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University, Montréal, QC, Canada. (e-mail: sgao@cim.mcgill.ca)

Abstract: Graphon Mean Field Games (GMFGs) (Caines and Huang (2021)) constitute
generalizations of Mean Field Games to the case where the agents form subpopulations
associated with the nodes of large graphs. The work in (Foguen-Tchuendom et al. (2021),
Foguen-Tchuendom et al. (2022a)) analyzed the stationarity of equilibrium Nash values with
respect to node location for large populations of non-cooperative agents with linear dynamics
on large graphs embedded in Euclidean space together with their limits (termed embedded
graphons). That analysis is extended in this investigation to agent systems lying in the class of
control a�ne non-linear systems (see Isidori (1985)). Specifically, control a�ne GMFG systems
are treated where (i) at each node ↵ 2 V the drift of each generic agent system is a�ne in
the control function, and (ii) the running costs at each node ↵ 2 V ⇢ R

m are exponentiated
negative inverse quadratic (ENIQ) functions of the di↵erence between a generic state and the
local graphon weighted mean Z

↵,µG where µG := {µ� , � 2 V ⇢ R
m} is the globally distributed

family of mean fields. The infinite cardinality node and edge limits are considered, where it is
assumed that the limit embedded graphon g(↵, �), (↵, �) 2 V ⇥V, is continuously di↵erentiable.
It is shown that the equilibrium Nash value V

↵ is stationary with respect to the nodal location
↵ 2 V if and only if the corresponding mean Z

↵,µG is stationary with respect to nodal location.

Keywords: Mean Field Games, Networks, Graphons

1. INTRODUCTION

The literature on Mean Field Games on graphons is grow-
ing, see for example Caines and Huang (2019), Caines and
Huang (2021), Lacker and Soret (2022), Delarue (2017),
Parise and Ozdaglar (2023), Carmona et al. (2022). The
models used in this work are generalizations those used
in standard Mean Field Game theory (see e.g. Carmona
and Delarue (2018a,b)), where the agents are essentially
coupled on complete graphs with uniform weights. Our
study is set in the framework known as Graphon Mean
Field Game theory, see Caines and Huang (2019), Caines
and Huang (2021). Equipped with the latter theory, we
continue the investigation of the existence and properties
of what are termed critical nodes (i.e. stationary Nash
value nodes) for games involving large populations of
agents distributed over large networks. Initially, Foguen-
Tchuendom et al. (2021, 2022a) analyzed the stationarity
of equilibrium Nash values with respect to node location

?
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for large populations of non-cooperative agents controlling
linear quadratic Gaussian (LQG) systems on large graphs
embedded in Euclidean space together with their limits,
termed embedded graphons. As a follow up, we study the
link between the optimality of nodes and their degrees in
the network Foguen-Tchuendom et al. (2022b). The initial
analysis is extended in this investigation to agent systems
lying in the class of control a�ne non-linear systems (see
Isidori (1985)).

Consider models of large population games, for which the
N agents Ai, 1  i  N < 1, are distributed over
the finite network, represented by the graph Gk defined
by its adjacency matrix (gk

i,j)i,j=1:Mk . We assume that,
at each node of this graph, there is a cluster of agents
and let XGk =

LMk

l=1{X
i|i 2 Cl} denote the states of

all agents in the total set of clusters of the population.
Hence N =

PMk

l=1 |Cl|. All spatially distributed clusters lie
at the nodes of the graph Gk and interact via the weighted
averages (1) defined by the finite graph Gk. For each agent
Ai, whose cluster is denoted by C(i), the coupling term
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(also called the local graphon weighted mean field term)
governing its interaction with other players via the network
is given by:

Z
i,Gk
t =

1

Mk

MkX

l=1

g
k
C(i),l

1

|Cl|
X

j2Cl

X
j
t , 8t 2 [0, T ]. (1)

The specification of {Z
i,Gk
t ; t 2 [0, T ]} relies on the

sectional information g
k
i,• of Ai. All the individuals residing

in cluster Cl, including the agent’s local cluster Ci, are
symmetric and their average generates an overall impact
on each agent Ai in the ith cluster via the local graphon
weighted mean field term a shown in (2) below.

