Spectral Representations of Graphons in Very Large Network Systems Control

> Shuang Gao and Peter E. Caines McGill University

58th IEEE Conference on Decision and Control Nice, France, Dec. 12, 2019

Work supported by NSERC (Canada) ARO Grant W911NF1910110 (US)

Motivation

Networks are ubiquitous, growing in size and complexity.

Online Social Networks, Brain Networks, Grid Networks, Transportation Networks, IoT ...

S. Gao & P.E. Caines

Background

Graphon theory: model arbitrary-size/large graphs and their limits	1
Recent applications to dynamical systems:	
 Heat equations, coupled oscillators, random walks 	2
Dynamic games	3
Control of large networks of dynamical systems	4
Other applications: static games, network centrality, signal processing	5
Among these, spectral properties of graphons are very significant.	
Spectral analysis of large-scale dynamical systems plays a key role in low-complexity control synthesis	6
1 [Borgs et al., 2008, 2012; Lovász, 2012]. 2 [Medvedev, 2014a,b], [Chiba and Medvedev, 2019; Kuehn and Throm, 2018], [Petit et al., 2019] 3 [Caines and Huang, 2018, 2019] 4	
[Gao and Caines, 2017, 2018, 2019a,b,c; Gao, 2019] 5 [Parise and Ozdaglar, 2018; Carmona et al., 2019], [Avella-Medina et al., 2018], [Ruiz et al., 2019; Morency and Leus, 2017] 6 [Acki: 1068: Surject and Lall 2014; Callier and Winkin: 1002]	

- 2 Graphon Control Systems
- 3 Controllability Gramian Operator
- 4 Spectral Approximations of Networks and Graphons
- 5 Controlling Epidemic Networks via Spectral Decomposition

Graphs, Adjacency Matrices and Pixel Pictures

Graph, Adjacency Matrix, Pixel Picture [Lovász, 2012]

The whole pixel picture is presented in a unit square $[0,1] \times [0,1]$, so the square elements have sides of length $\frac{1}{N}$, where N is the number of nodes.

S. Gao & P.E. Caines

4/29

Graph Sequence Converging to Graphon

Graph Sequence Converging to its Limit [Lovász, 2012]

Graphons: bounded symmetric Lebesgue measurable functions $\mathbf{W}: [0,1]^2 \to [0,1]$

interpreted as weighted graphs on the vertex set [0, 1].

Notations of Spaces

$$\begin{split} \tilde{\mathbf{G}}_{\mathbf{0}}^{\mathbf{sp}} &:= \{ \mathbf{W} : [0,1]^2 \to [0,1] \} \\ \tilde{\mathbf{G}}_{\mathbf{1}}^{\mathbf{sp}} &:= \{ \mathbf{W} : [0,1]^2 \to [-1,1] \} \\ \tilde{\mathbf{G}}_{\mathbb{R}}^{\mathbf{sp}} &:= \{ \mathbf{W} : [0,1]^2 \to \mathbb{R} \} \end{split}$$

S. Gao & P.E. Caines

Spectral Representations of Graphons in Very Large Network Systems Control

 $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$

Compactness of Graphon Space

$$\begin{array}{ll} \mathsf{Cut norm:} & \|\mathbf{W}\|_{\Box} := \sup_{M, T \subset [0,1]} |\int_{M \times T} \mathbf{W}(x,y) dx dy| \\ \mathsf{Cut metric:} & \delta_{\Box}(\mathbf{W},\mathbf{V}) := \inf_{\phi} \|\mathbf{W}^{\phi} - \mathbf{V}\|_{\Box}, & *^{1} \end{array}$$

Theorem ([Lovász, 2012])

The graphon spaces $(\mathbf{G_0^{sp}}, \delta_{\Box})$ and any closed bounded subset of $(\mathbf{G_R^{sp}}, \delta_{\Box})$ are compact.

By compactness, infinite sequences of graphons will necessarily possess one or more sub-sequential limits under the cut metric.

