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Motivation

Networks are ubiquitous, growing in size and complexity.

Online Social Networks, Brain Networks, Grid Networks, Transportation Networks, loT ...
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Background

Graphon theory: model arbitrary-size/large graphs and their limits

Recent applications to dynamical systems:
Heat equations, coupled oscillators, random walks
Dynamic games
Control of large networks of dynamical systems

Other applications: static games, network centrality, signal processing...
Among these,

Spectral analysis of large-scale dynamical systems plays a key role in
low-complexity control synthesis

[Borgs et al., 2008, 2012; Lovész, 2012].
[Medvedev, 2014a,b], [Chiba and Medvedev, 2019; Kuehn and Throm, 2018], [Petit et al., 2019]

[Caines and Huang, 2018, 2019]
[Gao and Caines, 2017, 2018, 2019a,b,c; Gao, 2019]

[Parise and Ozdaglar, 2018; Carmona et al., 2019], [Avella-Medina et al., 2018], [Ruiz et al., 2019; Morency and Leus, 2017]

O A W N

[Aoki, 1968; Swigart and Lall, 2014; Callier and Winkin, 1992]
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Introduction to Graphons
Graphs, Adjacency Matrices and Pixel Pictures

Graph Adjacency Matrix Pixel Picture

Graph, Adjacency Matrix, Pixel Picture [Lovasz, 2012]

The whole pixel picture is presented in a unit square [0, 1] x [0, 1],

so the square elements have sides of length e where N is the

number of nodes.
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Introduction to Graphons
Graph Sequence Converging to Graphon

Graph Sequence Converging to its Limit [Lovasz, 2012]

Graphons: bounded symmetric Lebesgue measurable functions
W : [0,1]% — [0, 1]
interpreted as weighted graphs on the vertex set [0, 1].
GP = {W:[0,1)%2 - [0,1]}
Notations of Spaces ~ G3P := {W : [0,1]*> — [-1,1]}
G = {W:[0,1> = R}
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Introduction to Graphons

Compactness of Graphon Space

Cut norm: IWlg:= sup | W (z,y)dzdy|
Mm,rclo,1] JMxT

Cut metric: (W, V) = igf IW? — V||qg, «!

Theorem ([Lovész, 2012])

The graphon spaces (G¢®,001) and any closed bounded subset of
(G, 00) are compact.

By compactness, infinite sequences of graphons will necessarily
possess one or more sub-sequential limits under the cut metric.

1
W?(z,y) = W((z), $(y))
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Introduction to Graphons
Graphons as Operators [Lovész, 2012]

Graphon W € G3P as an operator: W : L2[0,1] — L2[0,1]

1

Operation: [Wv](z) = / W (z,a)v(a)do v € L?[0,1]
0
1 ~
Operator Product: ~ [UW]|(z,y) = / U(x,2)W(z,y)dz, U/W e G
0
NOI’m I’e|atiOnS [Gao and Caines, 2019¢], [Janson, 2010; Parise and Ozdaglar, 2018] .
[Wllop < IWll2,  [[Wlg < [[Wllep < v8[W]o.

Graphon operators are Hilbert-Schmidt operators

[Rudin, 1991; J Mercer, 1909; Szegedy, 2011]
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Introduction to Graphons
Two Types of Graphons: Step Function Graphons

Proposition (Spectral Rep. of Step Function Graphons)

Let A=V A4V where Ay = diag(\1, ..., \q) and V = (vy, ....,vq) with
vp representing the normalized eigenvector of \y. Consider the uniform
partition { Py, ..., Py} of [0,1]. Then the step function graphon A

Zzl az]a (CC,ZJ) € [0, 1]2

1=1 j=1

has a spectral representation given by

d
A(z,y) Z $u, - $0)(z,9), (z,9) € [0,1]%

A
The corresponding eigenvalues for A are given by {NZ}Z:I since
(S0, 80,) = 0, if £ k; (Su,,80,) = 1/N, if £ = k.
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Introduction to Graphons
Two Types of Graphons: Sinusoidal Graphons

Sinusoidal graphon

A(p, V) :=ap + Z b, cos(2mk(p — 1)), (p,9) € [0,1]°.
k=1

Features
: b b
Eigenvalues: ag, {5 ckeZy}, {5 ckeZy}.
Eigenfunctions form a complete orthonormal basis for L?[0, 1]:
1,{V2cos2rk(-) : k € Z, },{V/2sin2rk(-) : k € Z }.