The state evolution of the collection of N agents Ai, 1 
i  N < 1, is specified by a set of N control a�ne stochas-
tic di↵erential equations (SDEs) over a finite horizon of
duration 0 < T < 1. For each agent Ai, at some node the
state evolution is given by

dX
i
t =

�
a(Xi

t) + b(Xi
t)u

i
t + c(Xi

t)Z
i,Gk
t

�
dt + �dW

i
t ,

X
i
0 ⇠ N (m, v

2), 8t 2 [0, T ],
(2)

where a(·), b(·), c(·) are bounded di↵erentiable functions
with bounded uniformly Lipschitz continuous di↵erentials,
and � � 0. Here X

i
t 2 R denotes the state, u

i
t 2 R the

control input and Z
i,Gk
t the local graphon weighted mean

field specified in (1). For simplicity, all initial conditions
are taken to satisfy, X

i
0 ⇠ N (m, v

2), v > 0, m 2 R.
Let {W

i
, i = 1, ..., N} denote a collection of independent

Brownian motions defined on a probability space (⌦,F,P)
satisfying the usual conditions.

Furthermore, each agent Ai has a cost given by

J
N
i (ui

, u
�i)

:= E
Z T

0


r

2
(ui

t)
2 + exp

⇣
� q

2

�
X

i
t � �(t)Zi,Gk

t

��2
⌘�

dt,

(3)
where 1  i  N , �(t) is a square integrable function
of time and u

�i denotes the controls of all agents other
than Ai. We note that the exponentiated negative inverse
quadratic (ENIQ) running cost function on the system
state in (3) vanishes at the origin and is strictly posi-
tive, monotonically increasing, infinitely di↵erentiable and
bounded by unity on (0, 1).

The above set-up constitutes what is often called a large
scale dynamic stochastic games. A notion of solution for
these games is the well-known Nash equilibrium.

Definition 1. (Nash Equilibrium). Any collection of con-
trols for the large dynamic stochastic network games de-
noted (ui⇤

, i = 1, ..., N), is a Nash equilibrium if and only
if, any unilateral deviation, from u

i⇤ to any other control
u

i, yields a higher cost. That is,

J
N
i (ui⇤

, u
�i⇤)  J

N
i (ui

, u
�i⇤), 8i = 1, ..., N. (4)

Finding a Nash equilibrium when both the cluster size
and the network size are large would be intractable.
However, when the network describing the interaction
between the agents is uniform, the theory of Mean Field
Games (Huang et al. (2006), Lasry and Lions (2006))
provides a systematic approach to the problem (see the
monograph of Carmona and Delarue (2013) ).

For non-uniform networks, di↵erent formulations have
been given to this problem (see e.g. Caines and Huang
(2019), Caines and Huang (2021), Lacker and Soret (2022),
Delarue (2017), Parise and Ozdaglar (2023), Carmona
et al. (2022)) and in the present paper we follow the
Graphon Mean Field Games paradigm (Caines and Huang
(2019), Caines and Huang (2021)).

In the large scale limit defined here, the number of nodes,
Mk, of Gk tends to infinity and the smallest size of clusters
at each node, minl=1:Mk |Cl|, tends to infinity, and hence
the number of agents, N , also goes to infinity.

We further assume that the sequence of graphs {Gk; k 2
N} consists of a sequence of nodes (or vertices), and node
pairs, corresponding to edges, which are embedded in
the unit m and 2m-dimensional cubes in Rm and R2m

respectively. As shown in Caines (2022), such sequences
converge in the sense of distribution functions converg-
ing at continuity points, or equivalently in terms of the
weak convergence of measures. Hence the associated limit
objects are taken to be the limiting measures. (Such a
construction is inspired by, but is distinct from, that of cut-
metric convergence in the standard theory of graphons (see
Lovasz (2012)).) Specifically, the embedded graph vertex
(respectively graph edge) limit set is a measure on the m-
dimensional (respectively 2m-dimensional) unit cube. This
is in contrast to the standard graphon which is a symmetric
Lebesgue measurable function W : [0, 1]2 ! [0, 1] which
can be interpreted as weighted graphs on the vertex set
[0, 1]. The ↵ parameter used in this paper as the node index
for the embedded graph limit takes its values in [0, 1]m.