¹ $\mathbf{W}^{\phi}(x,y) = \mathbf{W}(\phi(x),\phi(y))$

Graphons as Operators [Lovász, 2012]

Graphon $\mathbf{W} \in \tilde{\mathbf{G}}_{1}^{\mathbf{sp}}$ as an operator: $\mathbf{W}: L^{2}[0,1] \rightarrow L^{2}[0,1]$

Operation:
$$[\mathbf{W}\mathbf{v}](x) = \int_0^1 \mathbf{W}(x, \alpha)\mathbf{v}(\alpha)d\alpha \quad \mathbf{v} \in L^2[0, 1]$$

Operator Product: $[\mathbf{U}\mathbf{W}](x, y) = \int_0^1 \mathbf{U}(x, z)\mathbf{W}(z, y)dz, \quad \mathbf{U}, \mathbf{W} \in \tilde{\mathbf{G}}_1^{\mathbf{sp}}$

Norm relations [Gao and Caines, 2019c], [Janson, 2010; Parise and Ozdaglar, 2018]:

 $\overline{\|\mathbf{W}\|_{\mathsf{op}}} \le \|\overline{\mathbf{W}}\|_2, \qquad \|\mathbf{W}\|_{\Box} \le \|\mathbf{W}\|_{\mathsf{op}} \le \sqrt{8\|\mathbf{W}\|_{\Box}}.$

Graphon operators are Hilbert-Schmidt operators

[Rudin, 1991; J Mercer, 1909; Szegedy, 2011]

S. Gao & P.E. Caines

Two Types of Graphons: Step Function Graphons

Proposition (Spectral Rep. of Step Function Graphons)

Let $A = V\Lambda_d V^{\mathsf{T}}$ where $\Lambda_d = \text{diag}(\lambda_1, ..., \lambda_d)$ and $V = (v_1, ..., v_d)$ with v_ℓ representing the normalized eigenvector of λ_ℓ . Consider the uniform partition $\{P_1, ..., P_N\}$ of [0, 1]. Then the step function graphon **A**

$$\mathbf{A}(x,y) := \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbb{1}_{P_i}(x) \mathbb{1}_{P_j}(y) a_{ij}, \quad (x,y) \in [0,1]^2$$

has a spectral representation given by

$$\mathbf{A}(x,y) = \sum_{\ell=1}^{d} \lambda_{\ell} [\mathbb{S}_{v_{\ell}} \cdot \mathbb{S}_{v_{\ell}}^{\mathsf{T}}](x,y), \quad (x,y) \in [0,1]^{2}.$$

The corresponding eigenvalues for **A** are given by $\left\{\frac{\lambda_{\ell}}{N}\right\}_{\ell=1}^{d}$ since $\langle \mathbb{S}_{v_{\ell}}, \mathbb{S}_{v_{k}} \rangle = 0$, if $\ell \neq k$; $\langle \mathbb{S}_{v_{\ell}}, \mathbb{S}_{v_{k}} \rangle = 1/N$, if $\ell = k$.

S. Gao & P.E. Caines

Two Types of Graphons: Sinusoidal Graphons

Sinusoidal graphon

$$\mathbf{A}(\varphi,\vartheta) := a_0 + \sum_{k=1} b_k \cos(2\pi k(\varphi - \vartheta)), \quad (\varphi,\vartheta) \in [0,1]^2.$$

Features

Eigenvalues:
$$a_0, \{rac{b_k}{2}: k\in \mathbb{Z}_+\}, \{rac{b_k}{2}: k\in \mathbb{Z}_+\}.$$

Eigenfunctions form a complete orthonormal basis for $L^2[0,1]$:

1,
$$\{\sqrt{2}\cos 2\pi k(\cdot) : k \in \mathbb{Z}_+\}, \{\sqrt{2}\sin 2\pi k(\cdot) : k \in \mathbb{Z}_+\}.$$

- Representations of functions $\mathbf{A}^n, e^{\mathbf{A}}$ are explicit
- Symmetric and diagonally constant, and suitable to approximate infinite Toeplitz matrices [Gray et al., 2006]

- 2 Graphon Control Systems
- 3 Controllability Gramian Operator
- 4 Spectral Approximations of Networks and Graphons
- 5 Controlling Epidemic Networks via Spectral Decomposition

