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Abstract— We propose to study a class of infinite horizon
linear quadratic Gaussian Graphon Mean Field Games (GM-
FGs) inspired by the infinite horizon Mean Field Games in
[1]. Graphon Mean Field Games (GMFGs) are non-uniform
generalizations of Mean Field Games where the non-uniformity
of agents is characterized by the nodes on which they are located
in a network. Under mild conditions, we obtain for almost
every node, an analytical expression for the cost at GMFG
equilibrium, and propose a necessary and sufficient condition
under which a particular node in the network is associated with
the minimal cost at GMFG equilibrium.

I. INTRODUCTION

This paper adds to the literature on Graphon Mean Field
Games which read as Mean Field Games with network-
coupled (populations of) agents, see for example [2]–[12].
Graphon Mean Field Games are generalizations of Mean
Field Games (see for example [13], [14]), and can be seen as
Mean Field Games with agents located on large undirected
graphs. This work is an extension of a similar study of
infinite horizon GMFGs [15], and both studies draw a lot
of inspiration from mean field games with cost localities
studied in [16]. The differences between [16] and the current
paper are that in [16] each node is assumed to be associated
with an individual agent and graphons are not employed.
The current paper focuses on establishing explicit analytical
results on the cost at equilibrium and characterizing nodes
with minimal cost at equilibrium under mild assumptions on
the initial conditions and graphon properties.

Graphon Mean Field Games are asymptotic version of
finite large population games, with N agents Ai, 1 ≤ i ≤
N < ∞, which are distributed over a finite network,
represented by its adjacency matrix (gni,j)i,j=1:n, with n
nodes. We assume that, at each node l ∈ {1, ..., n} of this
network, there is a cluster of agents denoted Cl, and the total
number of agents is N =

∑n
l=1 |Cl|.

For each agent Ai in cluster Ck, the coupling term (also
called nodal network mean field) governing its interaction
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via the network with other players, is given by:

zk,nt =
1

n

n∑
l=1

gnk,l
1

|Cl|
∑
j∈Cl

xj
t , t ≥ 0, i ∈ {1...N}.

The flow of network mean fields (zk,nt )t∈[0,∞),k∈{1...n} relies
on the sectional information gnk,• of Ai which represents
the view of the network interactions from the position of
agents in cluster Ck, k ∈ {1, ..., n}. From the point of view
of any agent Ai in any cluster Ck, all individuals residing
in cluster Ck are symmetric and their average generates an
overall impact of that cluster.

Consider the state evolution of the collection of N agents
specified by the set of N controlled linear stochastic differ-
ential equations (SDEs) over an infinite horizon below. For
each agent Ai, its state denoted xi(·) ∈ R evolves according
to the SDE:

dxi
t =

(
axi

t + bui
t

)
dt+ σdwi

t, ∀t ≥ 0, (1)

where ui(·) ∈ R denotes the agent’s Ai control input.
For simplicity, we assume that the initial state of agent
Ai is xi

0 ∼ N (ml, ν2), whenever Ai lies in cluster Cl,
l ∈ {1, .., n}. Assume the real coefficients a, b,ml with l ∈
{1..., n}, ν > 0, σ ≥ 0 are known. Let {wi, i = 1, ..., N}
be a collection of independent Brownian motions defined on
a probability space (Ω,F,P) satisfying the usual conditions.

We consider a scenario where each agent Ai in any cluster
Ck aims to minimize infinite horizon quadratic costs given
by

JN (ui, u−i) := E
∫ ∞

0

e−ρt
[
r(ui

t)
2 +

(
xi
t − zk,nt

)2]
dt, (2)

where 1 ≤ i ≤ N , ρ > 0, r > 0, and u−i denotes the
controls of all agents other than Ai. Controls are chosen
from the admissible control space defined below,

A := {u : Ω× [0,∞) 7→ R | u is F− progressively

measurable and E
∫ ∞

0

e−ρt|u(t)|2dt < ∞}.

A solution concept for the population games on networks
we defined above is the well-known Nash equilibrium.

Definition 1 (Nash Equilibrium). A collection of controls,
denoted (ui∗)Ni=1 ∈ AN , is a Nash equilibrium if and only if
any unilateral deviation from ui∗ ∈ A to any other control
ui ∈ A does not yield a lower cost, that is,

JN
i (ui∗, u−i∗) ≤ JN

i (ui, u−i∗), ∀i = 1, ..., N. (3)
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Finding a Nash equilibrium in network-coupled population
games gets increasingly complex as both the cluster size and
the network size grow. In the situation where the network
describing the interaction between the agents is uniform (i.e.
fully symmetric), the theory of Mean Field Games provides
satisfactory answers to this problem (see [17] [18]).

