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Motivation

Networks are ubiquitous, growing in size and complexity.

	 	 	

	 	 	

	 	

	

	
	

Online Social Networks, Brain Networks, Grid Networks, Transportation Networks, IoT ...
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Background

Graphon theory: model arbitrary-size/large graphs and their limits 1

Recent applications to dynamical systems:

Heat equations, coupled oscillators, random walks 2

Dynamic games 3

Control of large networks of dynamical systems 4

Other applications: static games, network centrality, signal processing... 5

Among these, spectral properties of graphons are very significant.

Spectral analysis of large-scale dynamical systems plays a key role in
low-complexity control synthesis 6

1
[Borgs et al., 2008, 2012; Lovász, 2012].

2
[Medvedev, 2014a,b], [Chiba and Medvedev, 2019; Kuehn and Throm, 2018], [Petit et al., 2019]

3
[Caines and Huang, 2018, 2019]

4
[Gao and Caines, 2017, 2018, 2019a,b,c; Gao, 2019]

5
[Parise and Ozdaglar, 2018; Carmona et al., 2019], [Avella-Medina et al., 2018], [Ruiz et al., 2019; Morency and Leus, 2017]

6
[Aoki, 1968; Swigart and Lall, 2014; Callier and Winkin, 1992]
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Introduction to Graphons
Graphs, Adjacency Matrices and Pixel Pictures

How many 4-cycles must a graph with edge density at least 1/2 have?

So, suppose G has n vertices and at least n(n� 1)/4 edges, half as many as are possible. Can you avoid
having many 4-cycles? It is an interesting and worthwhile exercise to try to find as many as you can;
start with trying to find at least one. It is not hard to see that there are at most on the order of n4

4-cycles (in fact, there are 3
�
n
4

�
possible). The following result of Erdős tells us that there must be very

many 4-cycles, in fact, on the order of n4 of them.

Theorem (Erdős) For any graph G,

t( , G) � t( , G)4.

In particular, if t( , G) � 1/2, then t( , G) � 1/16.

In light of the theorem, it would be best to reformulate our problem as follows.

Minimize t( , G) over all finite graphs G satisfying t( , G) � 1/2.

It is beneficial at this point to draw an analogy with a problem familiar from elementary calculus.

Minimize x3 � 6x over all real numbers x satisfying x � 0.

The minimum here is attained at x =
p

2, which, though our polynomial has rational coe�cients, is
irrational. The best we can do in the rational numbers is find a sequence limiting to

p
2 at which the

polynomial achieves values approaching the minimum. Completing the rational numbers to the real
numbers allows us to objectify the limit, which algebra then allows us to realize and work with as

p
2.

It turns out that we are in an analogous situation with our graph problem. Erdős’ theorem tells us that
the minimum of t( , G) is greater than or equal to 1/16, and with a little extra work, it can be shown
that that minimum is not achieved by any finite graph. There is, however, a sequence of finite graphs
(Rn)n with edge density at least 1/2 and 4-cycle density approaching 1/16. Indeed, for each n � 1, let
Rn be an instance of a random graph on n vertices where the existence of each possible edge is decided
independently with probability 1/2. By throwing those Rn’s away for which t( , Rn) < 1/2, the 4-cycle
density in the remaining graphs almost surely limits to 1/16.

The situation is now primed for us to seek to, in pure analogy, complete the space of graphs, realize the
limit of (Rn)n as workable object, and understand the way in which that object achieves the minimum
of 1/16 in our problem above.

Graphons

Let’s speculate as to the possible limits of the graph sequence (Rn)n, where Rn is an instance of a
random graph with edge probability 1/2. One real possibility is the Rado graph, the random graph with
vertex set N and edge probability 1/2. (I write “the” random graph since any two instances of such a
graph are almost surely isomorphic.) This and many other possible limits are explored in [1] but are not
examples of graphons.

Exploring an idea that at first sight is a bit more naive, consider the following three representations of
a graph.

Graph Adjacency Matrix Pixel Picture

�!

0
BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CCA �!

2Graph, Adjacency Matrix, Pixel Picture [Lovász, 2012]

The whole pixel picture is presented in a unit square [0, 1]× [0, 1],

so the square elements have sides of length
1

N
, where N is the

number of nodes.
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Introduction to Graphons
Graph Sequence Converging to GraphonFinally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,

construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Graph Sequence Converging to its Limit [Lovász, 2012]

Graphons: bounded symmetric Lebesgue measurable functions

W : [0, 1]2 → [0, 1]

interpreted as weighted graphs on the vertex set [0, 1].

