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Introduction: Notion of Centrality
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Centrality (ρ : V → R≥0) quantifies the “importance” or “influence” of nodes on networks.

Node Centrality
1 60.7
10 60.7
2 57.5
9 57.4
3 52.6
8 52.6
4 46.0
7 45.9
5 36.5
6 36.3



Introduction: Notion of Centrality
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Centrality (ρ : V → R≥0) quantifies the “importance” or “influence” of nodes on networks.

Examples:

I Social influence on social networks reflected by eigenvector centrality
[Bonacich, 1972]

I Quality of websites modelled by PageRank centrality
[Brin and Page, 1998]

I Equilibrium actions in static LQ network games proportional to Katz-Bonacich centrality
[Ballester et al., 2006]

I ...

Applications: social, technological and biological networks.



Motivation

I Non-Transferability: Different centralities are defined for different problems

I Centrality Variations: Networks are growing and varying in terms of nodes and (or)
connections and hence centrality values may vary accordingly

I New Centrality Notions: Dynamic games on networks/graphons (Gao et al. [2022];
Caines and Huang [2021]) and centrality-weighted opinion dynamics [Gao, 2021]

Questions to Answer:
(a) unify the representations of different centralities?
(b) characterize centrality changes?
(c) identify centralities for dynamic games and opinion models on networks?
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Centrality for Finite Network: Examples
I 1 Eigen Centrality: Assume the largest eigenvalue λ1 of A is simple

ρi =
1

λ1

n∑

j=1

ajiρj , i ∈ [n], i.e. ρ =
1

λ1
A

ᵀ
ρ

I 2 Katz-Bonacich Centrality: Let α ∈ (0, ‖A‖−1
2 ).

ρi = α

n∑

j=1

ajiρj + 1, i ∈ [n], i.e. ρ = αA
ᵀ
ρ+ 1n

I 3 PageRank: Let α ∈ (0, 1).

ρi = α

n∑

j=1

aji
ρj
dj

+
1− α
n

, i ∈ [n], i.e. ρ = αA
ᵀ
D−1ρ+

1− α
n

1n

with dj =
∑n
i=1 aji and D , diag(d1, ..., dn).
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Fixed-Point Centrality for Finite Networks
Permutation Equivariance

Definition (Permutation Equivariance)

I A mapping f(·, ·) : Rn×n ×Rn → Rn is permutation equivariant with respect to a
permutation map π : [n]→ [n] if

Pπf(A, ρ) = f(PπAP
ᵀ
π , Pπρ), ∀ρ ∈ Rn, ∀A ∈ Rn×n,

where Pπ is the permutation matrix corresponding to π.

I A mapping f(·, ·) : Rn×n ×Rn → Rn is permutation equivariant if it is permutation
equivariant w.r.t. all permutation map π : [n]→ [n].

Permutation Invariance: f(A, ρ) = f(PπAP
ᵀ
π , Pπρ)

Shuang Gao (shuang.gao@berkeley.edu) Fixed-Point Centrality for Networks 5/22



Fixed-Point Centrality for Finite Networks

Definition (Fixed-Point Centrality)
A centrality ρ : [n]→ R≥0 is a fixed-point centrality for G(A) associated with the feature
space (Sn, d) if there exist

I (a) a permutation equivariant mapping f(·, ·) : Rn×n × Sn → Sn,

I (b) a permutation equivariant mapping g(·) : Sn → Rn≥0,

I (c) and a unique x ∈ Sn under the metric d

such that
x = f(A, x), x ∈ Sn,
ρ = g(x), ρ ∈ Rn≥0.

(1)

Note: choices of f and g depend on application contexts.

Shuang Gao (shuang.gao@berkeley.edu) Fixed-Point Centrality for Networks 6/22



Results on Fixed-Point Centrality

Proposition
Eigenvector, Katz-Bonacich and PageRank centralities are fixed-point centralities.

For eigenvector centrality,

f(A, x) =
1

λ1
Ax, the fixed-point feature x is unique up to its linear span.

For Katz-Bonacich centrality,

f(A, x) = αA
ᵀ
x+ 1n, α ∈ (0, ‖A‖−1

2 ), contraction under 2-norm.