For non-uniform networks, Graphon Mean Field Games
model asymptotic limits of population games in the double
limit, n → ∞ and minl=1:n |Cl| → ∞ (observe that it im-
plies that the number of agents, denoted by N =

∑n
l=1 |Cl|,

goes to infinity).
We assume that the sequence of networks, represented by

adjacency matrices, (gni,j)i,j=1:n, converges, in the cut metric
(see [19]), to a unique limit graphon1 denoted

g : [0, 1]× [0, 1] → [0, 1]

(α, β) 7→ g(α, β).

Graphons are bounded symmetric Lebesgue measurable
functions g : [0, 1]× [0, 1] → [0, 1] which can be interpreted
as weighted graphs on the set of nodes [0, 1] (see [19]).

With the network interaction within a cluster being uni-
form, we deduce that in the infinite cluster size, at all graphon
node α ∈ [0, 1], there exists a representative (or typical)
agent, denoted Aα whose state’s evolution is given by the
SDE: t ∈ [0,∞)

dxα
t = (axα

t + buα
t ) dt+ σdwα

t , xα
0 ∼ N (mα, ν2).

(4)
A representative agent Aα at node α aims at minimizing an
infinite horizon quadratic cost given by

J(uα, zα) := E
∫ ∞

0

e−ρt
[
r(uα

t )
2 +

(
xα
t − zαt

)2]
dt, (5)

where r, ρ > 0 and, the nodal graphon mean field denoted
by zαt , is given by,

zαt :=

∫ 1

0

g(α, β)E[xβ
t ]dβ, ∀t ∈ [0,∞), ∀α ∈ [0, 1]. (6)

II. INFINITE HORIZON LQG-GMFGS

The Linear Quadratic Gaussian Graphon Mean Field
Games (LQG-GMFGs) problem:

1) (Mean Field Inputs) Fix a two-parameter deterministic
flow of graphon mean fields {zαt , t ∈ [0,∞), α ∈
[0, 1]}.

2) (Control Problems) Find optimal controls, denoted by
uα,o := (uα,o

t )t∈[0,∞) ∈ A, such that

J(uα,o, zα) = min
uα∈A

J(uα, zα) (7)

= min
uα∈A

E
∫ ∞

0

e−ρt
[
r
(
uα
t

)2
+
(
xα
t − zαt

)2]
dt

subject to the following dynamics

dxα
t = (axα

t + buα
t ) dt+ σdwα

t , xα
0 ∼ N (mα, ν2).

(8)

1Strictly speaking, the cut metric is a pseudometric and the unique
equivalent classes of graphons are defined up to all measure preserving
bijections from [0, 1] to [0, 1] (see [19] for details).

for all t ∈ [0,∞) and all α ∈ [0, 1].
3) (Consistency Conditions) Show that the optimal state

trajectories {xα,o
t , t ∈ [0,∞), ∀α ∈ [0, 1]}, satisfy the

consistency conditions, for all (α, t) ∈ [0, 1]× [0,∞);

zαt =

∫ 1

0

g(α, β)E[xβ,o
t ]dβ. (9)

The control problems can be solved following the standard
approach described in [1]. Consider the following algebraic
Riccati equation:

ρπ = 2aπ − b2

r
π2 + 1, r > 0, ρ > 0. (10)

The Riccati equation has a unique positive solution

π =

√
r2 (ρ− 2a)

2

4b4
+

r

b2
− (ρ− 2a) r

2b2
> 0. (11)

Consider Cb ([0,∞)) the set of bounded continuous func-
tions over the domain [0,∞). This space endowed with the
supremum norm, |x|∞ := supt∈[0,∞) |x(t)| is a Banach
space. Consider L2 ([0, 1]) the set of square integrable func-
tions on the domain [0, 1]. This space is a Hilbert space, when
endowed with the inner product ⟨x, y⟩ =

∫ 1

0
x(β)y(β)dβ.

Proposition 1. Assume that there exists a process {sαt , α ∈
[0, 1], t ∈ [0,∞)} ∈ Cb ([0,∞))×L2 ([0, 1]) determined by
the offset ODE below;

dsαt
dt

=

(
− a+

b2

r
π + ρ

)
sαt + zαt . (12)

Then, there exist optimal control processes for the infinite
horizon optimal control problems above, namely, for all α ∈
[0, 1],

uα,o
t = − b

r

(
πxα,o

t + sαt
)
, ∀t ∈ [0,∞), (13)

where the optimal state processes (xα,o
t )t∈[0,T ] are given by

the SDEs,

dxα,o
t =

[(
a− b2

r
π

)
xα,o
t − b2

r
sαt

]
dt+ σdwα

t ,

xα,o
0 ∼ N (mα, ν2).