G̃sp
0 := {W : [0, 1]2 → [0, 1]}

Notations of Spaces G̃sp
1 := {W : [0, 1]2 → [−1, 1]}

G̃sp
R := {W : [0, 1]2 → R}
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How many 4-cycles must a graph with edge density at least 1/2 have?

So, suppose G has n vertices and at least n(n� 1)/4 edges, half as many as are possible. Can you avoid
having many 4-cycles? It is an interesting and worthwhile exercise to try to find as many as you can;
start with trying to find at least one. It is not hard to see that there are at most on the order of n4

4-cycles (in fact, there are 3
�
n
4

�
possible). The following result of Erdős tells us that there must be very

many 4-cycles, in fact, on the order of n4 of them.

Theorem (Erdős) For any graph G,

t( , G) � t( , G)4.

In particular, if t( , G) � 1/2, then t( , G) � 1/16.

In light of the theorem, it would be best to reformulate our problem as follows.

Minimize t( , G) over all finite graphs G satisfying t( , G) � 1/2.

It is beneficial at this point to draw an analogy with a problem familiar from elementary calculus.

Minimize x3 � 6x over all real numbers x satisfying x � 0.

The minimum here is attained at x =
p

2, which, though our polynomial has rational coe�cients, is
irrational. The best we can do in the rational numbers is find a sequence limiting to

p
2 at which the

polynomial achieves values approaching the minimum. Completing the rational numbers to the real
numbers allows us to objectify the limit, which algebra then allows us to realize and work with as

p
2.

It turns out that we are in an analogous situation with our graph problem. Erdős’ theorem tells us that
the minimum of t( , G) is greater than or equal to 1/16, and with a little extra work, it can be shown
that that minimum is not achieved by any finite graph. There is, however, a sequence of finite graphs
(Rn)n with edge density at least 1/2 and 4-cycle density approaching 1/16. Indeed, for each n � 1, let
Rn be an instance of a random graph on n vertices where the existence of each possible edge is decided
independently with probability 1/2. By throwing those Rn’s away for which t( , Rn) < 1/2, the 4-cycle
density in the remaining graphs almost surely limits to 1/16.

The situation is now primed for us to seek to, in pure analogy, complete the space of graphs, realize the
limit of (Rn)n as workable object, and understand the way in which that object achieves the minimum
of 1/16 in our problem above.

Graphons

Let’s speculate as to the possible limits of the graph sequence (Rn)n, where Rn is an instance of a
random graph with edge probability 1/2. One real possibility is the Rado graph, the random graph with
vertex set N and edge probability 1/2. (I write “the” random graph since any two instances of such a
graph are almost surely isomorphic.) This and many other possible limits are explored in [1] but are not
examples of graphons.

Exploring an idea that at first sight is a bit more naive, consider the following three representations of
a graph.
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Introduction to Graphons
Compactness of Graphon Space

Cut norm: ‖W‖� := sup
M,T⊂[0,1]

|
∫

M×T
W(x, y)dxdy|

Cut metric: δ�(W,V) := inf
φ
‖Wφ −V‖�, ∗1

Theorem ([Lovász, 2012])

The graphon spaces (Gsp
0 , δ�) and any closed bounded subset of

(Gsp
R , δ�) are compact.

By compactness, infinite sequences of graphons will necessarily
possess one or more sub-sequential limits under the cut metric.

1
Wφ(x, y) = W(φ(x), φ(y))
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Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.
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Introduction to Graphons
Graphons as Operators [Lovász, 2012]

Graphon W ∈ G̃sp
1 as an operator: W : L2[0, 1]→ L2[0, 1]

Operation: [Wv](x) =

∫ 1

0

W(x, α)v(α)dα v ∈ L2[0, 1]

Operator Product: [UW](x, y) =

∫ 1

0

U(x, z)W(z, y)dz, U,W ∈ G̃sp
1

Norm relations [Gao and Caines, 2019c], [Janson, 2010; Parise and Ozdaglar, 2018]:

‖W‖op ≤ ‖W‖2, ‖W‖� ≤ ‖W‖op ≤
√

8‖W‖�.