Linear Network Systems

The dynamics of the i^{th} agent in the network

$$\dot{x}_{t}^{i} = \alpha_{0} x_{t}^{i} + \frac{1}{N} \sum_{j=1}^{N} a_{ij} x_{t}^{j} + \beta_{0} u_{t}^{i} + \frac{1}{N} \sum_{j=1}^{N} b_{ij} u_{t}^{j},$$

$$t \in [0, T], \quad \alpha_{0}, \beta_{0} \in \mathbb{R}, \quad x_{t}^{i}, u_{t}^{i} \in \mathbb{R},$$
(3)

Linear Network Systems Described by Graphons [Gao and Caines, 2019c]

Dynamics

$$\dot{\mathbf{x}}_{\mathbf{t}}^{[\mathbf{N}]} = (\alpha_0 \mathbb{I} + \mathbf{A}^{[\mathbf{N}]}) \mathbf{x}_{\mathbf{t}}^{[\mathbf{N}]} + (\beta_0 \mathbb{I} + \mathbf{B}^{[\mathbf{N}]}) \mathbf{u}_{\mathbf{t}}^{[\mathbf{N}]}, \quad t \in [0, T],
\alpha_0, \beta_0 \in \mathbb{R}, \quad \mathbf{x}_{\mathbf{t}}^{[\mathbf{N}]}, \mathbf{u}_{\mathbf{t}}^{[\mathbf{N}]} \in L^2_{pwc}[0, 1], \quad \mathbf{A}^{[\mathbf{N}]}, \mathbf{B}^{[\mathbf{N}]} \in \tilde{\mathbf{G}}_{\mathbf{1}}^{\mathbf{sp}}$$
(4)

$$\begin{array}{ll} \mbox{(step function)} & \mathbf{A}^{[\mathbf{N}]}(\vartheta,\varphi) = \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbbm{1}_{P_i}(\vartheta) \mathbbm{1}_{P_j}(\varphi) a_{ij}, & (\vartheta,\varphi) \in [0,1]^2 \\ \\ \mbox{(pwc)} & \mathbf{x}^{[\mathbf{N}]}_{\mathbf{t}}(\vartheta) = \sum_{i=1}^{N} \mathbbm{1}_{P_i}(\vartheta) x^i_t, & \forall \vartheta \in [0,1] \end{array}$$

 $\mathbbm{1}_{P_i}(\cdot):$ the indicator function. $L^2_{pwc}[0,1]:$ the set of all piece-wise constant functions in $L^2[0,1]$

S. Gao & P.E. Caines

Linear Network Systems Described by Graphons

Graphon linear control system $(\mathbb{A}; \mathbb{B})$:

$$\dot{\mathbf{x}}_{t} = \mathbb{A}\mathbf{x}_{t} + \mathbb{B}\mathbf{u}_{t}, \quad t \in [0, T],$$
(5)
$$\boldsymbol{\alpha}_{0}\mathbb{I} + \mathbf{A}), \quad \mathbb{B} = (\beta_{0}\mathbb{I} + \mathbf{B}) \text{ with } \mathbf{A}, \mathbf{B} \in \tilde{\mathbf{G}}_{1}^{\mathbf{sp}} \text{ and } \alpha_{0}, \beta_{0} \in \mathbb{R}$$

 $\mathbf{x}_t \in L^2[0,1]$: system state. $\mathbf{u}_t \in L^2[0,1]$: control input.

Proposition ([Bensoussan et al., 2007])

The system $(\mathbb{A}; \mathbb{B})$ in (5) has a unique mild solution $\mathbf{x} \in C([0,T]; L^2[0,1])$ for any $\mathbf{x}_0 \in L^2[0,1]$ and any $\mathbf{u} \in L^2([0,T]; L^2[0,1])$.

S. Gao & P.E. Caines

2 Graphon Control Systems

3 Controllability Gramian Operator

- 4 Spectral Approximations of Networks and Graphons
- 5 Controlling Epidemic Networks via Spectral Decomposition

Controllability Gramian Operator $\mathbb{A} = (\alpha_0 \mathbb{I} + \mathbf{A}), \ \mathbb{B} = (\beta_0 \mathbb{I} + \mathbf{B})$

Definition

A graphon dynamical system $(\mathbb{A}; \mathbb{B})$ in (5) is *exactly controllable* in $L^2[0,1]$ over the time horizon [0,T] if the system state can be driven to the origin at time T from any initial state $\mathbf{x}_0 \in L^2[0,1]$.