Proof. The proof is a standard application of LQG tracking
control theory (see e.g. [1]).

Proposition 2. Assume that there exists a process {qαt , α ∈
[0, 1], t ∈ [0,∞)} ∈ Cb ([0,∞))×L2 ([0, 1]) determined by
the ODE

dqαt
dt

= −σ2π +
b2

r
(sαt )

2 + ρqαt − (zαt )
2. (14)

Then, the optimal costs are given, for all α ∈ [0, 1], by

J(uα, z) = πE[(xα,o
0 )2] + 2sα0E[x

α,o
0 ] + qα0

= π(ν2 + (mα)2) + 2sα0m
α + qα0 . (15)

Proof. The proof is also standard for LQG tracking prob-
lems. See for example [1].



Once the control problems have been solved and their
solutions characterized by the two propositions above, we
proceed to verify the consistency condition.

Proposition 3. Let the assumptions of Proposition 1 be in
force. The consistency condition (9) is satisfied if and only
if, there exists a process {zαt , α ∈ [0, 1], t ∈ [0,∞)} ∈
Cb ([0,∞))× L2 ([0, 1]) determined by the ODE:

dzαt =

[(
a− b2

r
π

)
zαt − b2

r

∫ 1

0

g(α, β)sβt dβ

]
dt, (16)

zα0 =

∫ 1

0

g(α, β)mβdβ.

Proof. The consistency condition (9) is in fact a fixed point
condition on the optimal states. From Proposition 1, we have
an SDE representation for these optimal states. Due to the
linearity of the problem, the existence of the fixed point is
characterized in terms of the existence of solutions to ODEs
(16).

Compiling the three previous propositions, we obtain that
the infinite horizon LQG-GMFGs under study is solvable
with explicit cost at equilibrium, whenever there exists pro-
cesses {zαt , sαt , qαt , α ∈ [0, 1], t ∈ [0,∞)} ⊂ Cb ([0,∞))×
L2 ([0, 1]) that are solutions to the following ODEs:

dzαt
dt

=
(
a− b2

r
π
)
zαt − b2

r

∫ 1

0

g(α, β)sβt dβ, (17)

dsαt
dt

=
(
− a+

b2

r
π + ρ

)
sαt + zαt , (18)

dqαt
dt

= −σ2π +
b2

r
(sαt )

2 + ρqαt − (zαt )
2, (19)

zα0 =

∫ 1

0

g(α, β)mβdβ.

The main difficulty with this result is that we don’t know the
steady-state information (zα∞, sα∞, qα∞) required to solve the
ODEs above. To circumvent this obstacle we apply a tech-
nique from [1] which consists in solving for (zα∞, sα∞, qα∞)
from a steady state condition in the infinite horizon,

0 =
dzα∞
dt

=
dsα∞
dt

=
dqα∞
dt

, ∀α ∈ [0, 1]. (20)

This yields the family of algebraic equations indexed by
α ∈ [0, 1], given below,

0 =
(
a− b2

r
π
)
zα∞ − b2

r

∫ 1

0

g(α, β)sβ∞dβ, (21)

0 =
(
− a+

b2

r
π + ρ

)
sα∞ + zα∞, (22)

0 = −σ2π +
b2

r
(sα∞)2 + ρqα∞ − (zα∞)2. (23)

We proceed to solve these algebraic equations. From the
first two equations, we have

0 =
(
a− b2

r
π
)[(

a− b2

r
π
)
− ρ

]
sα∞ − b2

r

∫ 1

0

g(α, β)sβ∞dβ,

with α ∈ [0, 1], which is equivalent (with discrepancies on
at most a set of measure zero) to[(

a− b2

r
π
)(

a− b2

r
π − ρ

)
I − b2

r
g

]
◦ s∞ = 0 (24)

where (g ◦ s∞)(·) :=
∫ 1

0
g(·, β)s∞(β)dβ, and I denotes the

identity operator from L2 ([0, 1]) to L2 ([0, 1]).

The operator
((

a− b2

r π
)(

a− b2

r π − ρ
)
I − b2

r g

)
has a

bounded inverse if r
b2

(
a− b2

r π
)(

a− b2

r π − ρ
)

is nonzero
and not an eigenvalue of the graphon operator g.

Remark 1. Since it is assumed that |g(x, y)| ≤ 1, for all
x, y ∈ [0, 1], the operator norm of g satisfies that

∥g∥op := sup
v∈L2[0,1]

∥gv∥
∥v∥

≤ ∥g∥2 ≤ 1, (see [20, Lem. 7])

which implies that the absolute values of all the eigenvalues
of g are less than or equal to 1. When a = 0, from (10),
π
(
b2

r π + ρ
)
I − g = I − g. It has a bounded inverse when 1

is not an eigenvalue of g.

