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Abstract— This paper studies approximate solutions to large-
scale linear quadratic stochastic games with homogeneous nodal
dynamics and heterogeneous network couplings based on the
graphon mean field game framework in [1]–[3]. A graphon
time-varying dynamical system model is first formulated to
study the limit problem of linear quadratic Gaussian graphon
mean field games (LQG-GMFG). The Nash equilibrium to the
limit problem is then characterized by two coupled graphon
time-varying dynamical systems. Based on this characterization,
we establish two sufficient conditions for the existence of
a unique solution to the limit LQG-GMFG problem, and
moreover we provide a new asymptotic error bound for applica-
tions of approximate solutions to finite-network games. Finally,
simulation results on random networks are demonstrated

I. INTRODUCTION

Applications such as market networks, large-scale social
networks, advertising networks, communication networks
and smart grids involve strategic decisions over a large num-
ber of agents coupled via large-scale heterogeneous network
structures. The large cardinalities of the underlying networks
and the complexity of the underlying network couplings
in dynamics and decision strategies make such problems
challenging or even intractable by standard methods. To
characterize large graphs and study the convergence of dense
graph sequences to their limits, graphon theory is established
in [4]–[6]. It has been applied to study dynamical systems
([7], [8]), network centrality [9], random walks [10], graph
neural networks [11], epidemic models ([12], [13]), Graphon
Control of very large-scale networks ([14]–[17]), among
others. To study strategic decision problems on networks,
game theoretic models with various interpretations of the
underlying networks have been extensively studied in the
literature (see for instance [18]–[21]). To model and solve
game problems on large-scale non-uniform networks, static
and dynamic games on graphons are studied ([22], [23],
[1]–[3], [24]). In particular, for dynamic game problems
involving large populations of individuals on non-uniform
networks, Graphon Mean Field Game (GMFG) theory was
proposed and developed in [1]–[3]. It generalizes classical
mean field game theory ([25], [26]) in the sense that each
node may be influenced by a different local mean field.
Under suitable technical conditions, Nash equilibria and
ε-Nash properties have been established in [1]–[3]. Mean
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field games with non-uniform cost couplings were studied
in an earlier paper [27], and mean field game problems
on graphs with different interpretations of the underlying
graphs have also been studied in [28]–[30]. In [28], [29], the
graphs represent physical constraints on the state space of
the mean field game problems. In [30] linear quadratic mean
field games over Erdös-Rényi graphs are studied where the
associated asymptotic game is a classical mean field game.
Recent works on mean field game problems on networks
include [24], [31]. Among these papers, depending on the
definitions of nodes, there are two classes of closely related
mean field game problems on networks: (i) networks of mean
field (or measure) couplings where each node on the network
represents a population [1]–[3]; (ii) networks of individual
state couplings where each node represents an agent (see for
instance [24], [27], [30], [31]). In the current paper, each
node represents a population of homogenous agents.

The main contributions of this paper include the following:
(i) characterization of the limit LQG-GMFG problem by
two coupled graphon time-varying dynamical systems, (ii)
two different sufficient conditions on the existence of a
unique solution to the limit LQG-GMFG problem, (iii) new
asymptotic error bounds on the convergence of the network
mean fields to the graphon mean field, and (iv) two solution
methods via invariant subspace decompositions for the limit
LQG-GMFG problems, one based on fixed point iterations
and the other based on a decoupling Riccati equation.

Notation: R denotes the set of real numbers. Bold face letters
(e.g. A, u) are used to represent graphons, compact operators
and functions. Blackboard bold letters (e.g. A) are used to
denote linear operators which are not necessarily compact.
Aᵀ to denote the adjoint operator of A. Wc denotes the
set of all symmetric bounded measurable functions W :
[0, 1]2 → [−c, c] with c > 0; W0 denotes the set of all
symmetric measurable functions W : [0, 1]2 → [0, 1]. For
a Hilbert space H, L(H) denotes the Banach algebra of
bounded linear operators from H to H. L(H) endowed
with the uniform operator topology is denoted by Lu(H).
For a Banach space X , C([0, T ];X ) denotes the set of all
continuous functions from [0, T ] to X . Let ⊕ denote direct
sum. Let ⊗ denote matrix Kronecker product. For any matrix
Q ∈ Rn×n, Q ≥ 0 (resp. Q > 0) means Qᵀ = Q
and xᵀQx ≥ 0 (resp. xᵀQx > 0) for all x ∈ Rn. For
x ∈ Rn, Q ∈ Rn×n and Q ≥ 0, let ‖x‖2Q , xᵀQx.
L2[0, 1] denotes the space of L2 measurable functions from
[0, 1] to R. Let (L2[0, 1])n , L2[0, 1]× · · · × L2[0, 1]︸ ︷︷ ︸

n

.