- 1 No exact controllability for $(\mathbb{A}; \mathbb{B})$ with a compact operator \mathbb{B} over a finite horizon [Triggiani, 1975].
- 2 If \mathbb{B} lies in the graphon unitary operator algebra [Gao and Caines, 2019c], then $(\mathbb{A}; \mathbb{B})$ in (5) over [0, T] is exact controllable iff $\beta_0 \neq 0$.

Controllability Gramian operator: $\mathbb{W}_T := \int_0^T e^{\mathbb{A}\tau} \mathbb{BB}^{\mathsf{T}} e^{\mathbb{A}^{\mathsf{T}}\tau} d\tau.$

Minimum control energy: $J(\mathbf{x}_0) = \langle e^{\mathbb{A}T} \mathbf{x}_0, \mathbb{W}_T^{-1} e^{\mathbb{A}T} \mathbf{x}_0 \rangle$

S. Gao & P.E. Caines

Controllability Gramian Operator $\mathbb{A} = (\alpha_0 \mathbb{I} + \mathbf{A}), \ \mathbb{B} = (\beta_0 \mathbb{I} + \mathbf{B})$

Proposition (Explicit Rep. of Controllability Gramian)

Let
$$\mathbf{A} \in \tilde{\mathbf{G}}_{1}^{\mathbf{sp}}$$
 and $\mathbf{B} = \sum_{k=1}^{a} \beta_{k} \mathbf{A}^{k}$. Denote $\eta_{\ell} = \sum_{k=0}^{a} \beta_{k} \lambda_{\ell}^{k}$. Then the controllability Gramian operator for the system (\mathbb{A}, \mathbb{B}) in (5) is given by

$$\mathbb{W}_T = \int_0^T e^{\alpha_0 t} dt \beta_0^2 \mathbb{I} + \sum_{\ell \in I_\lambda} \left((\eta_\ell)^2 \int_0^T e^{2(\alpha_0 + \lambda_\ell) t} dt - \int_0^T e^{\alpha_0 t} dt \beta_0^2 \right) \mathbf{f}_\ell \mathbf{f}_\ell^\mathsf{T};$$
(6)

furthermore, if $\beta_0 \neq 0$, then the inverse of the controllability Gramian operator for $(\mathbb{A}; \mathbb{B})$ in (5) is explicitly given by

$$\mathbb{W}_{T}^{-1} = \frac{1}{\int_{0}^{T} e^{\alpha_{0}t} dt \beta_{0}^{2}} \mathbb{I} - \frac{1}{\int_{0}^{T} e^{\alpha_{0}t} dt \beta_{0}^{2}} \sum_{\ell \in I_{\lambda}} \frac{(\eta_{\ell})^{2} \int_{0}^{T} e^{2\lambda_{\ell}t} dt - T\beta_{0}^{2}}{(\eta_{\ell})^{2} \int_{0}^{T} e^{2\lambda_{\ell}t} dt} \mathbf{f}_{\ell}^{\mathsf{T}}.$$
(7)

S. Gao & P.E. Caines

- 2 Graphon Control Systems
- 3 Controllability Gramian Operator

4 Spectral Approximations of Networks and Graphons

5 Controlling Epidemic Networks via Spectral Decomposition

Eigenvalues a graphon A_n form two sequences converging to 0 [Borgs et al., 2012]:

 $\overline{\mu_1(\mathbf{A}_n)} \ge \mu_2(\mathbf{A}_n) \ge \dots \ge 0 \quad \text{and} \quad \mu_1'(\mathbf{A}_n) \le \mu_2'(\mathbf{A}_n) \le \dots \le 0$

Theorem ([Borgs et al., 2012])

Let $\{\mathbf{A}_i\}_{i=1}^{\infty}$ be a sequence of uniformly bounded graphons, converging in the cut metric to a graphon \mathbf{A} . Then for every $i \ge 1$,

 $\mu_i(\mathbf{A}_n) o \mu_i(\mathbf{A}) \quad \text{and} \quad \mu_i'(\mathbf{A}_n) o \mu_i'(\mathbf{A}) \quad \text{ as } n o \infty.$

Implication. If a sequence of graphons converges in the cut metric to a graphon limit with a few non-zero eigenvalues, then elements of the sequence admit low-dimensional spectral approximations.

