
COMPUTER VISION AND IMAGE UNDERSTANDING

Vol. 64, No. 3, November, pp. 305–322, 1996
ARTICLE NO. 0062

Geometric Heat Equation and Nonlinear Diffusion of
Shapes and Images

BENJAMIN B. KIMIA* AND KALEEM SIDDIQI†

*Division of Engineering, Brown University, Providence, Rhode Island 02912; and †Department of Electrical Engineering, McGill University,
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49, 90]. Witkin proposed that the convolution of a signal
Visual tasks often require a hierarchical representation of with a Gaussian removes small-scale features, namely,

shapes and images in scales ranging from coarse to fine. A zero-crossings, while retaining the more significant ones
variety of linear and nonlinear smoothing techniques, such as [88]. Koenderink showed that among the linear operators
Gaussian smoothing, anisotropic diffusion, regularization, etc., the heat (diffusion) equation and its associated Gaussian
have been proposed, leading to scalespace representations. We kernel is the only sensible way of smoothing images, by
propose a geometric smoothing method based on local curvature

demanding that the process satisfy the properties of causal-for shapes and images. The deformation by curvature, or the
ity, homogeneity, and isotropy [48, 50]. These propertiesgeometric heat equation, is a special case of the reaction–
require that ‘‘structure’’ is not created with increasing scalediffusion framework proposed in [41]. For shapes, the approach
and that operations are homogeneous in space and direc-is analogous to the classical heat equation smoothing, but with

a renormalization by arc-length at each infinitesimal step. For tion; see also [9]. Yuille and Poggio presented scaling theo-
images, the smoothing is similar to anisotropic diffusion in rems for zero-crossings [89], and Hummel and Monoit
that, since the component of diffusion in the direction of the showed that zero-crossings, when supplemented with gra-
brightness gradient is nil, edge location is left intact. Curvature dient data along the zero-crossing boundaries, are suffi-
deformation smoothing for shape has a number of desirable cient to reconstruct the original signal. Recently Florack et
properties: it preserves inclusion order, annihilates extrema and

al. have provided a physical motivation and mathematicalinflection points without creating new ones, decreases total
basis for a scale-space representation [25], arriving at thecurvature, satisfies the semigroup property allowing for local
Gaussian family of filters without an explicit requirementiterative computations, etc. Curvature deformation smoothing
for causality. In the discrete domain, Lindeberg has formu-of an image is based on viewing it as a collection of iso-intensity
lated a scale-space by discretizing the underlying diffusionlevel sets, each of which is smoothed by curvature. The reassem-

bly of these smoothed level sets into a smoothed image follows equation [52, 53]. The kernel of the discretized equation
a number of mathematical properties; it is shown that the is related to modified Bessel functions of integer order.
extension from smoothing shapes to smoothing images is math- For a recent review of linear scale-space theory see [54, 55].
ematically sound due to a number of recent results [21]. A In addition to image intensity, scale-spaces have also
generalization of these results [14] justifies the extension of the been constructed for shapes. Asada and Brady [8] smooth
entire entropy scale space for shapes [42] to one for images, the curvature function to obtain a hierarchy of features.where each iso-intensity level curve is deformed by a combina-

Mokhtarian and Mackworth [60] smooth the coordinatestion of constant and curvature deformation. The scheme has
by a Gaussian filter. Horn and Weldon [34] point to thebeen implemented and is illustrated for several medical, aerial,
shrinkage problems of this method and propose insteadand range images.  1996 Academic Press, Inc.

to filter the extended circular image of the curve with a
Gaussian filter. This method avoids the shrinkage problem,
but appears to be applicable only to convex curves. Lowe,1. INTRODUCTION
on the other hand, corrects for the shrinkage problem by

Shapes and images are often perceived as a hierarchical inflating the curve proportional to the curvature of the
structure of elements. It has been argued that recognition smoothed curve, which indicates how much shrinkage has
of objects should rely on a representation that captures occurred. Oliensis [64] suggests that this is the case only

for small curvature and proposes instead to maintain thethis structure in a hierarchy of ‘‘scale.’’ The basic idea is
to introduce a family of shapes, or images, which progres- low frequencies exactly, while preserving the local nature

of the process. The resulting filter is similar to Meyer’ssively become simpler in the sense that ‘‘significant’’ fea-
tures remain while the less significant ones vanish [71, 58, wavelet transform [59]. In the context of a theory of mea-
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surement, Koenderink and van Doorn embed a shape in sented not statically as a set of unrelated primitives, but
dynamically in a rich sequence of shapes [50]. In a dynamica morphogenetic sequence based on the Gaussian [50].

Recently, a number of nonlinear diffusion techniques representation each shape is related to its ‘‘closest’’ neigh-
bors giving rise to a topology for shape. Unfortunately,have been proposed to deal with the shortcomings of the

linear smoothing techniques. These are summarized in Sec- standard geometries do not support such a topology for
recognition [47]. Alternatively, shape can be studied in thetion 6. Our proposal for smoothing shapes and images is

also nonlinear and is related to the idea of diffusion and context of deformations of it. Observing that slight changes
in the shape boundary often causes slight changes in thethe associated Gaussian kernel. To smooth shapes, we de-

form the boundary along the normal proportional to its shape itself, we proceed to deform the shape boundary in
an arbitrarily general fashion,curvature. This leads to the geometric heat equation which,

as we will mathematically show, has many desirable
smoothing properties. On the other hand, to smooth im-
ages, each iso-intensity level set is considered as a shape, 5­C

­t
5 a(s, t)TW 1 b(s, t)NW

C(s, 0) 5 C0(s),

(1)a view afforded by properties of the smoothing process,
as we shall show, and whose smoothing leads to remarkable
results. The curvature deformation smoothing method is
related to the linear heat equation smoothing and to aniso-

where C is the boundary vector of coordinates, TW is the
tropic diffusion. The method has been implemented and

tangent, NW is the outward normal, s is the path parameter,
applied to several shapes and range and intensity images.

t is the time duration (magnitude) of the deformation, and
In fact, the extension of curvature deformation of shapes

a, b are arbitrary functions. This, by a reassignment (i.e.,
to curvature deformation of images can be generalized

reparametrization) of points, can be reduced to [39, 38,
to a combination of constant and curvature deformation,

28, 20]
leading to an entropy scale space [42] for images.