The inner product in (L2[0, 1])n is defined as follows: for
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v,u ∈ (L2[0, 1])n, 〈u,v〉 ,
∑n
i=1

∫
[0,1]

vi(α)ui(α)dα =∫
[0,1]
〈v(α),u(α)〉Rndα, where ui(·) ∈ L2[0, 1] with i ∈

{1, . . . , n} denotes the ith component of u and u(α) ∈
Rn denotes the vector associated with index α ∈ [0, 1].
The space (L2[0, 1])n with the above inner product is a
Hilbert space with the corresponding norm ‖v‖(L2[0,1])n ,(∫

[0,1]
‖v(α)‖2Rndα

) 1
2

. We use L2([0, T ]; (L2[0, 1])n) to
denote the Hilbert space of equivalence classes of strongly
measurable (in the Böchner sense [32, p.103]) mappings
from [0, T ] to (L2[0, 1])n that are integrable with the

norm ‖x‖L2([0,T ];(L2[0,1])n) =
( ∫ T

0
‖x(t)‖2(L2[0,1])ndt

) 1
2

.

The function 1 ∈ L2[0, 1] is defined as follows: for all
α ∈ [0, 1], 1(α) = 1. 1n denotes the n-dimensional vector
of ones. For any v ∈ Rn and f ∈ L2[0, 1], vf denotes the
function in (L2[0, 1])n such that (vf)(α) = vf(α) ∈ Rn for
all α ∈ [0, 1]. For any two functions f and g defined on
subsets of R, f = O(g) means that there exist a positive
real constant c and a number x0 such that |f(x)| ≤ cg(x)
holds for all x ≥ x0.

II. PRELIMINARIES

A. Graphs, Graphons and Graphon Operators

A graph G = (V,E) is specified by a node set V =
{1, . . . , N} and an edge set E ⊂ V ×V . The corresponding
adjacency matrix W = [wij ] is defined as follows: wij = 1
if (i, j) ∈ E otherwise wij = 0. A graph is undirected if its
edge pair is unordered. For a weighted undirected graph, wij
in the adjacency matrix represents the weight between nodes
i and j. Furthermore an adjacency matrix can be represented
by a pixel diagram on the unit square [0, 1]2 ⊂ R2, which
corresponds to a step function graphon [6].

Graphons are formally defined as symmetric Lebesgue
measurable functions M : [0, 1]2 → [0, 1]. In this paper,
we consider symmetric Lebesgue measurable functions M :
[0, 1]2 → [−c, c] with c > 0, and the space of all such
functions is denoted by Wc. The space Wc is compact
under the cut metric after identifying equivalent points of
cut distance zero [6].
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Fig. 1: A half graph, its pixel diagram, and its limit graphon

A graphon M ∈ Wc also defines a self-adjoint bounded
linear operator from L2[0, 1] to L2[0, 1] as follows:

[Mv](α) =

∫
[0,1]

M(α, η)v(η)dη, ∀α ∈ [0, 1], (1)

where v,Mv ∈ L2[0, 1]. Following [17], graphons can also
be associated with operators from (L2[0, 1])n to (L2[0, 1])n.
Let L

((
L2[0, 1]

)n)
represent the set of bounded linear op-

erators from
(
L2[0, 1]

)n
to
(
L2[0, 1]

)n
. Define the operator

[DM] ∈ L
((
L2[0, 1]

)n)
with D ∈ Rn×n and M ∈ Wc as

follows: for any v ∈
(
L2[0, 1]

)n
and any index α ∈ [0, 1],

([DM]v)(α) , D


∫

[0,1]
M(α, β)v1(β)dβ

...∫
[0,1]

M(α, β)vn(β)dβ

 ∈ Rn.
(2)

For the identity operator I in L
(
L2[0, 1]

)
and D ∈ Rn×n,

the operation [DI] in L
((
L2[0, 1]

)n)
is defined as follows:

for any v ∈
(
L2[0, 1]

)n
and any index α ∈ [0, 1],

([DI]v)(α) , D
(
v1(α) . . .vn(α)