For PageRank centrality, α ∈ (0, 1),

f(A, x) = αA
ᵀdiag(A

ᵀ
1n)−1x+

1− α
n

1n, contraction under 1-norm.
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Results on Fixed-Point Centrality
LQG Network Mean Field Game Problem (see [Gao et al., 2022])

Dynamics: dxi(t) = (Axi(t) +Bui(t) +Dzi(t))dt+ Σdwi(t),

Cost: Ji(ui, u−i) , E
∫ T

0

(
‖xi(t)− zi(t)‖2Q + ‖ui(t)‖2R

)
dt

Network Mean Field : zi(t) =
1

N

N∑

`=1

mq`
1

|C`|
∑

j∈C`
xj(t), i ∈ Cq

Proposition
The equilibrium cost of LQG Network Mean Field Games with a homogenous initial
condition, under technical conditions, is a fixed-point centrality.

ρi = J(zi), z = Φ(A, z), z ∈ (C([0, T ];Rq))n.
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Results on Fixed-Point Centrality

An automorphism of a (directed or undirected) graph G(V,E) is a permutation map
π : V → V that satisfies

(i, j) ∈ E if and only if (π(i), π(j)) ∈ E, ∀i, j ∈ V.

Proposition
Any fixed-point centrality is permutation invariant with respect to any automorphisms.
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Results on Fixed-Point Centrality

A vertex transitive graph is a graph G satisfying that for any given node pair (i, j), there
exists some automorphism map φi,j : [n]→ [n] ∈ such that φi,j(i) = j.

Proposition (Vertex Transitive Graphs)
All nodes of a vertex transitive graph share the same fixed-point centrality value.

Implication in network games: without computation, one can conclude that equilibrium
costs are homogenous among nodes for vertex-transitive graphs.
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Results on Fixed-Point Centrality
Centrality Variations

Fixed-Point centralities for two graphs G(A) and G(B):

ρA = g(xA), xA = f(A, xA),

ρB = g(xB), xB = f(B, xB).
(2)

Theorem
Under Assumption (A1) for the fixed-point centrality, the following holds

‖ρA − ρB‖ ≤
L1Lg

1− L0(A)
‖A−B‖op (3)

where ‖A‖op := supv 6=0
‖Av‖
‖v‖ .

Implications: convergence of graphs implies convergence of centralities.

Shuang Gao (shuang.gao@berkeley.edu) Fixed-Point Centrality for Networks 11/22



Technical Assumption (A1)

(a) There exists L1 > 0 such that for all x ∈ Uf (the set of feasible fixed-point features),

‖f(A, x)− f(B, x)‖ ≤ L1‖A−B‖op, with ‖A‖op := sup
v 6=0

‖Av‖
‖v‖ (4)

(b) For any matrix A and for any x ∈ Uf , there exists L0(A, x) ≥ 0 such that

‖f(A, xA)− f(A, x)‖ ≤ L0(A, x)‖xA − x‖ where xA = f(A, xA); (5)

(c) For the given matrix A,
L0(A) := sup

x∈Uf
L0(A, x) < 1;

(d) There exists Lg > 0 such that for all x, v ∈ Uf ,

‖g(x)− g(v)‖ ≤ Lg‖x− v‖.
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Results on Fixed-Point Centrality
Centrality Variations: Centralities as Probability Mass Functions

Proposition
Consider two symmetric matrices A and B. Assume (A1) and (A2) for the fixed-point
centrality (2) hold. If |aij | ≤ 1 and |bij | ≤ 1 for all i, j ∈ [n], then

W2(ρA, ρB) ≤ L1Lg
1− L0(A)

√
8δ2(A,B) (6)

where the cut metric is given by

δ2(A,B) := inf
π∈Π
‖Aπ −B‖2, ‖A‖2 := max

S×T⊂[n]×[n]

∣∣∣
∑

i∈S,j∈T
aij

∣∣∣

and Π denotes the set of all permutations from [n] to [n].

Wasserstein distance: W2(ρA, ρB) :=

(
inf

γ∈Γ(ρA,ρB)

∫

X×X
‖x− y‖22dγ(x, y)

) 1
p

where Γ(ρA, ρB) denotes the set of joint probability measures with marginals ρA and ρB .
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Centrality for Graphons

Graphons: bounded symmetric measurable function W : [0, 1]2 → [0, 1]

How many 4-cycles must a graph with edge density at least 1/2 have?