The paper is organized as follows. In Section 2 the shape
from deformation framework as originally presented in [39,
41, 38] and later developed in [7, 42–47] is briefly reviewed. 5­C

­t
5 b(s, t)NW

C(s, 0) 5 C0(s),

(2)
The focus of this paper is a special case of the reaction–
diffusion space, namely, when the shape is deformed only
by curvature deformation, giving rise to the geometric heat
equation. In Section 3 a number of desirable properties of where b is again arbitrary, but not necessarily the same as

that of the previous equation. This form of deformationthis nonlinear smoothing process are presented. In Section
4 the idea of smoothing of shapes by curvature deformation embeds certain known techniques in image processing. For

example, taking the deformation to be constant, b 5 61,is extended to the smoothing of images. In Section 5 the
connection between the geometric heat equation (curva- gives the prairie fire model of Blum [11]. As another exam-

ple, deformations which are functions of the local orienta-ture deformation) smoothing and the classical heat equa-
tion (Gaussian smoothing) is shown for shapes. Section 6 tion of the curve tangent, u,
shows the connection to anisotropic diffusion. Finally, in
Section 7 the process is illustrated on a number of shapes
and images, and comparisons are made with some other 5­C

­t
5 b(u(s, t))NW

C(s, 0) 5 C0(s),

(3)techniques.

2. THE SHAPE FROM
DEFORMATION FRAMEWORK embed all algebraic set-theoretic convex morphological

operations, but now in a geometric, differential setting
In this section we review a framework for representing

[7]. On the other hand, deformations that depend on the
two-dimensional shape designed to capture its essence in

derivative of orientation, curvature k, smooth shapes and
relation to ‘‘nearby’’ shapes. The geometric curvature de-

images in interesting ways which are similar to Gaussian
formation is a special case of this framework and provides

smoothing, but have better properties, as we shall see in
a smoothing process for shape. We will then extend the

this paper. The intrinsic1 deformation by curvature, or that
idea to smoothing intensity and range images by consider-

which depends only on the local geometry of the curve
ing their iso-intensity level sets as shapes.

[19], was proposed in [39, 41] as
Robust recognition under variations in the visual scene,

such as changes in viewpoint and viewing direction, object
movement, and growth, demands that shapes be repre- 1 Deformations that do not depend on the coordinate system.
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The curvature deformation equation (7), known as the
curve shortening flow, has been extended to an affine in-5­C

­t
5 b(k(s, t))NW

C(s, 0) 5 C0(s).

(4) variant flow, ­C/­t 5 2k1/3NW , by Sapiro and Tannenbaum
[72, 73, 75] and independently by Alvarez et al. [3]. The
surface evolution corresponding to (7) is derived from

A special case of this deformation is when the deformation (6) as
is a linear function of curvature b(k) 5 bo 2 b1k; see [39,
42, 44–47]: ft 2 k u=f u 5 0. (8)

Since5­C

­t
5 (b0 2 b1k)NW

C(s, 0) 5 C0(s).

(5)

k 5
(fxxf

2
y 2 2fxyfxfy 1 fyyf

2
x)

(f2
x 1 f2

y)3/2 , (9)

The space of all possible deformations in this form is
spanned by two parameters, the ratio of the coefficients we have
b0/b1 and time, t, constituting the two axes of the reaction–
diffusion space. Underlying the representation of shape in

ft 5
(fxxf

2
y 2 2fxyfxfy 1 fyyf

2
x)

(f2
x 1 f2

y)
. (10)this space are a set of shocks [51], or entropy-satisfying

singularities, which develop during the evolution. The set
of shocks which form along the reaction axis, b1 5 0, is

We now consider curvature deformation in the contextindeed the skeleton proposed by Blum [11]. Shocks also
of smoothing shapes and images. For shapes, we will con-form along other axes of the reaction–diffusion space and
struct the surface f from the distance transform of theare the key to representing shape. To continue the evolu-
shape [47]. For intentisty or range images it is mathemati-tion beyond these singularities, the classical notions of nor-
cally valid to directly obtain the surface f from the grey-mal, curvature, etc. are considered in the generalized or
level information, as we shall see in Section 4. Each levelweak sense by using the concepts of entropy and viscosity
set is then ‘‘smoothed’’ by curvature deformation. We nowsolutions [56, 16, 36, 14]. For theoretical as well as numeri-
discuss properties of this process in addition to its connec-cal reasons the original curve flow is embedded in the level
tion to several standard smoothing techniques.set evolution of an evolving surface [67, 78–80]. Let the

surface be denoted by z 5 f(x, y, t) with the correspon-
3. NONLINEAR SMOOTHING BYdence that the evolving shape is represented at all times

CURVATURE DEFORMATIONby its zero level set f(x, y, t) 5 0. It can be shown that
the zero level set of surfaces evolving according to In this section, we discuss a number of interesting proper-

ties of smoothing by curvature deformation of the contoursft 1 b(k) u =f u 5 0 (6)
of a shape. First, shapes preserve their inclusion order when

correspond to the viscosity solutions of (4) [10]. smoothed, without self-intersecting. Second, all shapes
To relate this shock-based representation of shape to smooth to round points (points that dilate to circles) without

smoothing, the entropy scale-space [42, 46] has been de- developing singularities or self-intersections. Third, the to-
rived from the reaction–diffusion space. In the entropy tal curvature is strictly decreasing in the smoothing process,
scale space shapes are smoothed using a combination of unless the curve is a circle in which case it is a constant.
reaction (b1 5 0), and diffusion (b0 5 0): reaction operates Fourth, the number of curvature extrema and inflection
through the formation of shocks which act as black holes, points is strictly decreasing, unless the curve is a circle. Fifth,
locally annihilating information; diffusion operates this process satisfies the semigroup property and as such can
through the global spreading and subsequent blending of be implemented as a local iteration, and is well suited to
information along the boundary. parallel implementation. Finally, the process can easily be