Assumption (A1): The spectrum of the graphon operator
g does not cotain(b2

r

)−1(
a− b2

r
π
)(

a− b2

r
π − ρ

)
,

where

π =

√
r2 (ρ− 2a)

2

4b4
+

r

b2
− (ρ− 2a) r

2b2
> 0. (25)

Under Assumption (A1), the functional equation (24) admits
the (unique) solution in L2([0, 1])

zα∞ = 0 = sα∞, a.e. α ∈ [0, 1], (26)

and an application of (23) yields

qα∞ =
σ2π

ρ
, a.e. α ∈ [0, 1]. (27)

We are interested in calculating an explicit solution,
{zαt , sαt , qαt , α ∈ [0, 1], t ∈ [0,∞)} ⊂ Cb ([0,∞)) ×
L2 ([0, 1]), to the following ODEs:

dzαt
dt

=

(
a− b2

r
π

)
zαt − b2

r

∫ 1

0

g(α, β)sβt dβ, (28)

dsαt
dt

=

(
− a+

b2

r
π + ρ

)
sαt + zαt , (29)

dqαt
dt

= −σ2π +
b2

r
(sαt )

2 + ρqαt − (zαt )
2, (30)

zα0 =

∫ 1

0

g(α, β)mβdβ.

with the infinite horizon conditions

zα∞ = 0 = sα∞, qα∞ =
σ2π

ρ
, a.e. α ∈ [0, 1]. (31)



Assumption (A2a) The graphon g is of finite rank, that
is, there exists L < ∞ such that

g(α, β) =

L∑
ℓ=1

λℓfℓ(α)fℓ(β),

where fℓ is the orthonormal eigenfunction associated with
the non-zero eigenvalue λℓ of g for all ℓ ∈ {1, ..., L}.

Assumption (A2b) The nonzero eigenvalues {λℓ}Lℓ=1 of
the graphon g satisfy the following bound

λℓ < 1 +
r

b2
a(a− ρ), ∀ℓ ∈ {1, . . . , L}. (32)

Assumption (A2c) The following inequality holds:

a

√
(ρ− 2a)

2
+ 4

b2

r
> a (ρ− 2a)− 2b2

r
. (33)

Assumptions (A2b)-(A2c) are introduced to ensure that the
equations (29) and (30) have well-defined solutions over
the infinite time horizon [0,∞). Assumption (A2b) is to
ensure a crucial second order ODE (41) (to be introduced)
has a nonoscillating and exponentially stable solution, and
Assumption (A2c) ensures the positivity of (39) (to be
introduced later). We note that when a = 0 Assumption
(A2c) always holds and Assumption (A2b) holds if g does
not have 1 as eigenvalue.

Proposition 4. Let Assumptions (A2a)-(A2b)-(A2c) be in
force. Then, the process {zαt , sαt α ∈ [0, 1], t ∈ [0,∞)}
is explicitly given as below ∀t ≥ 0, a.s. α ∈ [0, 1],

zαt =

L∑
l=1

fℓ(α)z
ℓ
t , (34)

sαt = −
L∑

l=1

fℓ(α)
zℓt(

θ(λℓ) + θ(0)
) ,

where

zℓt = λℓ⟨m, fℓ⟩ exp
[(ρ

2
− θ(λℓ)

)
t
]
, ℓ ∈ {1, . . . , L},

(35)

and θ(·) is a function defined by

θ(τ) :=

√
(ρ− 2a)

2

4
+ (1− τ)

b2

r
, τ ∈ R. (36)

Proof. Consider the graphon spectral decomposition under
the finite rank assumption (A2a),

g(α, β) =

L∑
ℓ=1

λℓfℓ(α)fℓ(β), ∀α, β ∈ [0, 1], (37)

or equivalently written as

g =

L∑
ℓ=1

λℓfℓf
T
ℓ , fℓ ∈ L2 ([0, 1]) ,

where fℓ is the orthonormal eigenfunction of g, and λℓ

is the eigenvalue associated with fℓ. By the definition of
eigenvalues and eigenfunctions,

gfℓ = λℓfℓ.

Following the spectral reformulation of two point boundary
value problems developed in [21], we define the eigen
processes

zℓt = ⟨zt, fℓ⟩, sℓt = ⟨st, fℓ⟩, t ∈ [0,∞), ℓ ∈ {1, 2, ...}.