S. Gao & P.E. Caines

Random graphs generated by the Erdös-Rényi model Parameters: p=0.5, n=100

The eigenvalue distribution of a graph with 100 nodes in a convergent sequence of random graphs to the graphon limit W(x,y) = 0.5.

Reasonable low-rank approximations exist for general random graphs generated by dense low-rank models [Chung and Radcliffe, 2011], e.g., stochastic block models (SBM).

S. Gao & P.E. Caines

ND1: C-elegans metabolic network where edges represent metabolic reactions between substrates [Jeong et al., 2000].

S. Gao & P.E. Caines

ND2: Infectious contact network [SocioPatterns, 2009].

S. Gao & P.E. Caines

*Original network data is collected from [Rossi and Ahmed, 2015]

http://networkrepository.com

S. Gao & P.E. Caines

Eigenvalues in decreasing order

S. Gao & P.E. Caines

Spectral Approximation of Graphons

Approximation of a graphon A:
$$\mathbf{A}_m(x,y) = \sum_{\ell=1}^m \lambda_\ell \mathbf{f}_\ell(x) \mathbf{f}_\ell(y).$$

Approximation error:

$$\|\mathbf{A} - \mathbf{A}_m\|_2 = \sqrt{\|\mathbf{A}\|_2^2 - \sum_{\ell=1}^m \lambda_\ell^2}.$$
 (8)

Denote the spectral sum with Fourier approximated eigenfunctions as

$$\mathbf{A}_{pm}(\vartheta,\psi) = \sum_{\ell=1}^{m} \lambda_{\ell} p_{\ell}(e^{2\pi i\vartheta}) p_{\ell}(e^{2\pi i\psi})$$
(9)

Proposition ([Gao, 2019])

If there exists c > 0 such that $\|\mathbf{A}\|_2 \leq c$ and $\|\mathbf{A}_{pm}\|_2 \leq c$, then

$$\|\mathbf{A}^{n} - (\mathbf{A}_{pm})^{n}\|_{2} \le nc^{n}\|\mathbf{A} - \mathbf{A}_{pm}\|_{2},$$
 (10)

$$\|e^{\mathbf{A}} - e^{\mathbf{A}_{pm}}\|_{\mathsf{op}} \le ce^{c} \|\mathbf{A} - \mathbf{A}_{pm}\|_{2}.$$
(11)

S. Gao & P.E. Caines

- 2 Graphon Control Systems
- 3 Controllability Gramian Operator
- 4 Spectral Approximations of Networks and Graphons

5 Controlling Epidemic Networks via Spectral Decomposition

Controlling Epidemic Networks via Spectral Decomposition

Meta-population model [Nowzari et al., 2016]:

$$\dot{p}_t^i = -\alpha p_t^i + \eta \sum_{j=1}^N a_{ij} p_t^j (1 - p), \quad t \in [0, T],$$
 (12)

 $p_t^i \in [0,1]$: infected fraction in the i^{th} subpopulation α : recovering rate η : infection strength N: number of subpopulations (i.e. communities, cities)

Notice $(1 - p_t^i) \leq 1$ is close to 1 when p_t^i is close to zero. Under normal conditions $p_t^i \in [0, 1]$ should be small.