The focus of this paper is a study of curvature deforma- modified in the context of the reaction–diffusion space to
tion, i.e., when b0 5 0. Since the magnitude of b1 is redun- include area-preserving smoothing.
dant as it is captured by the time parameter t, and b1 , 0
corresponds to an unstable inverse operator, let b1 5 1: 1. Order-Preserving Smoothing

The curvature deformation evolution (7), which is a spe-
cial axis of the reaction–diffusion space [47], is known as5­C

­t
5 2kNW

C(s, 0) 5 C0(s).

(7)
the ‘‘curve-shortening flow’’ in differential geometry. In
the process of curvature deformation disjoint closed curves
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smooth embedded curve in the plane. Then there exists some
T . 0, and C : S1 3 [0, T) R R2, such that

­C

­t
5 2kNW , (11)

C(s, t) is smooth for all t, it converges to a point as t R T,
and its limiting shape as t R T is a round circle, with
convergence in the C y norm.FIG. 1. Will the boundary of the above shape evolve to a circular

point without developing self-intersections? Grayson showed that the
3. Decreasing Total Curvaturehigh curvature end points will move in much faster than the low curvature

points in such a way that self-intersections are avoided. Eventually, the
A measure of complexity for a shape is the total curva-shape evolves to a round point, keeping the boundaries apart in the

ture of its boundary. Total curvature k is defined asprocess!

k 5 E2f

0
uku g ds 5 EL

0
uku ds̃, (12)

remain disjoint; this follows from an application of the
maximum principle for parabolic differential equations [70,

where g is the metric (speed) u­C /­su, s̃ is the arc-length86]. As a result, two shapes, one inside another, will never
parameter, and L is the length of the boundary. A curvecross in the process of smoothing; see Section 4 for a more
which has a larger number of undulations has a largerdetailed analysis.
total curvature; for convex curves, k 5 2f. The following

2. Smooth Smoothing theorem [80, 44] shows that all noncircular embedded
curves evolving by curvature-dependent deformation (5),A shape lasts only a finite time under curvature deforma-
with b1 . 0, have strictly decreasing total curvature. Ation smoothing. This is a consequence of the inclusion
circle is the only curve for which total curvature remainsorder-preserving property; since any closed curve can be
constant, k 5 2f.considered inside some large circle with a finite evolution

time, and since a circle lasts only for a finite time, the THEOREM 2. Let a family of curves satisfy (7) for which
original curve can also only last for a finite time under b1 . 0. Then, if ks̃(s̃, t) ? 0 for all s̃ and all t . 0
curvature deformation. This finite evolution time under
curvature deformation naturally raises three interesting k(t) , k(0). (13)
questions: First, must every curve collapse to a point, or
can it collapse to a set of points, or segments? Second, if 4. Annihilation of Extrema and Inflection Points
a curve must collapse to a point, will the limit point be

Another issue of concern is whether new curvature ex-round?2 Third, will the curve develop self-intersections or
trema or inflection points can be created in the process ofbecome singular in the process?
smoothing. Theorem 3 shows that no new curvature ex-There has been a growing interest in these questions
trema or inflection points can be created [46]. Since thein differential geometry for the past decade. Gage and
total curvature is strictly decreasing for noncircular shapes,Hamilton [26, 27, 29] answered these questions for a convex
we conclude that existing extrema and zeros of curvaturecurve and showed that it must evolve to a round point
must also disappear in time.without developing self-intersections or singularities.

Grayson [31] generalized this result to show that any em- THEOREM 3. Let a family of curves satisfy (7) for which
bedded curve will become convex without developing self- b1 . 0. Then, the number of curvature extrema (vertices)
intersections or singularities; after this Gage and Hamil- is a nonincreasing function of time. Similarly, the number
ton’s results apply. To appreciate the significance of this of zeros of curvature is a nonincreasing function of time.
theorem examine the spiral shape in Fig. 1, which must

COROLLARY 1. The number of maxima, minima, andevolve to a circular point. We now state the theorem as
zeros of curvature for a noncircular curve is strictly decreas-derived in Grayson [31].
ing; circles lack such points and will evolve none.

THEOREM 1. Let C(s, 0): S1 R R2 be a parametrized

5. Iterative Smoothing
2 A limit point is round if when dilated it becomes a circle. To visualize Ideally a smoothing process should be implementable

a nonround point, say a triangular point, consider a triangle evolving by locally and iteratively. A property that would make this
scaling down and eventually shrinking to a point. The limit point is not

possible is the semigroup property: Operators T with a sizeround, but triangular.
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or scale parameter t which satisfy T(t1 1 t2) 5 T(t2)T(t1) preserve area, length, and other similar functionals are
are said to form a semigroup. For example, Gaussian special cases in the reaction–diffusion space, where b0 is
smoothing, or linear convolution of a function with the now a function of length. Note, however, that the length
Gaussian, satisfies the semigroup property since [ f(s) p and area measures are global and are therefore seriously
K(s, t1)] p K(s, t2) 5 f(s) p K(s, t1 1 t2). This implies affected by changes in the scene, e.g., partial occlusion,
that to smooth by amount 2t one can smooth by t in two movement of parts, etc. The fact that such global measures
sequential steps. There is great computational savings in can become variable under visual transformations moti-
doing so since the effective width of a Gaussian is much vates the use of the full reaction–diffusion space. In this
smaller for smaller steps. Similarly, deformation by curva- context, the evolution of a partially occluded shape by
ture also satisfies the semigroup property [21]: some ratio b0/b1 will match the evolution of the full shape

with a different one.
THEOREM 4. Let T(t) be the operator that evolves an

initial curve C0 to Ct by curvature, i.e., Ct 5 T(t)C0 . Then
T(t 1 s) 5 T(t)T(s).