Graphon operators are Hilbert-Schmidt operators
[Rudin, 1991; J Mercer, 1909; Szegedy, 2011]
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Introduction to Graphons
Two Types of Graphons: Step Function Graphons

Proposition (Spectral Rep. of Step Function Graphons)

Let A = V ΛdV
ᵀ
where Λd = diag(λ1, ..., λd) and V = (v1, ...., vd) with

v` representing the normalized eigenvector of λ`. Consider the uniform
partition {P1, ..., PN} of [0, 1]. Then the step function graphon A

A(x, y) :=

N∑

i=1

N∑

j=1

1
Pi

(x)1
Pj

(y)aij , (x, y) ∈ [0, 1]2 (1)

has a spectral representation given by

A(x, y) =

d∑

`=1

λ`[Sv` · S
ᵀ
v`

](x, y), (x, y) ∈ [0, 1]2. (2)

The corresponding eigenvalues for A are given by
{λ`
N

}d
`=1

since

〈Sv` ,Svk〉 = 0, if ` 6= k; 〈Sv` ,Svk〉 = 1/N, if ` = k.
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Introduction to Graphons
Two Types of Graphons: Sinusoidal Graphons

Sinusoidal graphon

A(ϕ, ϑ) := a0 +

∞∑

k=1

bk cos(2πk(ϕ− ϑ)), (ϕ, ϑ) ∈ [0, 1]2.

Features

Eigenvalues: a0, {
bk
2

: k ∈ Z+}, {
bk
2

: k ∈ Z+}.

Eigenfunctions form a complete orthonormal basis for L2[0, 1]:

1, {
√

2 cos 2πk(·) : k ∈ Z+}, {
√

2 sin 2πk(·) : k ∈ Z+}.

Representations of functions An, eA are explicit

Symmetric and diagonally constant, and suitable to approximate
infinite Toeplitz matrices [Gray et al., 2006]
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Graphon Control Systems
Linear Network Systems

The dynamics of the ith agent in the network

ẋit = α0x
i
t +

1

N

N∑

j=1

aijx
j
t + β0u

i
t +

1

N

N∑

j=1

biju
j
t ,

t ∈ [0, T ], α0, β0 ∈ R, xit, u
i
t ∈ R,

(3)

0

1

=
Neighborhood 

Xi

Xl

Xk

Xn

Xm

Xj

ail

aim

aij

ain

aik

ajn

alm

amj

alk

akn

+

0

1
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Graphon Control Systems
Linear Network Systems Described by Graphons [Gao and Caines, 2019c]

Dynamics

ẋ
[N]
t = (α0I + A[N])x

[N]
t + (β0I + B[N])u

[N]
t , t ∈ [0, T ],

α0, β0 ∈ R, x
[N]
t ,u

[N]
t ∈ L2

pwc[0, 1], A[N],B[N] ∈ G̃sp
1

(4)

(step function) A[N](ϑ, ϕ) =

N∑

i=1

N∑

j=1

1
Pi

(ϑ)1
Pj

(ϕ)aij , (ϑ, ϕ) ∈ [0, 1]2

(pwc) x
[N]
t (ϑ) =

N∑

i=1

1
Pi

(ϑ)xit, ∀ϑ ∈ [0, 1]

1
Pi

(·): the indicator function. L2
pwc[0, 1]: the set of all piece-wise

constant functions in L2[0, 1]

S. Gao & P.E. Caines Spectral Representations of Graphons in Very Large Network Systems Control 11/29



Graphon Control Systems
Linear Network Systems Described by Graphons

1

0

=

1

+

0

1

0

1

=

1 1

Graphon Graphon

Vectors
and

Matrices

                functions 
and 

Step Functions

           functions 
and 

Graphons
+

0
0 0
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Graphon Control Systems

Graphon linear control system (A;B):

ẋt = Axt + But, t ∈ [0, T ], (5)

A = (α0I + A), B = (β0I + B) with A,B ∈ G̃sp
1 and α0, β0 ∈ R

xt ∈ L2[0, 1]: system state. ut ∈ L2[0, 1]: control input.

Proposition ([Bensoussan et al., 2007])

The system (A;B) in (5) has a unique mild solution
x ∈ C([0, T ];L2[0, 1]) for any x0 ∈ L2[0, 1] and any
u ∈ L2([0, T ];L2[0, 1]).
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Controllability Gramian Operator
A = (α0I+A), B = (β0I+B)

Definition

A graphon dynamical system (A;B) in (5) is exactly controllable in
L2[0, 1] over the time horizon [0, T ] if the system state can be driven to
the origin at time T from any initial state x0 ∈ L2[0, 1].

