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(1 -1/3) Finite Games on Networks

We consider games with
Time is denoted ¢ € [0, 00),
N players, denoted A;,1 <i < N < o0,
An n-node network, with adjacency matrix (g;;)ij=1:n

At node [ € {1,...,n}, there is a cluster of players C;, and

N=> |G
=1
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(1 -2/3) Finite Games on Networks

Finite Network Game:
Players interact via network mean fields, {2;"} with i € Cj:

I, [ 1 i
:—E g —E x; |, forallt>0,i=1,...,N.
= h7l<|Cl|' t)
= J€C]

Each player A; chooses a control ' so as to minimize the cost
(1)

where p > 0, u~" denotes the controls of all other players, and

t>0.
(2)
Note: Uniform network weights — standard Mean Field Games.
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(1 - 3/3) Finite Games on Networks

Definition (Nash Equilibrium)

A collection of controls, denoted (u'*,i =1,...,N), is a Nash
equilibrium if and only if any unilateral deviation from u"* to any
other control u* yields a higher cost, that is,

JN (W um™) < JN (Wb, um™), Vi=1,..,N. (3)
Remark

In general, Nash equilibrium for games on networks gets
increasingly harder to obtain as both the players and nodes
counts grow.
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(2 - 1/13) Limit Games on Networks

Limit Model
For non-uniform networks, Graphon Mean Field Games
(GMFGs) models the limit games when both,

n — oo, and min |C}] — oo.
le{l,...,n}

Assumption (A0)

Players in each cluster are exchangeable and their individual
impact on the interaction term is negligible.

The networks are modelled by asymptotically dense sequences
of graphs {(g{fj)i,jzlm}ff:l which converge to a bounded
symmetric measurable function (i.e. a graphon).
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(2 - 2/13) Limit Games on Networks

Graph Adjacency Matrix Pixel Picture
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Concept of Graphon for large/uncertain/growing graphs/graph limits (Lovasz'12).

Definition

A graphon is a bounded symmetric measurable function

g:[0,1] x [0,1] — [0, 1]
(o, 8) = g(e, B).
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(2 - 3/13) Limit Games on Networks

Some References on Limit Games on Networks.

Cluster of players per node : Caines and Huang (2018, 2021),
Gao et al (2021) ...

One player per node : Delarue (2017), Huang et al. (2010),
Parise and Ozdaglar (2019), Carmona et al. (2019), Gao et al
(2021), Lacker and Soret (2022), Aurell et al. (2022) ...

Motivation for agent cluster per node: exploring agent similarity
properties to simplify network analysis (e.g. community detection,
neuronal dynamics, epidemics models on networks).
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(2 - 4/13) Limit Games on Networks

Linear Quadratic Gaussian GMFGs (LQG-GMFGs):

1l Find best responses, u®? := (u;"®);cjo,r], Such that

J(u™?,2%) = min J(u®,2%) (4)
— min E / P [r(uf)? + (a9 — =) dt
u*€eA 0

where for all ¢t € [0,4+00), and a € [0, 1]
dz = (az$ + bul) dt + odw, z§ ~ N(m*,v?).  (5)

2 Verify that the optimal states {z;"’, ¢ € [0,00), Va € [0,1]},
satisfy the consistency conditions, V(«,t) € [0,1] x [0, 00);

Q)
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(2 - 5/13) Limit Games on Networks

Proposition (Solvability of LQG-GMFGs)

LQG-GMFGs are solvable whenever there exist solutions,
{20,548, a € [0,1], t € [0,00)} € Gy ([0, 00)) x L2 ([0,1]) to

dzg v\ o, vt 8
dtcwvﬁ)%_roamm%w, (7)
dS? b2 [ a

7dt _(7G+77T+p)3t +Zta (8)

1
ﬁzlg@mww,

where 7 is the positive solution to the Riccati equation
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(2 - 6/13) Limit Games on Networks

When the ODEs above has solutions (z, s), it holds that

the players’ best responses are given by,

,0

b
Uy :7;(71‘?’04“5?)7 t €10,00), a €[0,1],

the players’ costs at equilibrium are given by,

J(u®, 2) = 7(v? + (m*)?) + 2s(m* + ¢, «€[0,1].
dgf* b?
where ¢ satisfies % = —or + —(59)2 — (2%)% + pg®
r
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(2 - 7/13) Limit Games on Networks

To solve the ODEs, we derive (25, 5%, ¢,) from a steady state
condition in the infinite horizon,
dz2 ds®

%o _ 4s% _ dgg
0= == Va € [0,1]. ©)

We obtain a family of algebraic equations indexed by « € [0, 1],

b2 b2 1
0= ( _ w) 2 -2 [ gl p)sids,  (10)
r r Jo
b2 (07 (07
0:<—a+?7r+p)soo+zoo, (11)
b2
0=—0’r+ —(s%)* ~ (2%) + pas. (12)
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(2 - 8/13) Limit Games on Networks

Note that the first two algebraic equations are equivalent (almost
everywhere on [0, 1]) to

b2 b? b?
[ L
where

1
(99 5:)) = | 9. B)soc(B)dB
I denotes the identity operator from L? ([0, 1]) to L? ([0, 1]).