4. SMOOTHING IMAGES VIA LEVELAs such, the process can be implemented locally and itera-
SET DEFORMATIONtively, with the potential of parallelization.

The smoothing of a shape by curvature deformation of
6. Other Properties its boundary can be extended to the smoothing of images.

Recall that curve deformation is implemented as the evolu-In addition to the properties already discussed, it is inter-
tion of a surface which embeds the evolving curve as itsesting to note that curvature deformation is the fastest way
zero level set. Until now the initial surface was obtainedto shrink the length of a curve [28]. The speed of shrinkage
from the distance transform of the shape, for convenience.of length, among all curves of length L, is slowest for the
However, as we shall shortly show, since any continuouscircle. However, the enclosed area decreases at a constant
surface can be used, this additional degree of freedomrate which equals the total curvature of the curve. This
enables gray-level intensity or range information to beshrinkage effect occurs in other smoothing operators and
represented. Our view of smoothing images, then, is tovarious solutions have been proposed; see, for example,
smooth each iso-intensity level set by curvature-dependent[57] for a way to deal with Gaussian smoothing shrinkage
deformation, in analogy to binary shapes. The smoothedeffects, and [18] for the use of intrinsic polynomial stabiliz-
image is then obtained by superimposing the smootheders. Alternatively, one can use results suggested by Gage
level sets, Fig. 2. Before we may proceed with this approachto overcome this effect: he defined an ‘‘area-preserving’’
to smoothing images, however, a number of essential prop-flow by subtracting the component of the length gradient
erties must be established. Here we should mention thewhich lies parallel to the area gradient [28]: Lt 5 2e kCt ,
recent elegant approach of Alvarez et al. in formalizingkNW l ds, At 5 2e kCt , NW l ds, where L is the length and A
the properties of scale space for images [1, 2–6].is the area of the curve. This leads to the evolution

The first and second theorems allow us to consider im-
ages where each iso-intensity level set may have singulari-
ties, e.g., corners, disconnected pieces, etc., by viewing theCt 5 Sk 2

2f
LDNW , (14)

surface evolution in a ‘‘weak’’ sense [56, 17, 33, 15, 51, 36].
The third theorem shows that the smoothing of each iso-
intensity contour is independent of the image itself, Fig.namely, the gradient flow of the length functional among
6. The fourth theorem shows that the evolution process iscurves of a fixed area. Alternatively, Gage [28] proposed
order preserving and does not allow iso-intensity level setsto magnify the plane by a homothety simultaneously with
to cross. In fact, although iso-intensity level sets may ini-the evolution, leading to
tially share segments in common due to discretization, the
fifth theorem shows that these will pull apart after smooth-
ing. The last theorem ensures that iso-intensity level setsCt 5 Sk 2

fp
ADNW 1 aTW , (15)

never move closer to one another than they were initially.
These recent mathematical results provide a theoretical

where p is the support function of C given by 2kC, NW l; justification for extending shape smoothing via curvature
the tangential component does not change the shape as deformation to image smoothing via the curvature defor-
explained earlier. The results due to Gage are applied to mation of its iso-intensity level sets.

Consider the parabolic partial differential equationthe smoothing of shapes [74]. In our framework, flows that
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FIG. 4. This figure depicts the signed distance function f in the neigh-
borhood of a shape’s boundary; r9 is the direction of =f and r is perpendic-
ular to r9.

which were established in [21] for general n. C0 denotes a
particular level set of f0 and Ct is its evolution in time.

THEOREM 5. A ‘‘weak’’ solution to (16) exists and is
FIG. 2. This figure illustrates the extension from shapes to images of unique.

smoothing by curvature deformation. An intensity image is represented
as a surface and each level set is smoothed by curvature deformation. It is important to consider the evolution in the weak sense,
The smoothed image is obtained by superimposing the smoothed level in the context of ‘‘viscosity solutions’’ of nonlinear partialsets. For illustration, we superimpose level set 75 in white on an image

differential equations [56, 15–17, 37, 36]. This allows us(bottom left), and a curvature deformation smoothed version of it (bot-
to consider shapes that have corners or discontinuities intom right).
orientation where, for example, the classical notion of a
normal is not well defined. However, we are assured that
when the classical solution exists, it coincides with the
weak solution:

ft 5 u=fu div S =f

u=fuD in Rn 3 [0, y),

f 5 f0 on Rn 3 ht 5 0j

(16) THEOREM 6. The evolution by curvature (16) agrees
with the classical motion by curvature, if and so long as the
latter exists.

for the hypersurface f 5 f(x, t), (x [ Rn, t $ 0), where We are assured by Theorem 7 that the choice of a different
f0 : Rn R R is some continuous function such that f0 is surface f90 , which embeds the same contour as a level set,
constant on Rn > huxu $ S j, for some S . 0. This equation will lead to the same smoothing of that contour.
evolves each level set of f according to its mean curvature,

THEOREM 7. The evolution of C0 into Ct is independentat least where f is smooth and its gradient does not vanish.
of the choice of the initial function f0 .In our case, n 5 2, (16) reduces to (10). We now restate

a number of useful and relevant properties for n 5 2, This important result, namely, that the evolution of a level
set by its curvature is independent of the choice of f0 ,
underlies our approach to smoothing images. Observe that
if we select the image intensity function as the surface f0 ,
each iso-intensity level set of f0 will evolve by curvature,
exhibiting all the desirable properties detailed in Section
3. This is equivalent to evolving each iso-intensity curve
separately by curvature, see Fig. 6, but with significant
computational savings. This approach exhibits properties
of anisotropic diffusion for images, see Section 6.