These processes are solutions to the following equations:

dzℓt
dt

=

(
a− b2π

r

)
zℓt − λℓ

b2

r
sℓt, zℓ0 = λℓ⟨m, fℓ⟩,

dsℓt
dt

= zℓt +

(
− a+

b2π

r
+ ρ

)
sℓt, sℓ∞ = 0,

for which we seek an explicit solution that is compatible with
the infinite horizon condition zℓ∞ = 0, for all ℓ ∈ {1, . . . , L}.
From the ODE for sℓ, it admits the representation below:

sℓt = −
∫ ∞

t

exp

((
−a+

b2π

r
+ ρ

)
(t− s)

)
zℓsds. (38)

The Riccati equation (10) allows to deduce that(
−a+

b2π

r
+ ρ

)
= a+

1

π
, (39)

which can be shown to be strictly positive under assumption
(A2c) and thus implies that sℓ∞ = 0.

By substituting this expression for sℓ back into the ODE
for zℓ, we obtain the representation below

dzℓt
dt

=

(
a− b2π

r

)
zℓt (40)

+ λℓ
b2

r

∫ ∞

t

exp

((
−a+

b2π

r
+ ρ

)
(t− s)

)
zℓsds.

By differentiating the above ODE and making appropriate
substitutions, we obtain the second order ODE for zℓ,

d2zℓt
dt

− ρ
dzℓt
dt

+

[
λℓ

b2

r
−
(
a− b2π

r

)2

+ ρ

(
a− b2π

r

)]
zℓt = 0. (41)

Its characteristic equation

ξ2ℓ − ρξℓ +

[
− a2 + ρa+

b2

r
(λℓ − 1)

]
= 0 (42)

admits a solution

ξℓ =

(
ρ

2
−
√

(ρ− 2a)2

4
+

b2

r
(1− λℓ)

)
,

=
ρ

2
− θ(λℓ), (43)

where θ(λℓ) =

√
(ρ−2a)2

4 + (1− λℓ)
b2

r is real if λℓ < 1 +
r(ρ−2a)2

4b2 . We observe that

ξℓ < 0 if and only if λℓ < 1 +
r

b2
a(a− ρ).

It also holds that,

λℓ < 1 +
r

b2
a(a− ρ) implies λℓ < 1 +

r

b2
(ρ− 2a)2

4
,



Therefore, whenever assumption (A2b) holds, θ(λℓ) is real
and ξℓ < 0 and we obtain zℓ as below

zℓt = λℓ⟨m, fℓ⟩ exp (ξℓt) , ∀t ≥ 0, (44)

where, because ξℓ < 0 for all l ∈ {1, . . . , L}, the infinite
horizon condition zℓ∞ = 0 is satisfied.

We now proceed to calculate sℓ as below, ∀t ∈ [0,∞)

sℓt = −
∫ ∞

t

exp

((
−a+

b2π

r
+ ρ

)
(t− s)

)
zℓsds (45)

= −λℓ⟨m, fℓ⟩ exp
((

−a+
b2π

r
+ ρ

)
t

)
∫ ∞

t

exp

((
ξℓ + a− b2π

r
− ρ

)
s

)
ds,

we explicitly calculate the integral, by observing that

ξℓ < 0, and
(
a− b2π

r
− ρ

)
< 0, (46)

and obtain that

sℓt = λℓ⟨m, fℓ⟩ exp (ξℓt)
(
ξℓ + a− b2π

r
− ρ

)−1

. (47)

Also, for all ℓ ∈ {1, . . . , L}, we have that

ξℓ + a− b2π

r
− ρ =

ρ

2
− θ(λℓ) + a− b2π

r
− ρ

= −θ(λℓ) + a− ρ

2
− b2π

r

= −θ(λℓ)−
(
(ρ− 2a)2

4
+

b2

r

) 1
2

= −θ(λℓ)− θ(0).

Therefore, it holds that

sℓt = − zℓt
θ(λℓ) + θ(0)

, ∀ℓ ∈ {1, . . . , L}. (48)

Based on (37) and the definition of the eigen processes,
we can now reconstruct the solution {zαt , sαt α ∈ [0, 1], t ∈
[0,∞)} as below

zαt =

L∑
l=1

fℓ(α)z
ℓ
t , sαt = −

L∑
l=1

fℓ(α)
zℓt

θ(λℓ) + θ(0)
.

where for all t ≥ 0 and for almost all α ∈ [0, 1].

