scalar connectivity index assigned in the surface evolution

scheme is useful for assessing our certainty in a reconstructed

tract’s existence. However, interpreting the connectivity indices in

terms of which tracts do and do not exist is left to the user and

requires a certain amount of a priori knowledge. For example, we

consider the tracking results shown in Fig. 10, where the seed point

was placed close to the cortex. This is an area of significant partial

volume averaging of fiber directions. Surface-DT and surface-

hybrid give slightly different results, whereas in Figs. 8 and 9, the

results of these two algorithms are very similar. In Fig. 10, surface-

hybrid reconstructs a U-fiber, which is also reconstructed with

FACT-DT, with high likelihood, and also reconstructs other lower

likelihood association pathways as well as connections to the

contralateral hemisphere via the corpus callosum. The surface-DT

reconstruction indicates a connection to the descending cortical

spinal tract and does not reconstruct the U-fiber as well. We

suggest that the surface-hybrid results are more accurate and that it

is probable that the seed voxel contains fibers from all of the tracts

reconstructed by this method. The tensor model was not as capable

of handling the partial volume averaging of directions as was the q-

ball approach. However, we emphasize that it is up to the user to

choose whether this is the case or whether the connections shown

are the result of the tract passing through a voxel containing a

‘‘bottleneck’’ of fibers, including fibers from other fascicles that do
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Fig. 9. Tracking results for (left to right): surface-DT, surface-hybrid, and FACT-DT for a single-voxel seed point (crosshair) in the corpus callosum.

(d) Drawing of the anatomy in this region from Nieuwenhuys atlas, showing corpus callosum (A) and internal capsule (B) (figure adapted from Nieuwenhuys

et al., 1988).
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not in fact pass through the seed: jumping from tract to tract can

occur in this way.

This study showed a high variability in the tracking perform-

ance over seed ROI in the phantom. It is fair to suggest that, if we
Fig. 10. Tracking results for (left to right): surface-DT, surface-hybrid, and
start tracking iteratively from all voxels in the volume (the ‘‘brute

force’’ approach) and ask from which starting voxels the seed ROI

is reached and with what likelihood, we will get a different

answer from the outward propagation approach. However, the
FACT-DT for a single-voxel seed point (crosshair) near the cortex.
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tracking performance when starting from the seed ROI only

should correlate with the performance when tracking is initiated

everywhere and takes significantly less computation time. This

study was meant to give results from the forward tracking

approach only and should be indicative of how reliable other

approaches would be.

In summary, our findings suggest that using the full diffusion

tensor for fiber tracking can provide superior results to approaches

using only the principal direction of diffusion. Furthermore, HARD

reconstruction of the diffusion ODF, illustrated here using the q-

ball reconstruction method, can further improve the results when

used in voxels in which the tensor model fits the data poorly. We

have done extensive validation with a gold standard tract

configuration. Tracking with all algorithms is confounded by

noise, partial volume averaging of fiber directions, large voxels in

the base diffusion weighted images, and limitations of the diffusion

pdf measurement. Of the methods considered here, the surface-

hybrid approach appears most robust to these confounds.
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