THEOREM 8. If C0 and Ĉ0 are two compact subsets of
R2 such that C0 # Ĉ0 then the subsequent evolutions Ct and
Ĉt of C0 and Ĉ0 satisfy Ct # Ĉt .

FIG. 3. Initially overlapping contours separate during curvature de-
It is clear that in the continuous domain, the iso-intensityformation, i.e., if C0 # Ĉ0 but C0 ? Ĉ0 , the two curves will pull apart

instantly, even when C0 and Ĉ0 coincide except for a small region [21]. contours of an image are isolated and nonoverlapping.
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stant and curvature deformation (5), where f evolves ac-
cording to (6), with b(k) 5 b0 2 b1k. In particular, a unique
weak solution exists, and the evolution of each level set
of f is independent of that of the other level sets. As a
consequence, the extension of curvature deformation of
shapes to curvature deformation of images may be general-
ized to a combination of constant and curvature deforma-
tion, leading to an entropy scale-space [42] for images.
Examples are shown in Section 7.

5. CONNECTION TO THE HEAT EQUATION AND
GAUSSIAN SMOOTHING

The connection between the deformation of a curve by
its curvature (7), namely, the geometric heat equation, and
the classical heat equation can be easily shown. Assume
arc-length parametrization, s̃, so that

U­C

­s̃
U5 1. (17)

Then,FIG. 5. This figure illustrates curvature deformation (left columns),
region blurring (middle columns), and boundary blurring (right columns)
for the cat, doll, and pear images, respectively.

TW 5
­C

­s̃

Conversely, for a collection of level sets to represent iso- k 5 U­TW
­s̃
U (18)

intensity contours of an image, they too must be nonover-
lapping. Theorem 8 assures us that the level sets maintain
this property during evolution by curvature deformation. NW 5 2

­TW
­s̃
@U­TW

­s̃
U .

We had earlier referred to this property as inclusion order
preserving, Section 3. Whereas iso-intensity contours are
separated in the continuous domain, in the discrete domain Since kNW 5 2­TW /­s̃ 5 2­2C /­s̃ 2, ­C /­t 5 2kNW leads to
some level sets may partially overlap. Theorem 9 assures
us that so long as such level sets do not cross, they will ­C

­t
5

­2C

­s̃ 2
,

(19)
separate in the course of the evolution, Fig. 3.

THEOREM 9. Given two initial curves C0 and Ĉ0 such ­C

­t
5 DC,that C0 # Ĉ0 but C0 ? Ĉ0 , their evolutions Ct and Ĉt do not

coincide for any t . 0.

In fact, Theorem 10 guarantees that two level sets cannot which is the diffusion (heat) equation for the coordinates.
Note that this equation holds only for an infinitesimal timemove closer to one another than they were initially.
step, since arc-length is not preserved. The enforcement

THEOREM 10. Assume C0 and Ĉ0 are nonempty compact
of arc-length parametrization requires a coupling of (19)

sets in R2 and hCt jt.0 and hĈt jt.0 are the subsequent general-
with uCs̃u 5 1. In this sense the system is not linear.

ized motions by curvature. Then dist(C0 , Ĉ0) # dist(Ct , Ĉt) To show the connection with the classical heat equation,
for t $ 0.

let us first examine Gaussian-based smoothing of a shape’s
coordinates. Mokhtarian and Macworth use the GaussianWhereas thus far we have specialized to the case of

curvature deformation, a number of the above properties to create a scale-space for shapes [60] by convolving it with
the original coordinate functions C0(s) 5 (x0(s), y0(s)). Theyhold for a larger, more general class of geometric parabolic

partial differential equations [14, 13, 30]. This includes the track inflection points of smoothed coordinate functions
over time.evolution of each level set of f by a combination of con-
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FIG. 6. This figure illustrates that each iso-intensity level set is smoothed independently of the rest of the image. Bottom: The original image.
First column (bottom to top): The sequence of curvature deformation smoothed images. Second column (bottom to top): A particular level set of
the smoothed images in column one (intensity 5 125). Recall that this level set is the evolution by curvature deformation of the original image’s
level set (intensity 5 125). Third column (bottom to top): The evolution by curvature of the same level set, but now with a different surface (obtained
from the distance transform). Fourth column (bottom to top): The evolved distance transform surface corresponding to the images in column three.
Whereas the evolved surfaces in the first and fourth columns differ, the corrspondence between the second and third columns numerically confirms
the theoretical independence of level set evolution from the original image, Theorem 7.

x(s, t) 5 x0(s) p K(s, t)
(20)

longer smoothing time, the two processes diverge in effect.
For example, evolutions by (22) can cause self-intersec-y(s, t) 5 y0(s) p K(s, t),
tions. In addition, they place too much significance on
elongated features; the remedy is to renormalize for arc-where t is the extent of the Gaussian K(s, t). It is well
length in each step [61], effectively yielding Eq. (19).known [87] that the Gaussian

A second connection between curvature deformation
and Gaussian smoothing is based on ‘‘volumetric blurring’’

K(s, t) 5
1

(4ft)1/2 e2s2/4t (21) [48, 50], where the focus is on the blurring of the region
rather than the boundary. For example, let f0 be the char-
acteristic function of the original shape, i.e., f0 has valueis the heat kernel. In other words (20) is equivalent to
1 inside the shape and value 0 otherwise. The shape may
then be smoothed by iteratively blurring the characteristic
function as follows:­C

­t
5

­2C

­s2 . (22)

fnDt(x, y)
Equations (19) and (22) appear similar. Indeed, in the
short time, since arc-length is approximately preserved, 5H1 where f(n21)Dt(x, y) p K(x, y, Dt) $ 0.5