Representations of functions A", e® are explicit

Symmetric and diagonally constant, and suitable to approximate
infinite Toeplitz matrices [Gray et al., 2006]
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Graphon Control Systems

Linear Network Systems

The dynamics of the i'" agent in the network

N N
> 1 : o1 :
Ty = apry + N g aijxg + Bouy + N E :bijui7 (3)
j=1 J=1

t e [O,T]7 aOaBO €R7 lﬂi’“% ER’

Neighborhood
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Graphon Control Systems
Linear Network Systems Described by Graphons [Gao and Caines, 2019c]

Dynamics
%N = (aol + ANYKIN 4 (81 + BNYGN ¢ € [0, 77, "
ao,fo €R, xMulMer2, 0,1, AN BN ¢ GP
N N
(step function) AMN(9,¢) ZZ P)aij, (9,9) € 0,12

N
(pwe) xN(0) = 1, W)z, VO € 0,1]

=1

1, (-): the indicator function. L
constant functions in L?[0, 1]

2 0el0,1]: the set of all piece-wise
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Graphon Control Systems

Linear Network Systems Described by Graphons

ay x(1) by (1)

Vectors
: and
(N Matrices

ayn x:(N) 2 . byy

L2,¢[0,1] functions
and
Step Functions

L2[0, 1] functions
and
Graphons
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Graphon Control Systems

).(t = AXt aF IB%ut, t e [O,T], (5)

A= (ol + A), B = (ol + B) with A,B € G5P and ag, fp € R

x; € L?[0,1]: system state. u; € L?[0,1]: control input.

Proposition ([Bensoussan et al., 2007])

The system (A;B) in (5) has a unique mild solution
x € C([0,T); L*[0,1]) for any x¢ € L*[0,1] and any
u € L*([0,T); L?[0, 1]).
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Controllability Gramian Operator
A= (ol +A), B= (8ol +B)

Definition
A graphon dynamical system (A;B) in (5) is exactly controllable in

L?[0,1] over the time horizon [0, T] if the system state can be driven to
the origin at time T from any initial state xo € L?[0, 1].

2 No exact controllability for (A;B) with a compact operator B over a
finite horizon [Triggiani, 1975].

2| If B lies in the graphon unitary operator algebra [Gao and Caines,
2019¢], then (A;B) in (5) over [0, 7] is exact controllable iff By # 0.
r T
W :z/ ATBBTe Tdr.
0

Minimum control energy: J(xo) = (e*Txq, Wi e xo)
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Controllability Gramian Operator
A= (ol +A), B= (8ol +B)

Proposition (Explicit Rep. of Controllability Gramian)
d

Let A € Gip and B = ZﬂkAk Denote 1y = Z/Bk)\g Then the
k=1 =

controllability Gramian operator for the system (A IB%) in (5) is given by

T T T
Wrp = / e dtBIl+ Y ((W)2 / eHootAt gy / eaotdwg) f,f];
(0] (0] (0]

LETy
(6)
furthermore, if By # 0, then the

for (A;B) in (5) is explicitly given by
1 - 1 (ne)? fy e2Xtdt — T3

ofy .
fOT e@otdt 2 fOT e@otdt(32 el (ne) f e2Aet dt
(7)

Wit =
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Spectral Approximations of Networks

Eigenvalues a graphon A,, form two sequences converging to 0 [Bores et al.,
2012]:

p1(Arn) > pe(Ay) > .. >0 and  pj(A,) < ph(A,) <...<0

Theorem ([Borgs et al., 2012])

Let {A;}32, be a sequence of uniformly bounded graphons, converging in
the cut metric to a graphon A. Then for every i > 1,

wi(Ay) = pi(A) and pi(A,) — pi(A)  asn — .

If a sequence of graphons converges in the cut metric to a
graphon limit with a few non-zero eigenvalues, then elements of the
sequence admit low-dimensional spectral approximations.
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Spectral Approximations of Networks

Random graphs generated by the Erdos-Rényi model
Parameters: p = 0.5, n = 100

E-R(100-05): network E-R(100-0.5): eigenvalue E-R(100-0.5): abs(eigenvalue) distribution E-R(100-0.5): heatmap

L
~eracm,,
e o e o,

-—a—-_--__""
0] ==

0 2 % o o o 2 % o %
Indices of eigenvalues Range of eigenvalues

The eigenvalue distribution of a graph with 100 nodes in a convergent sequence of

random graphs to the graphon limit W (z,y) = 0.5.

Reasonable low-rank approximations exist for general random
graphs generated by dense low-rank models [Chung and Radcliffe, 2011],
e.g., stochastic block models (SBM).
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Spectral Approximations of Networks

Bio-celegans: network

00 200 30
NetApprox:

ND1: C-elegans metabolic network where edges represent metabolic reactions between

substrates [Jeong et al., 2000].
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Spectral Approximations of Networks

lavinfect-hyper: network lavinfect-hyper: eigenvalue lavinfect-hyper: abs(eigenvalue) distribution

Number of eigenvalues

0 10 20

; )
NetApprox: abs(eigenvalue) distribution

g
H
H
o
:
5
g
E

6 &0 10 o 1 ®» 2 4
Indices of eigenvalues Range of eigenvalues

ND2: Infectious contact network [SocioPatterns, 2009].
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Spectral Approximations of Networks

power-bspur0d carerdoso2 eco-foadweb-baywet

brfy-drosophila_medulla_1

*Original network data is collected from [Rossi and Ahmed, 2015]

http://networkrepository.com
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Spectral Approximations of Networks