Proposition 5. Let Assumptions (A1)-(A2) be in force. Then,
the cost at equilibrium is explicitly given, for almost every
α ∈ [0, 1], below

J(uα,z) = πν2 + π(mα)2 +
σ2π

ρ
− 2mα

L∑
l=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩

+
1

ρ

(
L∑

ℓ=1

fℓ(α)λℓ⟨m, fℓ⟩

)2

− b2

rρ

(
L∑

ℓ=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩

)2

−
L∑

k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩
(ρ
2
− θ(λk)

)
(

1

θ(λℓ) + θ(λk)

)[
2

ρ
λkλℓ −

2b2

ρr
λ̄kλ̄ℓ

]
,

where we define,

λ̄ℓ :=
λℓ

θ(λℓ) + θ(0)
, ℓ ∈ {1, . . . , L}. (49)

Proof. Given the process {zαt , sαt α ∈ [0, 1], t ∈ [0,∞)}
explicitly calculated for almost every α ∈ [0, 1], we proceed
to calculate explicitly the process {qαt , α ∈ [0, 1], t ∈
[0,∞)}, for almost every α ∈ [0, 1].

A straightforward calculation allows to verify that,

qαt = − exp (ρt)

∫ ∞

t

Θ(α, s) exp (−ρs) ds, (50)

with Θ(α, t), ∀α ∈ [0, 1], t ∈ [0,∞), defined by:

Θ(α, t) = −σ2π − (zαt )
2
+

b2

r
(sαt )

2,

= −σ2π −

(
L∑

l=1

fℓ(α)λℓ⟨m, fℓ⟩ exp (ξℓt)

)2

+
b2

r

(
L∑

ℓ=1

(θ(λℓ) + θ(0))
−1

fℓ(α)λℓ⟨m, fℓ⟩ exp (ξℓt)

)2

,

= −σ2π −

(
L∑

l=1

fℓ(α)λℓ⟨m, fℓ⟩ exp (ξℓt)

)2

+
b2

r

(
L∑

ℓ=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩ exp (ξℓt)

)2

,

is a solution to the offset ODE,

dqαt
dt

= −σ2π +
b2

r
(sαt )

2 + ρqαt − (zαt )
2
. (51)

Moreover, the process {qαt , α ∈ [0, 1], t ∈ [0,∞)} is
compatible with the infinite horizon condition

qα∞ =
σ2π

ρ
. (52)

Indeed, by applying L’Hopital’s Rule, we obtain that,

lim
t→∞

qαt = lim
t→∞

− exp (ρt)

∫ ∞

t

Θ(α, s) exp (−ρs) ds

= lim
t→∞

Θ(α, t)

−ρ
=

−σ2π

−ρ
= qα∞.

Recall that the optimal cost is given, for all α ∈ [0, 1], by

J(uα, z) = π(ν2 + (mα)2) + 2sα0m
α + qα0 .

To calculate the cost at equilibrium explicitly, for a.e. α ∈
[0, 1], it is enough to calculate the quantities sα0 , q

α
0 .

We obtain that for almost every α ∈ [0, 1],

sα0 = −
L∑

l=1

(θ(λℓ) + θ(0))
−1

fℓ(α)λℓ⟨m, fℓ⟩, (53)

= −
L∑

l=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩ . (54)

And, for almost every α ∈ [0, 1],

qα0 = −
∫ ∞

0

Θ(α, s) exp (−ρs) ds, (55)



where Θ(α, t), ∀α ∈ [0, 1], t ∈ [0,∞), is defined by:

Θ(α, t) = −σ2π −

(
L∑

l=1

fℓ(α)λℓ⟨m, fℓ⟩ exp (ξℓt)

)2

+
b2

r

(
L∑

ℓ=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩ exp (ξℓt)

)2

.

Integrating by parts yields

qα0 = −Θ(α, 0)

ρ
− 1

ρ

∫ ∞

0

exp (−ρs)
dΘ(α, s)

ds
ds.

We then calculate that,

−Θ(α, 0)

ρ
=

σ2π

ρ
+

1

ρ

(
L∑

ℓ=1

fℓ(α)λℓ⟨m, fℓ⟩

)2

− b2

rρ

(
L∑

ℓ=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩

)2

,

and

−1

ρ

∫ ∞

0

exp (−ρs)
dΘ(α, s)

ds
ds

=

L∑
k=1

L∑
ℓ=1

ξk

(∫ ∞

0

e(ξk+ξℓ−ρ)sds

)
fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩

[
2

ρ
λkλℓ −

2b2

ρr
λ̄kλ̄ℓ

]
,

we calculate the exponential integral and obtain,

−1

ρ

∫ ∞

0

exp (−ρs)
dΘ(α, s)

ds
ds

=

L∑
k=1

L∑
ℓ=1

ξk (ξk + ξℓ − ρ)
−1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩[
2

ρ
λkλℓ −

2b2

ρr
λ̄kλ̄ℓ

]
.