0 otherwise.
(23)

the two smoothing processes are similar. However, for
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FIG. 6—Continued

Here K(x, y, Dt) denotes a 2D Gaussian centered at (x, y) imply that in the limit as the time step becomes very small,
region blur as described by (23), but with f equal to thewith extent Dt, and the smoothed shape is the boundary

of the blurred characteristic function. Note that at each signed distance function d, is equivalent to curvature defor-
mation.time step, a new characteristic function is computed by

thresholding the blurred characteristic function from the An intuitive explanation of this result is as follows [3].
The heat equation may be written as ft 5 Df 5 frr 1previous time step. Figure 5 depicts the outcome of this

process for three different shapes. fr9r9 , where r and r9 are any two orthogonal directions. Let
r9 be the direction of =f. If we specialize to the case ofThe relationship between the above form of region blur-

ring and the evolution of the shape’s boundary by curvature the signed distance function as f, Fig. 4, we see that near
the shape’s boundary, ufr9u 5 1. Consequently, fr9r9 is zerois as follows. In [22] Evans and Spruck show that under

mean curvature evolution, for small times the signed dis- near the boundary. Now recall that curvature deformation
satisfies (10), which we restate:tance function d of Ct satisfies a nonlinear parabolic equa-

tion of the form ­d/­t 5 F(D2d, d). They then show that
for small times and for a small neighborhood around the ft 5 k u=fu,

(25)initial curve C0 , the initial signed distance function evolving
according to ­d/­t 5 F(D2d, d), subject to unit gradient 5

(fxxf
2
y 2 2fxyfxfy 1 fyyf

2
x)

(f2
x 1 f2

y)3/2 u=fu.
boundary conditions, remains the signed distance function
to a curve evolving by mean curvature. Moreover,

Here f is any continuous surface, including but not limited
to the signed distance function, whose level sets evolve by­d

­t
5 Dd (24)

mean curvature. Let u be the angle that r forms with the
x-axis. The second directional derivative in the direction
r can be written ason the evolving curve. Hence, Evans and Spruck’s results
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frr 5 fxx cos2(u) 1 2fxy cos(u) sin(u)
(26)

blurred, while regions of high gradient values are not. The
edges of the resulting image are enhanced in time and1 fyy sin2(u).
regions converge to regions of constant intensity.

Catté et al. [12] point out two limitations of the Perona–With r perpendicular to the direction of =f, we have
Malik scheme. First, ‘‘noise introduces very large, in theory(cos(u), sin(u)) 5 (2fy/(f2

x 1 f2
y)1/2, fx/(f2

x 1 f2
y)1/2)

unbounded, oscillations of the gradient,’’ leading to theand infer
enhancement of noise edges, which will then be kept. These
edges are in practice filtered by a first stage smoothing,

k 5
frr

(f2
x 1 f2

y)1/2 5
frr

u=fu
, (27) which in turn introduces an additional parameter. The

second problem is theoretical in that for the suggested
choices of g no correct theory is available for the existence

or substituting in (25) and uniqueness of the solutions. This leads to the possibility
that pictures close in norm can lead to drastically different

ft 5 frr . (28) edge maps. They propose a slight modification where the
gradient u=f(x, y, t)u in (30) is replaced with a Gaussian

Therefore, the approaches of curvature deformation and smoothed estimate uDGs p f(x, y, t)u, leading to
iterated region blur converge when f is the signed dis-
tance function. ft 5 div(g(uDGs p f(x, y, t)u) =f). (31)

6. CONNECTION TO ANISOTROPIC DIFFUSION In other words, the initial smoothing of Perona and Malik
is now integrated into the scheme. Catté et al. then proveA number of linear scale spaces have been introduced
the existence, uniqueness, and regularity properties of solu-to combat noise as well as to hierarchically structured fea-
tions of (31). Hence, the above two problems are avoided.tures. Perona and Malik [68] noted a problem with the
A similar idea is proposed by Whitaker and Pizer [85],standard scale spaces for edges, namely, a shift in the true
where the extent of the Gaussian is itself a decreasinglocation of edges in scale. This is primarily due to the
function of time. See also [84].homogeneity of the Gaussian operator with respect to

The connection between regularization and anisotropicedges, which implies that Gaussian blur does not respect
diffusion is addressed by Nordström [63] and Shah [81].image boundaries. The Gaussian operator was originally
Nordström shows that the (stochastic or variational) regu-proposed as the unique linear operator that satisfies the
larization approach [83] of global minimization of the sumcausality, homogeneity, and isotropy criteria [48]. Perona
of an edge term, a deviation from original image term,and Malik replace the latter two, which were originally
and a smoothness or likelihood term, has a differentialproposed to simplify the problem, with two new ones,
counterpart obtained by the Euler–Lagrange equation.immediate localization and piecewise smoothing. To
This local condition is very much like the Perona–Malikachieve these objectives, consider the anisotropic diffu-
anisotropic diffusion with an additional bias term whichsion equation
moderates the diffusion when the diffused function drifts
far away from the original image. However, Catté et al.

ft 5 div(c(x, y, t) =f) 5 c(x, y, t) Df 1 =c ? =f, (29) [12] raise the same stability issue and in addition argue
that the maximum principle used in this work is generally

where f denotes brightness intensity. Observe that if image not valid.
boundaries are known, then setting the diffusion coefficient Shah suggests the minimization of two coupled energy
c to zero at the boundaries and one at the interior of each functionals whose first variations lead to
region will smooth within each region independently of
other regions, without smearing edges. Note, however, that
the solution involves the original problem of detecting
boundaries! Instead, Perona and Malik rely on a best esti-

­f9

­t
5 v2 Df9 2

1
s 2 (f9 2 f)