For simplicity of analysis shall we assume the limit mea-
sures have distribution functions which possess continu-
ously di↵erentiable densities, and, as a general notation
for such embedded graphon densities, we write

g : [0, 1]m ⇥ [0, 1]m �! [0, 1)
(↵, �) 7! g(↵, �).

Furthermore, for simplicity of exposition in this paper we
assume m = 1, and provide an example in which one
considers a sequence of uniform attachment graphs (Lo-
vasz, 2012), and obtains the following embedded graphon
density (in the limit)

g : [0, 1] ⇥ [0, 1] �! [0, 1]
(↵, �) 7! g(↵, �) = 1 � max{↵, �},

as illustrated in the figure below

Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

�
W

� : (x, y) 7! W
�
�(x), �(y)

� ����
� an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W � 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Fig. 1. Graph Sequence Converging to its Limit (Lovasz, 2012)

Parallel to the standard MFG formulation, the infinite
population of agents at all graphon nodes, ↵ 2 [0, 1],
admits representative agents, whose state evolution is
given by control a�ne SDEs of the form introduced in
(2) above:

dX
↵
t =

�
a(X↵

t ) + b(X↵
t )u↵

t + c(X↵
t )Z↵,g

t

�
dt + �dW

↵
t ,

X
↵
0 = ⇠

↵ ⇠ N (m, v
2), 8t 2 [0, T ], 8↵ 2 [0, 1],

(5)
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where, the random variables (⇠↵)↵2[0,1] have the same
distribution as X

0
0 , and the Brownian motions (W↵

t )t2[0,T ],

↵ 2 [0, 1], have the same distribution as W
0
t , t 2 [0, T ].

Note that no form of stochastic process along the interval
{↵ 2 [0, 1]} is defined in this paper.

In the large scale limit, each representative agent indexed
by ↵ 2 [0, 1] minimizes a cost function given by

J(u↵
, µ)

:= E
Z T

0


r

2
(u↵

t )2 + exp
⇣

� q

2

�
X

↵
t � �(t)Z↵,g

t

��2
⌘�

dt,

(6)

and at all nodes ↵ 2 [0, 1], the global mean field term
denoted Z

↵,g
t , t 2 [0, T ], is defined as

Z
↵,g
t :=

Z 1

0
g(↵, �)

Z

R
ydµ(�, t)(y)d�, 8t 2 [0, T ], (7)

where for all ↵ 2 [0, 1], t 2 [0, 1], µ(↵, t) is in the set of
probability measures with finite second moment, denoted
P2

�
R

�
.

2. THE CONTOL AFFINE GMFG PROBLEM AND
ITS EQUATIONS

In this section, we formalize and describe the solvability
of the Graphon Mean Field Games associated with the
control a�ne model introduced in the previous section.

2.1 Formulation of the GMFG Problem

Define the following admissible control space,

A := {u : ⌦ ⇥ [0, T ] 7! R | u(·) F � progressively

measurable and E
 Z T

0
|u(t)|2dt

�
< 1},

and the corresponding instance of a Control A�ne
(Quadratic Gaussian) Graphon Mean Field Game (CA-
GMFG) problem.

Find a two-parameter family of probability measures in
P2

�
R

�
, denoted µ(↵, t), 8t 2 [0, T ], 8↵ 2 [0, 1], such that:

1) Agents’ Control Problems:
There exists ↵-nodal optimal control laws, denoted
u

↵,o := (u↵,o
t )t2[0,T ] 2 A for all ↵ 2 [0, 1], such that

J(u↵,o
, µ) = min

u↵2A
J(u↵

, µ) (8)

= min
u↵2A

E
Z T

0


r

2

�
u

↵
t

�2

+ exp
⇣

� q

2

�
X

↵
t � �(t)Z↵,g

t

��2
⌘�

dt

subject to the dynamics for all t 2 [0, T ]

dX
↵
t = �dW

↵
t ,

+
�
a(X↵

t ) + b(X↵
t )u↵

t + c(X↵
t )Z↵,g

t

�
dt (9)

Z
↵,g
t =

Z 1

0
g(↵, �)

Z

R
vdµ(�, t)(v)d�, (10)

with X
↵
0 = ⇠

↵ ⇠ N (m, v
2), m, v 2 R, v

2
> 0.