By observing the equality

(ξk + ξℓ − ρ) = − (θ(λℓ) + θ(λk)) ,

we deduce that,

qα0 =
σ2π

ρ
+

1

ρ

(
L∑

ℓ=1

fℓ(α)λℓ⟨m, fℓ⟩

)2

− b2

rρ

(
L∑

ℓ=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩

)2

−
L∑

k=1

L∑
ℓ=1

(ρ
2
− θ(λk)

)
(θ(λℓ) + θ(λk))

−1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩
[
2

ρ
λkλℓ −

2b2

ρr
λ̄kλ̄ℓ

]
.

Finally, recalling that the cost at equilibrium is explicitly
given by

J(uα, z) = π(ν2 + (mα)2) + 2sα0m
α + qα0 (56)

and substituting the calculated terms appropriately, we obtain
the desired result.

Remark 2 (Properties of the θ(·) function). The θ(·) function
has two interesting properties due to its particular form

θ(τ) :=

√
(ρ− 2a)

2

4
+ (1− τ)

b2

r
.

A first property is that for λℓ ̸= λk

1

θ(λℓ) + θ(λk)
=

θ(λℓ)− θ(λk)

θ(λℓ)2 − θ(λk)2
= −

( r

b2

) θ(λℓ)− θ(λk)

(λℓ − λk)
.

(57)
A second property is that θ′(τ) = −b2

2rθ(τ) .

In the next proposition, we introduce simplifications of the
cost at equilibrium calculated above.

Proposition 6. Assume (A1)-(A2) hold. Then, the cost at
equilibrium is explicitly given below: for almost every α ∈
[0, 1],

J(uα, z) = πν2 + π(mα)2 +
σ2π

ρ

− 2r

b2
mα

L∑
ℓ=1

fℓ(α)(θ(0)− θ(λℓ))⟨m, fℓ⟩

−
L∑

k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩
(

ρ

θ(λℓ) + θ(λk)
− 2

)
1

ρ

[
λℓλk−

r

b2
(θ(0)− θ(λℓ))(θ(0)− θ(λk))

]
,

where θ(τ) :=

√
(ρ−2a)2

4 + (1− τ) b
2

r , τ ∈ R.

Proof. We observe that

L∑
k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩
(ρ
2
− θ(λk)

)
(

1

θ(λℓ) + θ(λk)

)[
2

ρ
λkλℓ −

2b2

ρr
λ̄kλ̄ℓ

]
=

L∑
k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩(
ρ− θ(λk)− θ(λℓ)

θ(λℓ) + θ(λk)

)[
1

ρ
λkλℓ −

b2

ρr
λ̄kλ̄ℓ

]
=

L∑
k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩(
ρ

θ(λℓ) + θ(λk)

)[
1

ρ
λkλℓ −

b2

ρr
λ̄kλ̄ℓ

]

− 1

ρ

(
L∑

ℓ=1

fℓ(α)λℓ⟨m, fℓ⟩

)2

+
b2

rρ

(
L∑

ℓ=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩

)2

.

Taking the cost form in Prop. 5, then last three terms there



can be further simplified, which leads to the following result

J(uα, z) = πν2 + π(mα)2 +
σ2π

ρ
− 2mα

L∑
l=1

fℓ(α)λ̄ℓ⟨m, fℓ⟩

−
L∑

k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩(
ρ

θ(λℓ) + θ(λk)
− 2

)[
1

ρ
λkλℓ −

b2

ρr
λ̄kλ̄ℓ

]
.

(58)
An application of the property (57) yields

λ̄ℓ :=
λℓ

θ(λℓ) + θ(0)
= − r

b2
(θ(λℓ)− θ(0)), ℓ ∈ {1, . . . , L}.

Replacing λ̄k and λ̄ℓ in (58) yields the desired result.

Assumption (A3) The initial means are constant across
all nodes. That is, for all α ∈ [0, 1],

mα = m, for some m ∈ R. (59)

Proposition 7. Assume that (A1)-(A2)-(A3) hold. The cost at
equilibrium admits the following representation, for almost
every α ∈ [0, 1],

J(uα, z) = π

(
ν2 +m2 +

σ2

ρ

)
− 2r

b2
m2

∫ 1

0

ĝ(α, β)dβ

−m2

∫ 1

0

g̃(α, β |α)dβ,

where the introduced finite rank graphons
{ĝ(·, ·), g̃(·, · | α), ∀α ∈ [0, 1]} are defined for all
(ϵ, β) ∈ [0, 1]× [0, 1] by

ĝ(ϵ, β) :=

L∑
k=1

λ̂kfk(ϵ)fk(β), (60)

g̃(ϵ, β |α) :=
L∑

k=1

λ̃α
kfk(ϵ)fk(β), (61)

and for all k ∈ {1, . . . , L}, for all α ∈ [0, 1], the eigenvalues
are defined by

λ̂k = θ(0)− θ(λk),

λ̃α
k :=

L∑
ℓ=1

fℓ(α)⟨1, fℓ⟩
(

ρ

θ(λℓ) + θ(λk)
− 2

)
1

ρ

(
λkλℓ −

r

b2
λ̂kλ̂ℓ

)
.