­v
­t

5 r Dv 2
v
r

1 2a(1 2 v)u=f9u.
(32)

mate of where these boundaries may be by relating c to
some nonnegative monotonically decreasing function of
edge strength, where edge strength is measured by the
gradient of the image: Here f is the original image intensity function, f9 is a

smoothed version of f, and v is a ‘‘discontinuity indicator’’
c(x, y, t) 5 g(u=f(x, y, t)u). (30) whose value is close to 1 in the vicinity of a discontinuity

and is close to 0 otherwise. The first of these equations
leads to a smoothing of the image, where the 1/s 2(f9 2As a consequence, regions of low brightness gradients are
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FIG. 7. Curvature deformation verses Gaussian blurring of an image. Bottom: Original images. Left columns: Curvature deformation. Right
columns: Gaussian blurring. Observe how in contrast to Gaussian blurring, edges remain crisp for curvature deformation.

f) term is similar to Nordström’s bias term. The second Several variants of these coupled nonlinear diffusion equa-
tions are presented. For improved response in the neigh-equation leads to a smoothing of the boundaries.

Proesmans et al. [69] observe that since diffusion equa- borhood of ramp edges as well as contrast enhancement,
second-order smoothing processes are proposed; thesetions smooth, Shah’s approach can not lead to edge en-

hancement. Moreover, the smoothing of v leads to a loss minimize a functional of the second derivative of the im-
age intensity.of boundary localization. They suggest a modification

where the Df9 term in (32) is replaced by Perona and Alternatively, Osher and Rudin view enhancement and
segmentation as a kind of ‘‘deblurring,’’ which they imple-Malik’s div(c(f9) =f9), leading to a process that encour-

ages edge sharpening in regions nearby discontinuities. ment using a conservative numerical scheme [66]. This
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FIG. 9. An extension of curvature deformation to a combination ofFIG. 8. An extension of curvature deformation to a combination of
constant and curvature deformation leads to an entropy scale space [42] constant and curvature deformation leads to an entropy scale space [42]

for images. Bottom: Original image. Left column (bottom to top) Constantfor images. Bottom: Original image. Left column (bottom to top): Con-
stant deformation only. Left to right (bottom to top): Increasing amounts deformation only. Left to right (bottom to top): Increasing amounts of

curvature deformation.of curvature deformation.

conservative scheme resembles the inverse heat equation where G is a smoothing kernel, say the Gaussian, and
as closely as possible; see also [35]. g(j) is a nonincreasing real function which tends to zero

Alvarez et al. [5] study a class of nonlinear parabolic as j R 0. They then show the existence and uniqueness
differential equations specified by of the viscosity solution of this equation. Our curvature

deformation is related to (33) in that g(?) 5 1 (g(j) does
not tend to zero as j R 0). However, the theory of viscosity

ft 5 g(uG p =fu)u=fu div
=f

u=fu
, f(x, y, 0) 5 f0(x, y), (33)

solutions of the curvature deformation, known as the
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does not enhance edges. This is the anisotropic diffusion
connection.

Finally, we should mention that recently Florack et al.
have proposed a unifying framework for a variety of non-
linear diffusion models [24]. Here the idea of a ‘‘general-
ized’’ scale-space is introduced, where each nonlinear
scale-space formally corresponds to a transformation of a
linear one.

7. EXAMPLES

In this section we discuss implementation issues and
illustrate the scheme with several examples. Since curva-
ture deformation smoothes singularities and no new singu-
larities can form, a central difference scheme is sufficient
to robustly simulate the process. See [62] for a framework

FIG. 10. An extension of curvature deformation to a combination of
constant and curvature deformation leads to an entropy scale space [42]
for images. Bottom: The original image is a portion of the medical image
in Fig. 12. Left column (bottom to top): Constant deformation only. Left
to right (bottom to top): Increasing amounts of curvature deformation.

‘‘mean curvature flow,’’ was addressed previously [21–23,
14, 13], and was numerically demonstrated by Osher and
Sethian [67].

To see how curvature deformation preserves edges while
smoothing, recall that under this process, ft 5 frr (28),
where r is the direction perpendicular to the image intensity
gradient =f. In contrast to the heat equation, ft 5 Df 5
frr 1 fr9r9 , where r and r9 are any two orthogonal direc-
tions, we observe that curvature deformation ignores the
diffusion term fr9r9 in the direction r9 of the brightness
gradient, and as such does not allow diffusion across edges
[5]. Edge location and sharpness are left intact since, in

FIG. 11. An extension of curvature deformation to a combination ofeffect, the component of diffusion along the gradient has
constant and curvature deformation leads to an entropy scale space [42]

been subtracted off. This is similar to Perona and Malik’s for images. Bottom: The original image is a portion of the aerial image
approach in that the edges are preserved. However, ‘‘noise in Fig. 13. Left column (bottom to top): Constant deformation only. Left

to right (bottom to top): Increasing amounts of curvature deformation.edges’’ are not amplified because curvature deformation
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FIG. 12. This figure illustrates geometric smoothing for a medical image. Top left: Original MRI image of a brain slice. Clockwise from top
right: Curvature deformation eliminates noise and enhances the ocular dominance columns. It is instructive to visually track an edge as the image
is smoothed; slowly curving edges remain sharp while edges corresponding to smaller structures are removed.

for implementing this and other nonlinear diffusion with Gaussian blurring of its region and its boundary, re-
spectively. Observe that boundary blurring can place tooschemes, based on the notion of well-posed differentiation

by Gaussian kernels. Note that in contrast to curvature much emphasis on elongated features, e.g., the tail of the
cat, while region blurring can lead to topological splits,deformation, evolutions involving constant deformation