So, suppose G has n vertices and at least n(n� 1)/4 edges, half as many as are possible. Can you avoid
having many 4-cycles? It is an interesting and worthwhile exercise to try to find as many as you can;
start with trying to find at least one. It is not hard to see that there are at most on the order of n4

4-cycles (in fact, there are 3
�
n
4

�
possible). The following result of Erdős tells us that there must be very

many 4-cycles, in fact, on the order of n4 of them.

Theorem (Erdős) For any graph G,

t( , G) � t( , G)4.

In particular, if t( , G) � 1/2, then t( , G) � 1/16.

In light of the theorem, it would be best to reformulate our problem as follows.

Minimize t( , G) over all finite graphs G satisfying t( , G) � 1/2.

It is beneficial at this point to draw an analogy with a problem familiar from elementary calculus.

Minimize x3 � 6x over all real numbers x satisfying x � 0.

The minimum here is attained at x =
p

2, which, though our polynomial has rational coe�cients, is
irrational. The best we can do in the rational numbers is find a sequence limiting to

p
2 at which the

polynomial achieves values approaching the minimum. Completing the rational numbers to the real
numbers allows us to objectify the limit, which algebra then allows us to realize and work with as

p
2.

It turns out that we are in an analogous situation with our graph problem. Erdős’ theorem tells us that
the minimum of t( , G) is greater than or equal to 1/16, and with a little extra work, it can be shown
that that minimum is not achieved by any finite graph. There is, however, a sequence of finite graphs
(Rn)n with edge density at least 1/2 and 4-cycle density approaching 1/16. Indeed, for each n � 1, let
Rn be an instance of a random graph on n vertices where the existence of each possible edge is decided
independently with probability 1/2. By throwing those Rn’s away for which t( , Rn) < 1/2, the 4-cycle
density in the remaining graphs almost surely limits to 1/16.

The situation is now primed for us to seek to, in pure analogy, complete the space of graphs, realize the
limit of (Rn)n as workable object, and understand the way in which that object achieves the minimum
of 1/16 in our problem above.

Graphons

Let’s speculate as to the possible limits of the graph sequence (Rn)n, where Rn is an instance of a
random graph with edge probability 1/2. One real possibility is the Rado graph, the random graph with
vertex set N and edge probability 1/2. (I write “the” random graph since any two instances of such a
graph are almost surely isomorphic.) This and many other possible limits are explored in [1] but are not
examples of graphons.

Exploring an idea that at first sight is a bit more naive, consider the following three representations of
a graph.

Graph Adjacency Matrix Pixel Picture

�!

0
BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CCA �!

2

Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Concept of Graphon [Lovász, 2012]: large/uncertain/growing graphs/graph limits

Eigen, Katz, and PageRank centralities for graphons [Avella-Medina et al., 2018].
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Centrality for Graphons: PageRank Example

The graphon PageRank centrality is defined as follows:

ρ = αA�D−1ρ+ (1− α)1, A ∈ W0, with α ∈ (0, 1) (7)

where D(x) =
∫

[0,1]
A(y, x)dy, and (A�D−1)(x) = A(x,y)

D(y) if D(y) 6= 0, and zero otherwise.

Proposition
The graphon PageRank centrality ρ is a probability density function over [0, 1].

Shuang Gao (shuang.gao@berkeley.edu) Fixed-Point Centrality for Networks 15/22



Graphon Fixed-Point Centrality: Definition

Definition (Graphon Fixed-Point Centrality)
A centrality ρ : [0, 1]→ R≥0 is a fixed-point centrality for a graphon A ∈ Wc associated
with the feature space (S[0,1], d) if there exist

I a permutation equivariant fixed-point mapping f(·, ·) :Wc × S[0,1] → S[0,1],

I a permutation equivariant mapping g(·) : S[0,1] → R≥0,

I a unique function x ∈ S[0,1] under the metric d,

such that
x = f(A,x),

ρ = g(x), ργ ≥ 0, γ ∈ [0, 1].
(8)

Shuang Gao (shuang.gao@berkeley.edu) Fixed-Point Centrality for Networks 16/22



Results on Graphon Fixed-Point Centrality
Consider two graphons A and B inWc and

xA = f(A,xA), ρA = g(xA),

xB = f(B,xB), ρB = g(xB),
(9)

where the feature space S[0,1] is specialized to Lp([0, 1]) with p ≥ 1, and the operators
f(·, ·) and g(·) are specialized to f(·, ·) :Wc × Lp([0, 1])→ Lp([0, 1]) and
g(·) : Lp([0, 1])→ Lp([0, 1]).