S. Gao & P.E. Caines

Controlling Epidemic Networks via Spectral Decomposition

Linearized model:

$$\dot{p}_t^i = -\alpha_0 p_t^i + \eta \frac{1}{N} \sum_{j=1}^N \bar{a}_{ij} p_t^j + \beta_0 u_t^i, \quad t \in [0, T]$$

$$u_t^i: \text{ control action at node i (via vaccinations or medications)}$$
(13)

Quadratic cost:

$$\begin{split} J(u) &= \frac{1}{N} \sum_{i=1}^{N} \int_{0}^{T} \Big[\big(q_{t}(p_{t}^{i})^{2} + (u_{t}^{i})^{2} + (u_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} \bar{a}_{ij} u_{t}^{j})^{2} \big) dt + q_{T} (p_{T}^{i})^{2} \Big] \\ \text{where } q_{t}, q_{T} \geq 0. \end{split}$$

S. Gao & P.E. Caines

Controlling Epidemic Networks via Spectral Decomposition Finite Control Problem

Eigendecomposition: $\bar{A} = \sum_{\ell=1}^{L} \mu_{\ell} v_{\ell} v_{\ell}^{\mathsf{T}}$ (Symmetric matrix) v_{ℓ} : normalized eigenvector; $L \leq N$: # of non-zero eigenvalues.

Optimal solution at community *i*:

$$\begin{split} u_{t}^{i} &= \frac{\beta_{0}}{2} \breve{\Pi}_{t} p_{t}^{i} + \sum_{\ell=1}^{L} \Big(\frac{\beta_{0} \Pi_{t}^{\ell}}{(\frac{\mu_{\ell}}{N})^{2} - 2\frac{\mu_{\ell}}{N} + 2} - \frac{\beta_{0} \breve{\Pi}_{t}}{2} \Big) p_{t}^{\mathsf{T}} v_{\ell} v_{\ell}(i), \\ &- \dot{\Pi}_{t}^{i} = -2\alpha_{0} \breve{\Pi}_{t} - \frac{\beta_{0}^{2} (\breve{\Pi}_{t})^{2}}{2} + q_{t}, \\ &- \dot{\Pi}_{t}^{\ell} = -2(\alpha_{0} - \frac{\eta\mu_{\ell}}{N}) \Pi_{t}^{\ell} - \frac{\beta_{0}^{2} (\Pi_{t}^{\ell})^{2}}{(\frac{\mu_{\ell}}{N})^{2} - 2\frac{\mu_{\ell}}{N} + 2} + q_{t}, \end{split}$$
(14)
$$&- \breve{\Pi}_{t}^{\ell} = q_{T}, \text{ and } p_{t} = [p_{t}^{1}, \dots, p_{t}^{N}]^{\mathsf{T}}. \quad \text{See e.g. [Gao and Mahajan, p]}$$

S. Gao & P.E. Caines

witl

Controlling Epidemic Networks via Spectral Decomposition Limit Graphon Control Problem ($\mathbf{p}_t, \mathbf{u}_t \in L^2[0, 1], \bar{\mathbf{A}} = \sum_{\ell=1}^{\infty} \lambda_\ell \mathbf{f}_\ell^{\mathsf{T}} \mathbf{f}_\ell^{\mathsf{T}}$)

If the graphon limit $\bar{\mathbf{A}}$ for $\{\bar{\mathbf{A}}_n\}$ exists, then for $\gamma \in [\gamma, \overline{\gamma}] \subset [0, 1]$,

$$\dot{\mathbf{p}}_{t}(\gamma) = -\alpha_{0}\mathbf{p}_{t}(\gamma) + \eta \int_{0}^{1} \bar{\mathbf{A}}(\gamma, \rho)\mathbf{p}_{t}(\rho)d\rho + \beta_{0}\mathbf{u}_{t}(\gamma),$$

$$J(\mathbf{u}) = \int_{0}^{T} (q_{t}\|\mathbf{p}_{t}\|_{2}^{2} + \|\mathbf{u}_{t}\|_{2}^{2} + \|(\mathbb{I} - \bar{\mathbf{A}})\mathbf{u}_{t}\|_{2}^{2})dt + q_{T}\|\mathbf{p}_{T}\|_{2}^{2}$$
(15)