1 No exact controllability for (A;B) with a compact operator B over a
finite horizon [Triggiani, 1975].

2 If B lies in the graphon unitary operator algebra [Gao and Caines,

2019c], then (A;B) in (5) over [0, T ] is exact controllable iff β0 6= 0.

Controllability Gramian operator: WT :=

∫ T

0

eAτBBᵀeA
ᵀ
τdτ.

Minimum control energy: J(x0) = 〈eATx0,W−1T eATx0〉
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Controllability Gramian Operator
A = (α0I+A), B = (β0I+B)

Proposition (Explicit Rep. of Controllability Gramian)

Let A ∈ G̃sp
1 and B =

d∑

k=1

βkA
k. Denote η` =

d∑

k=0

βkλ
k
` . Then the

controllability Gramian operator for the system (A,B) in (5) is given by

WT =

∫ T

0

eα0tdtβ2
0I +

∑

`∈Iλ

(
(η`)

2

∫ T

0

e2(α0+λ`)tdt−
∫ T

0

eα0tdtβ2
0

)
f`f
ᵀ
` ;

(6)
furthermore, if β0 6= 0, then the inverse of the controllability Gramian
operator for (A;B) in (5) is explicitly given by

W−1T =
1

∫ T
0
eα0tdtβ2

0

I− 1
∫ T
0
eα0tdtβ2

0

∑

`∈Iλ

(η`)
2
∫ T
0
e2λ`tdt− Tβ2

0

(η`)2
∫ T
0
e2λ`tdt

f`f
ᵀ
` .

(7)

S. Gao & P.E. Caines Spectral Representations of Graphons in Very Large Network Systems Control 15/29



Program

1 Introduction to Graphons

2 Graphon Control Systems

3 Controllability Gramian Operator

4 Spectral Approximations of Networks and Graphons

5 Controlling Epidemic Networks via Spectral Decomposition



Spectral Approximations of Networks

Eigenvalues a graphon An form two sequences converging to 0 [Borgs et al.,

2012]:

µ1(An) ≥ µ2(An) ≥ ... ≥ 0 and µ′1(An) ≤ µ′2(An) ≤ ... ≤ 0

Theorem ([Borgs et al., 2012])

Let {Ai}∞i=1 be a sequence of uniformly bounded graphons, converging in
the cut metric to a graphon A. Then for every i ≥ 1,

µi(An)→ µi(A) and µ′i(An)→ µ′i(A) as n→∞.

Implication: If a sequence of graphons converges in the cut metric to a
graphon limit with a few non-zero eigenvalues, then elements of the
sequence admit low-dimensional spectral approximations.
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Spectral Approximations of Networks

Random graphs generated by the Erdös-Rényi model
Parameters: p = 0.5, n = 100
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The eigenvalue distribution of a graph with 100 nodes in a convergent sequence of

random graphs to the graphon limit W (x, y) = 0.5.

Reasonable low-rank approximations exist for general random
graphs generated by dense low-rank models [Chung and Radcliffe, 2011],
e.g., stochastic block models (SBM).
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Spectral Approximations of Networks

ND1: C-elegans metabolic network where edges represent metabolic reactions between

substrates [Jeong et al., 2000].
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Spectral Approximations of Networks

NetApprox: heatmap
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ND2: Infectious contact network [SocioPatterns, 2009].
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Spectral Approximations of Networks

*Original network data is collected from [Rossi and Ahmed, 2015]

http://networkrepository.com

S. Gao & P.E. Caines Spectral Representations of Graphons in Very Large Network Systems Control 20/29



Spectral Approximations of Networks

Eigenvalues in decreasing order
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Spectral Approximation of Graphons

Approximation of a graphon A: Am(x, y) =

m∑

`=1

λ`f`(x)f`(y).