Theorem
Under Assumption (A3) for the graphon fixed-point centrality, the following holds

‖ρA − ρB‖ ≤
L1Lg

1− L0(A)
‖A−B‖op. (10)

Implications: convergence of graphons implies convergence of centralities.
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Results on Graphon Fixed-Point Centrality
Centrality Variations: Centralities as Probability Density Functions

Proposition
Consider two graphons A and B inW1. Assume (A3) and (A4) for the graphon fixed-point
centrality (9) hold. Then the following holds

W2(ρA, ρB) ≤ L1Lg
1− L0(A)

√
8δ2(A,B). (11)

where the cut metric is given by

δ2(A,B) , inf
φ∈Φ
‖Aφ −B‖2, ‖A‖2 , sup

S,T⊂[0,1]

∣∣∣∣
∫

S×T
A(x, y)dxdy

∣∣∣∣

and Φ denotes the set of all measure preserving bijections φ : [0, 1]→ [0, 1].

Shuang Gao (shuang.gao@berkeley.edu) Fixed-Point Centrality for Networks 18/22



Conclusion

I Fixed-point centralities (for finite and infinite networks)

I Changes of fixed-point centralities with respect to graph changes
(a) as vectors (b) as probability distributions.
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Future Work

I Exploring connections with games on networks, graph neural networks, MDP, etc.

I Sparse graph limit models (e.g. Lp graphons, graphings).

I Improving upper bounds for centrality variations.

I Ranking variations of fixed-point centralities with respect to network modifications.
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Thank You!
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Node Centrality
1 60.7
10 60.7
2 57.5
9 57.4
3 52.6
8 52.6
4 46.0
7 45.9
5 36.5
6 36.3

Example: Fixed-point centrality for dynamic games on networks with controlled SIR dynamics.
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Connection with Graph Neural Networks

Fixed-point characterization of Graph Neural Networks
(Gori et al. [2005]; Scarselli et al. [2009])

feature : x = Fθ(A, x, l), x ∈ Rn×dx ,
output : o = Gθ(A, x, ln), o ∈ Rn×do .
GNN : o = GNNθ(A)

error : ew =
1

m

m∑

i=1

(y(i) −GNNθ(A(i)))2

data points (input, output): (A(i), y(i)), i ∈ {1, ...,m}

(12)
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Results on Fixed-Point Centrality
Centrality Variations: Centralities as Probability Mass Functions

Normalization Assumption (A2):
∑n
i=1 ρi = 1

Proposition
Under Assumptions (A1) and (A2), the following holds for the fixed-point centrality in (2):

Wp(ρA, ρB) ≤ L1Lg
1− L0(A)

inf
π∈Π
‖Aπ −B‖op,p, with ‖A‖op, p := ‖A‖p (13)

where

Wasserstein distance: Wp(ρA, ρB) :=

(
inf

γ∈Γ(ρA,ρB)

∫

X×X
d(x, y)pdγ(x, y)

) 1
p

Γ(ρA, ρB): the set of joint probability measures with marginals ρA and ρB .
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Results on Graphon Fixed-Point Centrality
Centrality Variations: Centralities as Probability Density Functions

Proposition
Under Assumptions (A3) and (A4), the following holds for the fixed-point centrality in (9):

Wp(ρA, ρB) ≤ L1Lg
1− L0(A)

inf
φ∈Φ
‖Aφ −B‖op,p, (14)

where Φ denotes the set of all measure preserving bijections from [0, 1] to [0, 1] and the
operator norm is ‖A‖op, p := supx6=0

‖Ax‖p
‖x‖p .
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