Optimal solution at location γ :

$$\mathbf{u}_{t}(\gamma) = \frac{\beta_{0}}{2} \breve{\Pi}_{t} \mathbf{p}_{t}(\gamma) + \sum_{\ell=1}^{\infty} \left(\frac{\beta_{0} \Pi_{t}^{\ell}}{2 - 2\lambda_{\ell} + \lambda_{\ell}^{2}} - \frac{\beta_{0}}{2} \breve{\Pi}_{t} \right) \langle \mathbf{p}_{t}, \mathbf{f}_{\ell} \rangle \mathbf{f}_{\ell}(\gamma)$$
(16)

$$-\dot{\Pi}_{t} = -2\alpha_{0}\breve{\Pi}_{t} - \frac{\beta_{0}^{2}(\breve{\Pi}_{t})^{2}}{2} + q_{t}, \qquad \breve{\Pi}_{T} = q_{T}$$

$$-\dot{\Pi}_{t}^{\ell} = -2(\alpha_{0} - \eta\lambda_{\ell})\Pi_{t}^{\ell} - \frac{\beta_{0}^{2}(\Pi_{t}^{\ell})^{2}}{(\lambda_{\ell})^{2} - 2\lambda_{\ell} + 2} + q_{t}, \qquad \Pi_{T}^{\ell} = q_{T}$$
(17)

See e.g. [Gao and Caines, 2019b].

S. Gao & P.E. Caines

Controlling Epidemic Networks via Spectral Decomposition

Parameters: $\begin{aligned} \alpha_0 &= -0.5, \beta_0 = 1, \eta = 1.5, \\ q_t &= 2, q_T = 4, T = 1 \text{ time unit.} \end{aligned}$

The simulation of the controlled disease process with couplings represented by the contact network corresponding to USAir97 [Pajek].

S. Gao & P.E. Caines

Controlling Epidemic Networks via Spectral Decomposition

Parameters: $\begin{aligned} \alpha_0 &= -0.5, \beta_0 = 1, \eta = 1.5, \\ q_t &= 2, q_T = 4, T = 1 \text{ time unit.} \end{aligned}$

Approximate control based on the spectral approximation with the most significant eigendirection for the contact network USAir97 [Pajek].

S. Gao & P.E. Caines

Conclusion

Summary

- Spectral representations of two types of graphons
- Explicit representation of controllability Gramian based on spectral decompositions
- Low-dimensional spectral approximations of networks/graphons
- Initial Exploratory investigation of the utility of the spectral analysis in graphon systems to control epidemic process.

Future work

- Positivity constrains on states and control
- Selection of threshold for spectral approximation
 - Graphon as non-parametric models for control design
- Relationship between structures and spectral properties

· · · ·

Thank you!