2) Consistency Conditions:
The optimal state trajectories (X↵,µ,o

t )t2[0,T ], 8↵ 2

[0, 1], generated in Part 1) satisfy the GMFG McKean-
Vlasov consistency conditions:

µ(↵, t) = L
�
X

↵,µ,o
t

�
, 8(↵, t) 2 [0, 1] ⇥ [0, T ]. (11)

2.2 Solvability of the Control A�ne-GMFG Problem

The analysis in this section establishes that one can solve
the Control A�ne GMFG problem via the resolution
of a system of Forward Backward Partial Di↵erential
Equations (FBPDEs) describing the value function and
probability density function of agents involved in the
Control A�ne GMFG problem.

We proceed in a two step approach. Firstly, by fixing
probability density functions for the states of the repre-
sentative agents we derive the Hamilton-Jacobi-Bellman
(HJB) equations for their value functions together with the
terminal conditions. Secondly, given the resulting control
laws for the representative agents, we derive the Fokker-
Kolmogorov-Planck (FKP) equations for their probability
density functions together with initial conditions. Subject
to the consistency condition on the generated density
functions, these two coupled sets of equations constitute
the entire Controlled A�ne GMFG system.

Concerning existence and uniqueness of the solutions to
the derived Control A�ne GMFG equations, we note
that assumptions on the functions and running costs in
(5), (6), (7), including specified bounds on the Lipschitz
coe�cients, are used in Caines and Huang (2021) to obtain
via a Banach contraction argument the existence and
uniqueness of solutions to GMFG equations more general
than the following Control A�ne GMFG equations.

HJB Equations

We introduce, for all (↵, t, x) 2 [0, 1]⇥ [0, T ]⇥R the prob-
ability density functions p(↵, t, x) satisfying the condition

dµ(↵, t)(x) = p(↵, t, x)dx,

and we define the systems’ Hamiltonians in terms of the
notation introduced above, namely,

H

h
t, x,

@V (↵, t, x)

@x
, Z, u

i

:=
�
a(x) + b(x)u + c(x)Z

�@V (↵, t, x)

@x

+
h
r

2
u

2 + exp
⇣

� q

2

�
x � �(t)Z

��2
⌘i

, (12)

with x, u, q, Z 2 R, �(·) 2 C(R,R), and V (↵, t, x) the
value functions of the representative agents. Applying the
dynamic programming principle, we obtain that the value
functions are given as solutions to the HJB equations

� @V (↵, t, x)

@t
= inf

u2A
H


t, x,

@V (↵, t, x)

@x
, Z

↵,g
t , u

�

+
�

2

2

@
2
V (↵, t, x)

@x2
,

=


exp

⇣
� q

2

�
x � �(t)Z↵,g

t

��2
⌘

� b
2(x)

2r

✓
@V (↵, t, x)

@x

◆2

+
⇣
a(x) + c(x)Z↵,g

t

⌘✓
@V (↵, t, x)

@x

◆�

+
�

2

2

✓
@

2
V (↵, t, x)

@x2

◆
, V (↵, T, x) = 0,

(13)
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where Z
↵,g
t is given by

Z
↵,g
t =

Z 1

0
g(↵, �)

Z

R
vp(�, t, v)dvd�.

FKP Equations

Given the value functions and probability density func-
tions, {V (↵, t, x), p(↵, t, x), (↵, t, x) 2 [0, 1] ⇥ [0, T ] ⇥ R},

we obtain the following optimal controls, {u
↵,o
t , (↵, t) 2

[0, 1] ⇥ [0, T ]}, and the optimal states, {X
↵,o
t , (↵, t) 2

[0, 1] ⇥ [0, T ]}, for the representative agents

u
↵,o
t = �b(X↵,o

t )

r

@V (↵, t, X
↵,o
t )

@x
, X

↵,o
t = ⇠

↵
,

dX
↵,o
t = �dW

↵
t

+

✓
(a(X↵,o

t ) + c(X↵,o
t )Z↵,g

t � b
2

r

@V (↵, t, X
↵,o
t )

@x

◆
dt,

and derive the following FKP equations for the probability
density functions associated with the SDEs describing the
optimal states,

@p(↵, t, x)

@t
= � @

@x


p(↵, t, x)

✓
a(x) + c(x)Z↵,g

t

� b
2(x)

r

@V (↵, t, x)

@x

◆�
+

�
2

2

@
2
p(↵, t, x)

@x2
,

p(↵, 0, x) =
1p

2⇡v2
exp

✓
� 1

2

✓
x � m

v

◆2◆
.