Assumption (A1)

The spectrum of the graphon g(-,-) does not contain the value,

() -2 -2
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(2 - 9/13) Limit Games on Networks

Under the above assumption on the eigenvalues of g, the first two
algebraic equations admits the (unique) solution in L?([0, 1]) with

25 =0=sS, a€l0,1]. (14)
Then the third algebraic equation admits the solution,
2
=" €] (15)

Assumption (A2a)

The graphon g is of finite rank, i.e., there exists L. < oo such that

L
g9(a, B) =D Nefo(@) fo(B),
=1

where fy is the orthonormal eigenfunction associated with the
non-zero eigenvalue Ay of g.
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(2 - 10/13) Limit Games on Networks

Assumption (A2b)
The nonzero eigenvalues of the graphon g satisfy

a

Ae < 1—|—b2a(a—p), vee{l,...,L}.

Assumption (A2c)

1
The following inequality holds: a + — > 0.
0

These two assumptions ensure that the equation for (z, s) has a
unique solution pair.
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(2 - 11/13) Limit Games on Networks

Proposition (Explicit Solutions)

Assume that (A1) and (A2) hold. Then (z,s) is explicitly given as
below ¥t >0, «€|0,1],

Z
2 —Zfe Zta Zfz <_|_9()>
where for ¢ € {1,...,L}

2 = \e(m, fr) exp [(g = 9(/\e)> t} (16)

and 6(-) is a function defined by

o(r) i \/(”jf“)QHuT)b:, reR. (17)
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(2 - 12/13) Limit Games on Networks

Sketch of the proof:
We follow Gao et al. (2021) and define the eigen processes

Zf — <Ztaf€>7 Sf — <St7f€>7 t e [O, OO], le {]., ,L}

These processes are solutions to the following ODEs,

dzt b’ b?
i ( . > 2= Msty 26 = M(m, fo), 7 =0,

dst b>m
d;:zf+<—a+r+p>sf, st =0.

Differentiating yields the second order ODE for 2/,

d2zt dzt b? b2\ ° b’ ‘
— )— >\ _ = i — e — —
7 'Odt+ O <a r> —i—p(a r> zy =0,

and we explicitly solve for {z*, ¢ =1,... L}.
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(2 - 13/13) Limit Games on Networks

Given the explicit {z, s}, we derive an explicit {q}, solving

dg® b2 o3r
d—; = o’ + 7(5?)2 = (Z?)Q + 06", Qoo = 7 (18)

Given {z,s,q} we compute the players’ costs at equilibrium as
below,

J(u®, z) = 7 + 1(m*)?) + 2s0m® + ¢, a€][0,1].
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(3 - 1/3) Equilibrium Cost for GMFG

Proposition (Explicit Cost)

Assume (A1)-(A2) hold. Then, the cost at equilibrium is explicitly
given below: for almost every a € [0, 1],

2

& = % + w(m%)? 2t

J(u® z) = mv* + w(m*)* + P
2r =
/=1

L L P
=20 f(@)fe(e)(m fi)(m. fo <9<A>+0<A> ) 2>

k=1 (=1

/1) [AZAk_b%(e(O) —6(X))(6(0) — 9(%))} ,

—92a)2 v)
where 6(7) := \/(p o) +(1- T)b—, T € R.
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(3 - 2/3) Equilibrium Cost for GMFG

Assumption (A3)

The initial means are non-zero and the same for all nodes, that is,

Va € [0,1], m®=m #0. (19)

Proposition (Cost Simplification)

Assume that (A1)-(A3) hold, the equilibrium costs admit the
following representation, for every o € [0, 1],

2

2b2 1
J(W®,2) =7 <V2 +m? 4 U) ~ 2t g(a,B)dB
0

P r

1
—m? | g dg.
m/og(avﬁ!a)ﬁ
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(3 - 3/3) Equilibrium Cost for GMFG

The introduced graphons §(-,-) and g(-,- | a), « € [0, 1], are finite
rank and defined for all (€, ) € [0, 1] x [0, 1] by

M fi(€) £ (B)

i
Mh

i

=

% Fi(€) i (B),

M=

9(&f |o) :=

i
I

and for all k € {1,..., L}, for all « € [0, 1], the eigenvalues are
Ak = 0(0) — 0(A\p)

L 1 b2 .

5 = 3 5@ 10 g g = 2) (G = ko).

= ¢) + P
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(4 - 1/2) Minimal Cost Nodes

Proposition (Minimal Cost Nodes)

Assume that (A1)-(A2)-(A3) hold. Any node o* € [0, 1] is, almost
surely, a node with minimal cost at equilibrium, if and only if,
a* € [0, 1] satisfies the condition:

1 1
o = argmax [%/0 g(a,ﬁ)dﬂ—i—/o g(a,ﬁa)dﬂ} : (20)

a€l0,1] b?
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(4 - 2/2) Minimal Cost Nodes

An example: let the 1-rank approximation of the UA Graphon

g9(a, B) = Af(a)f(B), (. f) € [0,1]% (21)

where
4

A= ERTIER f(a) = —v/2cos (ga) , a€][0,1]. (22)

a® = 0 has minimal cost at equilibrium.

Cost at GMFG Equilibrium
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(5) Conclusion and Extensions

Conclusion
We explicitly solved a class of infinite horizon LQG-GMFGs.
We established the explicit equilibrium cost.

We found a necessary and sufficient condition for identifying
nodes, « € [0, 1], associated with minimal cost at GMFG
equilibrium.

Extensions
Properties of the newly introduced graphons.

Links with centrality notions for games on large networks
(see Gao CDC'22 Fixed-Point Centrality for Networks).

Interventions to shape the cost landscape.
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