References

- Aoki, M. Control of large-scale dynamic systems by aggregation. IEEE Transactions on Automatic Control, 13(3):246-253, 1968
- Avella-Medina, M., Parise, F., Schaub, M., and Segarra, S. Centrality measures for graphons: Accounting for uncertainty in networks. IEEE Transactions on Network Science and Engineering, 2018.
- Bensoussan, A., Da Prato, G., Delfour, M. C., and Mitter, S. Representation and Control of Infinite Dimensional Systems. Springer Science & Business Media, 2 edition, 2007.
- Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T., and Vesztergombi, K. Convergent sequences of dense graphs i: Subgraph frequencies, metric properties and testing. Advances in Mathematics, 219(6):1801–1851, 2008.
- Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T., and Vesztergombi, K. Convergent sequences of dense graphs ii. multiway cuts and statistical physics. Annals of Mathematics, 176(1):151–219, 2012.
- Caines, P. E. and Huang, M. Graphon mean field games and the GMFG equations. In Proceedings of the 57th IEEE Conference on Decision and Control (CDC), pages 4129–4134, December 2018.
- Caines, P. E. and Huang, M. Graphon mean field games and the gmfg equations: ε-Nash equilibria. Accepted by the 58th IEEE Conference on Decision and Control (CDC), December 2019.
- Callier, F. M. and Winkin, J. LQ-optimal control of infinite-dimensional systems by spectral factorization. Automatica, 28(4):757–770, 1992.
- Carmona, R., Cooney, D., Graves, C., and Lauriere, M. Stochastic graphon games: I. the static case, 2019.
- Chiba, H. and Medvedev, G. S. The mean field analysis of the Kuramoto model on graphs I. the mean field equation and transition point formulas. Discrete and Continuous Dynamical Systems-Series A, 39(1):131–155, 2019.
- Chung, F. and Radcliffe, M. On the spectra of general random graphs. the electronic journal of combinatorics, 18(1):215, 2011.
- Gao, S. Graphon Control Theory for Linear Systems on Complex Networks and Related Topics. PhD thesis, McGill University, 2019.
- Gao, S. and Caines, P. E. The control of arbitrary size networks of linear systems via graphon limits: An initial investigation. In Proceedings of the 56th IEEE Conference on Decision and Control (CDC), pages 1052–1057, Melbourne, Australia, December 2017.
- Gao, S. and Caines, P. E. Graphon linear quadratic regulation of large-scale networks of linear systems. In Proceedings of the 57th IEEE Conference on Decision and Control (CDC), pages 5892–5897, Miami Beach, FL, USA, December 2018.
- Gao, S. and Caines, P. E. Spectral representations of graphons in very large network systems control. Accepted by the 58th IEEE Conference on Decision and Control (CDC), December 2019a.
- Gao, S. and Caines, P. E. Optimal and approximate solutions to linear quadratic regulation of a class of graphon dynamical systems. Accepted by the 58th IEEE Conference on Decision and Control (CDC), December 2019b.
- Gao, S. and Caines, P. E. Graphon control of large-scale networks of linear systems. IEEE Transactions on Automatic Control, November 2019c. ISSN 2334-3303. 10.1109/TAC.2019.2955976. early acess.
- Gao, S. and Mahajan, A. Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions. Accepted by the 58th IEEE Conference on Decision and Control (CDC), December 2019.
- Gray, R. M. et al. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, 2(3): 155–239, 2006.
- J Mercer, B. Functions of positive and negative type, and their connection the theory of integral equations. Phil. Trans. R. Soc. Lond. A, 209(441-458):415–446, 1909.
- S. Gao & P.E. Caines

References

- Janson, S. Graphons, cut norm and distance, couplings and rearrangements. arXiv preprint arXiv: 1009.2376, 2010.
- Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L. The large-scale organization of metabolic networks. Nature, 407 (6804):651, 2000.
- Kuehn, C. and Throm, S. Power network dynamics on graphons. arXiv preprint arXiv:1807.03573, 2018.
- Lovász, L. Large Networks and Graph Limits, volume 60. American Mathematical Soc., 2012.
- Medvedev, G. S. The nonlinear heat equation on dense graphs and graph limits. SIAM Journal on Mathematical Analysis, 46(4): 2743–2766, 2014a.
- Medvedev, G. S. The nonlinear heat equation on w-random graphs. Archive for Rational Mechanics and Analysis, 212(3):781-803, 2014b.
- Morency, M. W. and Leus, G. Signal processing on kernel-based random graphs. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), pages 365–369, 2017.
- Nowzari, C., Preciado, V. M., and Pappas, G. J. Analysis and control of epidemics: A survey of spreading processes on complex networks. IEEE Control Systems Magazine, 36(1):26–46, 2016.
- Parise, F. and Ozdaglar, A. Graphon games. arXiv preprint arXiv:1802.00080, 2018.
- Petit, J., Lambiotte, R., and Carletti, T. Random walks on dense graphs and graphons. arXiv preprint arXiv:1909.11776, 2019.
- Rossi, R. A. and Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015. URL http://networkrepository.com.
- Rudin, W. Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.
- Ruiz, L., Chamon, L. F., and Ribeiro, A. The graphon fourier transform. arXiv preprint arXiv:1910.10195, 2019.
- SocioPatterns. Infectious contact networks, 2009. http://www.sociopatterns.org/datasets/. Accessed 09/12/12.
- Swigart, J. and Lall, S. Optimal controller synthesis for decentralized systems over graphs via spectral factorization. IEEE Transactions on Automatic Control, 59(9):2311–2323, 2014.
- Szegedy, B. Limits of kernel operators and the spectral regularity lemma. European Journal of Combinatorics, 32(7):1156-1167, 2011.
- Triggiani, R. On the lack of exact controllability for mild solutions in banach spaces. Journal of Mathematical Analysis and Applications, 50(2):438–446, 1975.