(14)

The coupled FBPDEs (13) and (14) constitute the Control
A�ne GMFG equations and their solutions are given by

{V (↵, t, x), p(↵, t, x), (↵, t, x) 2 [0, 1] ⇥ [0, T ] ⇥ R}.

3. CRITICAL NODES FOR GMFGS

Recall that the global mean field, Z
↵,g
t , defined by

Z
↵,g
t =

Z 1

0
g(↵, �)

Z

R
vp(�, t, v)dvd�,

is an interaction term describing the influence of the limit
network on the dynamics of the representative agents at
each node ↵ 2 [0, 1].

In this section, we consider the particular nodes at which
the first derivative of the global graphon mean field with
respect to ↵ 2 [0, 1] vanishes, which we call mean critical
nodes. These nodes are well-defined whenever the following
assumptions hold.

Assumption A1: There exist unique solutions (V, p) to
the Control A�ne GMFG equations (13) and (14) and all
mixed partial derivatives of V up to order one in time t,
two in space x and one in the ↵ variable exist and all are
jointly continuous in all the variables {t, x, ↵}.

Assumption A2: The embedded graphon function g(·, ·)
is continuously di↵erentiable a.e on [0, 1]2.

Definition 2. (Mean Critical Node). A node � 2 [0, 1] is a
mean critical node for a Control A�ne GMFG system if
the following local mean field stationary condition holds
for Z

↵,g
t

@

@↵
Z

↵,g
t

����
↵=�

= 0, 8t 2 [0, T ]. (15)

For two particular examples of embedded graphons, one
can readily identify mean critical nodes and observe that
they coincide with important nodes in the family of graphs
whose limits are associated with the embedded graphons
as follows:

E1 Consider first the limit graphon of a sequence of finite
Erdös-Rényi graphs. Indeed, it is defined as:

g(↵, �) := k 2 (0, 1), 8(↵, �) 2 [0, 1]2.

Then, we can obtain that

Z
↵,g
t = k

Z 1

0
E

⇥
X

�,o
t

⇤
d�, 8(↵, t) 2 [0, 1] ⇥ [0, T ],

from which it follows that, for all � 2 [0, 1]:

@

@↵
Z

↵,g
t

����
↵=�

= 0, 8t 2 [0, T ].

That is to say, if the graphon is a limit of Erdös-Rényi
finite graphs, then for the associated Control A�ne
GMFG problem, all nodes � 2 [0, 1] are mean critical
nodes.

E2 Consider second the uniform attachment graphon:

g(↵, �) = 1 � max{↵, �}, 8(↵, �) 2 [0, 1]2.

Then, we can compute that for all (↵, t) 2 [0, 1]⇥[0, T ]

Z
↵,g
t =

Z 1

0
(1 � max{↵, �})E

⇥
X

�,o
t

⇤
d�, (16)

= (1 � ↵)

Z ↵

0
E

⇥
X

�,o
t

⇤
d� +

Z 1

↵
(1 � �)E

⇥
X

�,o
t

⇤
d�,

Di↵erentiating with respect to the index ↵ yields:

@

@↵
Z

↵,g
t = �

Z ↵

0
E

⇥
X

�,o
t

⇤
d�, 8t 2 [0, 1]. (17)

from which it follows that, whenever � = 0 2 [0, 1]:

@

@↵
Z

↵,g
t

����
↵=�

= 0, 8t 2 [0, T ].

That is to say, for the uniform attachment graphon,
the root node is a mean critical node.

These examples indicate that the structure of the networks
modelled by these graphs play a key role in the interaction
between agents in the associated GMFGs.

4. STATIONARITY PROPERTIES OF THE VALUE
FUNCTIONS

In this section, we show that, under specific conditions,
mean critical nodes can be readily identified as nodes at
which the value functions are stationary. This result allows
for the identification of mean critical nodes directly from
the solutions to the Control A�ne GMFG equations (13)
and (14).