Proof. Thanks to assumptions (A1)-(A2) and proposition 6,
we have that the cost at equilibrium is given, for almost every

α ∈ [0, 1], by

J(uα, z) = πν2 + π(mα)2 +
σ2π

ρ

− 2r

b2
mα

L∑
l=1

fℓ(α)λ̂ℓ⟨m, fℓ⟩

−
L∑

k=1

L∑
ℓ=1

fk(α)fℓ(α)⟨m, fk⟩⟨m, fℓ⟩(
ρ

θ(λℓ) + θ(λk)
− 2

)
1

ρ

[
λkλℓ −

r

b2
λ̂kλ̂ℓ

]
.

Assuming that (A3) hold, we get

J(uα, z) = π

(
ν2 +m2 +

σ2

ρ

)
− 2r

b2
m2

L∑
l=1

fℓ(α)λ̂ℓ⟨1, fℓ⟩

−m2
L∑

k=1

λ̃α
kfk(α)⟨1, fk⟩,

where for all k ∈ {1, . . . , L}, for all α ∈ [0, 1], the quantities
λ̄k, λ̃α

k , are defined by

λ̂k = θ(0)− θ(λk),

λ̃α
k :=

L∑
ℓ=1

fℓ(α)⟨1, fℓ⟩
(

ρ

θ(λℓ) + θ(λk)
− 2

)
1

ρ

(
λkλℓ −

r

b2
λ̂kλ̂ℓ

)
.

Interpreting these quantities as eigenvalues, we deduce that
the cost at equilibrium can be written as a function of the
degrees of newly introduced finite rank graphons build from
the original graphon g(·, ·).

The next proposition gives a necessary and sufficient
condition for a node α∗ ∈ [0, 1] to be, almost surely, a node
with minimal cost at equilibrium.

Proposition 8. Assume that (A1)-(A2)-(A3) hold. Any node
α∗ ∈ [0, 1] is, almost surely, a node with minimal cost at
equilibrium, if and only if, α∗ ∈ [0, 1] satisfies the condition:

α∗ = argmaxα∈[0,1]

[
2r

b2

∫ 1

0

ĝ(α, β)dβ +

∫ 1

0

g̃(α, β |α)dβ
]

(62)

Proof. The proof is straightforward from the observation
that, by proposition 7, the cost at equilibrium can be written
as

J(uα, z) = π

(
ν2 +m2 +

σ2

ρ

)
−m2

[
2r

b2

∫ 1

0

ĝ(α, β)dβ +

∫ 1

0

g̃(α, β |α)dβ
]
.

Remark 3. We note that, whenever α∗ ∈ [0, 1] satisfying 62
is an interior point of [0, 1], it holds that

∂J(uα∗
, z)

∂α
= 0, (63)



Fig. 1: Cost at equilibrium as a function of α ∈ [0, 1].

thus linking α∗ ∈ [0, 1] to the notion of critical nodes for
LQG-GMFGs introduced in [10]. Therein the uniform at-
tachment graphon is used as an example and it is not of finite
rank. This difficulty can be solved by using some finite rank
approximation of its spectral decomposition (see [12]). As an
illustration, Fig. 1 represents the cost at equilibrium when we
consider the 1-rank approximation of the uniform attachment
graphon given by the eigenvalue and eigenfunction below

λ = (2/3.14)2, f(α) =
√
2 cos

(
3.14× α

2

)
, α ∈ [0, 1],

and the infinite horizon LQG-GMFGs with a = ρ = 0.5, ν =
1, σ = 0.15, b = 1,m = 10.

Remark 4. Note that the differential calculus for GMFGs
with respect to the nodes is made rigorous via graphon vertex
embedding in some compact subset of Rd with d ≥ 1 which
is possible due to the work [22], and hence is one future
direction of this paper.

III. CONCLUSION

In this work, we establish the explicit form of equilibrium
cost for infinite horizon LQG-GMFGs. This allows us to
deduce a necessary and sufficient condition for identifying
nodes, α ∈ [0, 1], associated with minimal equilibrium cost.
These conditions are structural and involve new graphons
built from the original graphon in the infinite horizon LQG-
GMFG. In future works, we will further analyze these new
graphons, the relaxation of the finite-rank assumption on
graphons for infinite horizon LQG-GMFGs following similar
ideas in [12], and possible relations to centrality notions in
games on large networks (see [23], [24]).
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