Eigenvalues in decreasing order
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Spectral Approximation of Graphons

Approximation of a graphon A: A,,(z,vy) Z/\gfg

Approximation error:

1A = Anllz = | IAI3 =DA% (8)
{=1

Denote the spectral sum with Fourier approximated eigenfunctions as

Ay (0,4) = me 2T (27 (9)

Proposition ([Gao, 2019])

If there exists ¢ > 0 such that ||A|2 < ¢ and ||Apn|l2 < ¢, then

IA™ = (Apm)"[l2 < nc|A = Apm|l2, (10)
le® = eArmlop < ce®| A — Apm 2. (11)
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Controlling Epidemic Networks via Spectral Decomposition

Meta-population model [Nowzari et al., 2016]:

N

7=1

pi € [0,1] : infected fraction in the i subpopulation
«: recovering rate

7n: infection strength

N: number of subpopulations (i.e. communities, cities)

Notice (1 — pi) < 1 is close to 1 when pi is close to zero. Under
normal conditions p; € [0, 1] should be small.
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Controlling Epidemic Networks via Spectral Decomposition

Linearized model:

N
v : 1 e :
pi — —Ozopi 4F WN Zlaijpg 4F B()u%, t e [O,T] (13)
J:
ul : control action at node i (via vaccinations or medications)
Quadratic cost:
1 N

T(w) =+ Z/OT [(qt(pi)2 + ()’ + (- agui)?)dt + qT(piT)Z}

where ¢, g7 > 0.
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Controlling Epidemic Networks via Spectral Decomposition
Finite Control Problem

L
Eigendecomposition: A = E UeVev,
. . E:1 .
vp . normalized eigenvector; L < N: # of non-zero eigenvalues.

(Symmetric matrix)

Optimal solution at community 4:

L o
i 60Hf BOHt) T .
U = = vpvp(i),
f ;(gg P_am iz g JPveoeld)
8 o 2 ﬁ %
= agr, SR,
: BZ(HE)Z (14)
_Hf _ —2(0&0 o M)HZ _ o \14s

Nt T By g T

with HT = HT =gqr, and p; = [th

.. 7in]T. See e.g. [Gao and Mahajan,
2019]
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Controlling Epidemic Networks via Spectral Decomposition

(e o)
Limit Graphon Control Problem (pt,u: € L2[0,1], A = Z Nefof])
=1

If the graphon limit A for {A,,} exists, then for v € [v,7] C [0, 1],

pe(v) = —aope(v) + 1 [ Ay, p)pe(p)dp + Boue(v),
0] (15)

T
J(u) = /O (ellpell3 + l[uell3 + (T — A)ul[3)dt + qrl|prl3

Optimal solution at location ~:

IT;
w(y) = @Htpt +Z z—g(j\g+)\2 — ) (pe, f)fe(v)  (16)

B v 2(11,)2 v
% + qt, 7 = qr

B8 (I1)>
()\@)2 —2X\p +2

*Ht = *20[0Ht —
(17)

—TI¢ = —2(ag — nAe)TTE — +q, TOh=gqr

See e.g. [Gao and Caines, 2019b].
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Controlling Epidemic Networks via Spectral Decomposition

Parameters: e et en
ag = —0.5,80 = 1,7 = 1.5,
¢ = 2,qr =4, T =1 time unit.

Indcesof agenaves

Auxiliary State 1stEigenstate 2nd Eigenstate

05

o time

1st Eigencontrol

10 5 100
subsys 0 tme@ subsys

The simulation of the controlled disease process with couplings represented by the

contact network corresponding to USAir97 [Pajek].
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Controlling Epidemic Networks via Spectral Decomposition

Approximated Control

Parameters: ‘
ap = —0.5,50 — 1,1’] — 1.5,
¢ = 2,qr =4, T =1 time unit.

Inicesof agenvalues

G-Spectral State Centralized Optimal State Difference in State

400 -
200 y 200 200 05
0 . 00 . 0o .
subsys time (s) subsys time (s) subsys time (s)
G-Spectral Control Centralized Optimal Control Difference in Control

5 L 200

0 ) 0 0
subsys 0 time (s) subsys 0 time (s) subsys 0 time (s)

Approximate control based on the spectral approximation with the most significant

eigendirection for the contact network USAir97 [Pajek].
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Conclusion

Summary
Spectral representations of two types of graphons

Explicit representation of controllability Gramian based on spectral
decompositions

Low-dimensional spectral approximations of networks/graphons

Initial Exploratory investigation of the utility of the spectral analysis
in graphon systems to control epidemic process.

Future work
Positivity constrains on states and control
Selection of threshold for spectral approximation
Graphon as non-parametric models for control design

Relationship between structures and spectral properties
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Thank you!
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