Proposition 3. Let Assumptions A1 and A2 hold, let
c(x) = 0, x 2 R, and assume that the solution to the Con-
trol A�ne GMFG problem admits nodes denoted � 2 [0, 1]
at which the value function is stationary, that is

@V (↵, t, x)

@↵

����
↵=�

= 0, 8(t, x) 2 [0, T ] ⇥ R. (18)
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Then these nodes are mean critical nodes for the Control
A�ne GMFG system, that is to say at these nodes the
local mean field is stationary:

@

@↵
Z

↵,g
t

����
↵=�

= 0, 8t 2 [0, T ]. (19)

Conversely, subject to the same conditions, mean field
critical nodes are nodes at which the Control A�ne GMFG
value function is stationary.

Proof.

Di↵erentiating the Control A�ne GMFG equations (13)-
(14) with respect to ↵ yields the function

W (↵, t, x) :=
@V (↵, t, x)

@↵
, 8(↵, t, x) 2 [0, 1] ⇥ [0, T ] ⇥ R,

as a solution to the PDE:

�@W (↵, t, x)

@t
= �q�(t)

✓
x � �(t)Z↵,g

t

◆�3

⇥ exp


� q

2

✓
x � �(t)Z↵,g

t

◆�2�
@

@↵

✓
Z

↵,g
t

◆

+ (a(x) + c(x)Z↵,g
t )

@W (↵, t, x)

@x

+ c(x)
@

@↵

✓
Z

↵,g
t

◆
@V (↵, t, x)

@x

� b
2(x)

r

@V (↵, t, x)

@x

@W (↵, t, x)

@x

+
�

2

2

@
2
W (↵, t, x)

@x2
,

(↵, t, x) 2 [0, 1] ⇥ [0, T ] ⇥ R

(20)

with terminal conditions
W (↵, T, x) = 0, (↵, x) 2 [0, 1] ⇥ R.

Recalling that c(x) = 0, x 2 R, we see that at any given
� 2 [0, 1] for which

W (�, t, x) = 0, (t, x) 2 [0, T ] ⇥ R,

the PDE (20) for W (·, ·, ·) takes the form

0 = �q�(t)
⇣
x � �(t)Z�,g

t

⌘�3
exp


� q

2

⇣
x � �(t)Z�,g

t

⌘�2
�

⇥
✓

@

@↵
Z

↵,g
t

����
↵=�

◆
, (t, x) 2 [0, T ] ⇥ R, (21)

and hence
@

@↵
Z

↵,g
t

����
↵=�

= 0, t 2 [0, T ]. (22)

Consequently � 2 [0, 1] is a mean field critical node.

The converse implication of the proposition holds since the
boundary condition for the W (·, ·, ·) function is

W (↵, T, x) =
@V (↵, T, x)

@↵
= 0, (↵, x) 2 [0, 1] ⇥ R,

due to the boundary condition on the value function being
V (↵, T, x) = 0, (↵, t, x) 2 [0, 1] ⇥ [0, T ] ⇥ R.

But then setting
@

@↵
Z

↵,g
t

����
↵=�

= 0, 8t 2 [0, T ], (23)

in the PDE (20) for W (·, ·, ·) results in the unique solution
satisfying

@V (↵, t, x)

@↵

����
↵=�

= W (↵, t, x)|↵=� = 0, 8(t, x) 2 [0, T ]⇥R,

(24)

as required.

5. CONCLUSION

In this paper a class of Graphon Mean Field Games
with control a�ne non-linear dynamics and exponentiated
negative inverse quadratic (ENIQ) cost functions has been
considered. Subject to the assumption of the existence and
uniqueness of solutions to the relevant GMFG equations,
it has been shown that a node at which the equilibrium
Nash value is stationary with respect to location is such
that the local mean field is also stationary with respect to
location and conversely. In future work the analysis will
be extended with proofs of the existence and uniqueness
of all GMFG equations which arise in the current case and
in the following extensions: (i) the class of systems where
the dynamics of each agent are also an a�ne function
of the local mean field, (ii) the consideration of di↵erent
varieties of running costs, including quadratic and logistic,
and (iii) the analysis of the influence on equilibria of
specified classes of embedded graphon limits in arbitrary
finite dimensions.
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