Approximation error:

‖A−Am‖2 =

√√√√‖A‖22 −
m∑

`=1

λ2` . (8)

Denote the spectral sum with Fourier approximated eigenfunctions as

Apm(ϑ, ψ) =

m∑

`=1

λ`p`(e
2πiϑ)p`(e

2πiψ) (9)

Proposition ([Gao, 2019])

If there exists c > 0 such that ‖A‖2 ≤ c and ‖Apm‖2 ≤ c, then

‖An − (Apm)n‖2 ≤ ncn‖A−Apm‖2, (10)

‖eA − eApm‖op ≤ cec‖A−Apm‖2. (11)
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Controlling Epidemic Networks via Spectral Decomposition

Meta-population model [Nowzari et al., 2016]:

ṗit = −αpit + η

N∑

j=1

aijp
j
t (1− pit), t ∈ [0, T ], (12)

pit ∈ [0, 1] : infected fraction in the ith subpopulation
α: recovering rate
η: infection strength
N : number of subpopulations (i.e. communities, cities)

Notice (1− pit) ≤ 1 is close to 1 when pit is close to zero. Under
normal conditions pit ∈ [0, 1] should be small.
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Controlling Epidemic Networks via Spectral Decomposition

Linearized model:

ṗit = −α0p
i
t + η

1

N

N∑

j=1

āijp
j
t + β0u

i
t, t ∈ [0, T ] (13)

uit : control action at node i (via vaccinations or medications)

Quadratic cost:

J(u) =
1

N

N∑

i=1

∫ T

0

[(
qt(p

i
t)

2 + (uit)
2 + (uit −

1

N

N∑

j=1

āiju
j
t )

2
)
dt+ qT (piT )2

]

where qt, qT ≥ 0.
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Controlling Epidemic Networks via Spectral Decomposition
Finite Control Problem

Eigendecomposition: Ā =

L∑

`=1

µ`v`v
ᵀ
` (Symmetric matrix)

v` : normalized eigenvector; L ≤ N : # of non-zero eigenvalues.

Optimal solution at community i:

uit =
β0
2

Π̆tp
i
t +

L∑

`=1

( β0Π`
t

(µ`N )2 − 2µ`N + 2
− β0Π̆t

2

)
p
ᵀ
t v`v`(i),

− ˙̆
Πt = −2α0Π̆t −

β2
0(Π̆t)

2

2
+ qt,

−Π̇`
t = −2(α0 −

ηµ`
N

)Π`
t −

β2
0(Π`

t)
2

(µ`N )2 − 2µ`N + 2
+ qt,

(14)

with Π̆T = Π`
T = qT , and pt = [p1t , . . . , p

N
t ]
ᵀ

. See e.g. [Gao and Mahajan,

2019]
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Controlling Epidemic Networks via Spectral Decomposition

Limit Graphon Control Problem (pt,ut ∈ L2[0, 1], Ā =
∞∑
`=1

λ`f`f
ᵀ
` )

If the graphon limit Ā for {Ān} exists, then for γ ∈ [γ, γ] ⊂ [0, 1],

ṗt(γ) = −α0pt(γ) + η

∫ 1

0

Ā(γ, ρ)pt(ρ)dρ+ β0ut(γ),

J(u) =

∫ T

0

(qt‖pt‖22 + ‖ut‖22 + ‖(I− Ā)ut‖22)dt+ qT ‖pT ‖22
(15)

Optimal solution at location γ:

ut(γ) =
β0
2

Π̆tpt(γ) +

∞∑

`=1

( β0Π`
t

2− 2λ` + λ2`
− β0

2
Π̆t

)
〈pt, f`〉f`(γ) (16)

− ˙̆
Πt = −2α0Π̆t −

β2
0(Π̆t)

2

2
+ qt, Π̆T = qT

−Π̇`
t = −2(α0 − ηλ`)Π`

t −
β2
0(Π`

t)
2

(λ`)2 − 2λ` + 2
+ qt, Π`

T = qT

(17)

See e.g. [Gao and Caines, 2019b].
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Controlling Epidemic Networks via Spectral Decomposition

Parameters:
α0 = −0.5, β0 = 1, η = 1.5,
qt = 2, qT = 4, T = 1 time unit.

The simulation of the controlled disease process with couplings represented by the

contact network corresponding to USAir97 [Pajek].
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Controlling Epidemic Networks via Spectral Decomposition
Approximated Control

Parameters:
α0 = −0.5, β0 = 1, η = 1.5,
qt = 2, qT = 4, T = 1 time unit.

Approximate control based on the spectral approximation with the most significant

eigendirection for the contact network USAir97 [Pajek].
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Conclusion

Summary

Spectral representations of two types of graphons

Explicit representation of controllability Gramian based on spectral
decompositions

Low-dimensional spectral approximations of networks/graphons

Initial Exploratory investigation of the utility of the spectral analysis
in graphon systems to control epidemic process.

Future work

Positivity constrains on states and control

Selection of threshold for spectral approximation

Graphon as non-parametric models for control design

Relationship between structures and spectral properties

...
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