(hyperbolic) may lead to the formation of singularities. As e.g., the hands and feet of the doll. On the other hand,
such, shock-capturing numerical schemes are required for curvature deformation exhibits the desirable properties
the full reaction–diffusion space spanning constant and discussed in Section 3, in particular, each shape becomes
curvature deformation. High-resolution schemes were pro- round in the limit.
posed by Harten, and Osher and Chakravarthy [32, 65] Figure 6 demonstrates that each iso-intensity level set
and applied to front propagation by Osher and Sethian evolves independently of the original image. To illustrate
[67, 76–80]. These schemes have been used for shape repre- this point, a level set of the original image (intensity 5
sentation in computer vision [39, 41] and can be applied 125) was smoothed using the original image as the surface
to a variety of other computer vision applications [82]. as well as by constructing an artificial surface from it (ob-

The numerical scheme for curvature deformation re- tained from the distance transform). The numerical simula-
quires no parameters. The magnitude of b1 is absorbed in tion confirms the theoretical results, Theorem 7.
the time parameter t and only affects the speed of smooth- Figure 7 compares curvature deformation smoothing
ing. The original shape/image is evolved over time, produc- with Gaussian blurring for three range images. Gaussian
ing a sequence of fine to coarse smoothed shapes/images. blurring smoothes equally well within regions and across
We illustrate this smoothing process on a variety of shapes edges, e.g., the fingers of the hand are blurred together.
and images. In contrast, curvature deformation exhibits properties of

anisotropic diffusion, smoothing within but not betweenFigure 5 compares the curvature deformation of a shape
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FIG. 13. This figure illustrates geometric smoothing of an aerial image. Top left: Original aerial image taken from the ARPA RADIUS program.
Clockwise from top right: Curvature deformation smoothing of the original. Note how small structures within large blocks are removed while slowly
curving edges remain sharp.

regions; observe that the fingers of the hand remain sep- the process. Experts working with these images consider
the results desirable.arate.

Figures 8–11 illustrate the extension from shapes to im- Figure 13 depicts an application of curvature deforma-
tion smoothing to an aerial image taken from the ARPAages of a combination of constant and curvature deforma-

tion, leading to an entropy scale space [42] for images. RADIUS program. Again, small structures such as cars
are smoothed over while the edges of more slowly curvingUnder curvature deformation, all iso-intensity curves are

smoothed to circles which eventually disappear. In con- structures such as blocks and roads are preserved and re-
main sharp. Note that the emphasis is on the ‘‘geometry’’trast, constant deformation in the entropy scale space leads

to the ‘‘breaking off’’ of structures: small structures such of the object rather than on pure edge contrast.
Figure 14 compares curvature deformation with Peronaas the fingers of the hand (Fig. 8, left column), or the

grapes (Fig. 9, left column) disappear while the larger struc- and Malik’s anisotropic diffusion [68] for a portion of the
aerial image in Fig. 13. Anisotropic diffusion can be madetures are left intact.

Figure 12 depicts an application of curvature deforma- to preserve all sharp edges, including those of small struc-
tures such as the cars, by selecting a conductance function gtion smoothing to the medical domain. The task here is to

measure the width of the ocular dominance columns. The that drops sharply with increasing image intensity gradient
(left column). Alternatively, such small structures can beocular dominance bands, however, are congested with

small structures such as blood vessels. Observe how curva- smoothed over by selecting a less steep conductance func-
tion, but at the expense of also smoothing over the edgesture deformation smoothes over these small structures

while preserving the more slowly curving edges of the of larger structures such as the roads (middle column).
Curvature deformation, which is based on the geometry ofocular dominance columns, making the bands distinct in



320 KIMIA AND SIDDIQI

ACKNOWLEDGMENTS

This research was supported by NSF Grant IRI 9225139. The authors
thank Steven W. Zucker for many discussions and Perry Stoll for some
of the implementations. The medical images were kindly provided by
Michael Stryker from UCSF. The aerial image is from the ARPA
RADIUS program.

REFERENCES

1. L. Alvarez, F. Guichard, P. Lions, and J. Morel, Axiomatisation et
nouveaux operateurs de la morphologie mathematique, C. R. Acad.
Sci. Paris 315, 1992, 265–268.

2. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axiomes et
equations fondementales du traitement d’images (analyse multi-
echelle at e.d.p), C. R. Acad. Sci. Paris 1, 1992, 135–138.

3. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axioms and
fundamental equations of image processing. Arch. Rational Mech.
Anal. 123, 1993, 199–257.

4. L. Alvarez and L. Mezzora, Signal and image restoration using shock
filters and anisotropic diffusion, SIAM J. Numer. Anal. 31, 1994.

5. L. Alvarez, P.-L. Lions, and J.-M. Morel, Image selective smoothing
and edge detection by nonlinear diffusion: II, SIAM J. Numer. Anal.
29(3), June 1992, 845–866.

6. L. Alvarez and J.-M. Morel, Formalization and computational aspects
of image analysis, Acta Numer. 1994, 1–59.

7. A. Arehart, L. Vincent, and B. B. Kimia, Mathematical morphology:
The Hamilton–Jacobi connection, in Fourth International Conference
on Computer Vision, Germany, Berlin, May 11–13, 1993, Computer
Society Press, Washington, DC, 1993.

8. H. Asada and M. Brady, The curvature primal sketch, IEEE Trans.
Pattern Anal. Machine Intell. 8, 1983, 2–14.

9. J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, Uniqueness
of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern
Anal. Machine Intell. 8(1), January 1986, 26–33.

FIG. 14. A comparison of anisotropic diffusion [68] (left and middle
10. G. Barles, Remarks on a flame propagation model, Technical Reportcolumns) and curvature deformation (right column). Anisotropic diffu-

464, INRIA Rapports de Recherche, December 1985.sion is applied using the conductance function g(=f) 5 1/(1 1 (u=fu/
11. H. Blum, Biological shape and visual science, J. Theor. Biol. 38,K)2), where f is the image intensity. Bottom: The original image is a

1973, 205–287.portion of the aerial image in Fig. 13. Left column (bottom to top):
Anisotropic diffusion, K 5 5. When the conductance function drops 12. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, Image selective
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