)ᵀ
= Dv(α) ∈ Rn. (3)

We use the square bracket [·] to indicate that the operator is in
L
((
L2[0, 1]

)n)
. Based on the definitions of the operations

of [DM] and [DI] in (2) and (3), the kth (k ≥ 0) power
functions of [DM] and [DI] are respectively given by
[DM]k = [DkMk] and [DI]k = [DkIk]. We note that M0

is defined as the identity operator from L2[0, 1] to L2[0, 1].
Furthermore, for any A,D ∈ Rn×n, T1,T2 ∈ {αI + βM :
α, β ∈ R,M ∈ Wc} ⊂ L((L2[0, 1])n), then [AT1][DT2] =
[ADT1T2] holds. Since [DM] is a bounded linear operator
from

(
L2([0, 1])

)n
to
(
L2([0, 1])

)n
, it generates a uniformly

continuous (hence strongly continuous) semigroup [33] given
by S[DM](t) = exp(t[DM]) ,

∑∞
k=0

1
k! t

k[DM]k, t ≥ 0.

B. Invariant Subspace and Component-Wise Decomposition

Let H denote a Hilbert space. An invariant subspace of
a bounded linear operator T ∈ L(H) is defined as any
subspace SH ⊂ H such that TSH ⊂ SH. Then the subspace
SH is T-invariant. Since a graphon M ∈ Wc defines a
self-adjoint operator as in (1), for any invariant subspace
S ⊂ L2[0, 1] of M, S⊥ is also an invariant subspace of
M (see [17]) where S⊥ denotes the orthogonal complement
subspace of S in L2[0, 1]. A subspace S ⊂ L2[0, 1] is the
graphon invariant subspace of M ∈ Wc if (i) MS ⊂ S, (ii)
Mv 6= 0 for all v ∈ (S\{0}), and (iii) MS⊥ = {0}, where
it is readily verified that such a subspace S is unique. Let
(S)n , S × . . .× S︸ ︷︷ ︸

n

⊂ (L2[0, 1])n. Clearly, by definition,

(S ⊕ S⊥)n = (L2[0, 1])n. Any v ∈ (L2[0, 1])n can be
uniquely decomposed through its components as

vi = v̄i + v⊥i , ∀i ∈ {1, ..., n} (4)

where v̄i ∈ S ⊂ L2[0, 1] and v⊥i ∈ S⊥ ⊂ L2[0, 1]. We call
this decomposition in (4) the component-wise decomposition
of v into (S)n and (S⊥)n, and denote it by v = v̄ + v⊥

where v̄ ∈ (S)n and v⊥ ∈ (S⊥)n (see [17] for more details).

III. GRAPHON DYNAMICAL SYSTEMS

A. Graphon Dynamical System Models

Consider the graphon time-varying dynamical system

ẋ(t) = [A(t)I +D(t)M]x(t) + [B(t)I + E(t)M]u(t) (5)

where x(t),u(t) ∈
(
L2[0, 1]

)n
and M ∈ Wc. The ad-

missible control u(·) lies in L2([0, T ]; (L2[0, 1])n). For any
t ∈ [0, T ], A(t), B(t), D(t) and E(t) are n × n matrices;



furthermore, A(·), B(·), D(·) and E(·) are assumed to be
continuous from [0, T ] to Rn×n.

A mild solution of (5) is defined as the solution x that is
continuous in [0, T ] and verifies the integral equation x(t) =
x0 +

∫ t
0

(A(τ)x(τ) + B(τ)u(τ)) dτ, where A(t) = [A(t)I+
D(t)M]x(t) and B(t) = [B(t)I + E(t)M]u(t).

Lemma 1 ([34]) The system (5) has a unique mild solution
in C([0, T ]; (L2[0, 1])n) given by

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)[B(τ)I +D(τ)M]u(τ)dτ

(6)
where Φ(·, ·) is the evolution operator relative to [A(·)I +
D(·)M] that satisfies

dΦ(t, τ)

dt
= [A(t)I +D(t)M]Φ(t, τ), Φ(τ, τ) = I, (7)

with Φ(t, τ) ∈ Lu
(
(L2[0, 1])n

)
for all τ, t ∈ [0, T ]. Further-

more, if u ∈ C([0, T ]; (L2[0, 1])n), then (5) has a unique
classical solution1, which is also given by (6). 2

Remark 1 Compared to [17], the graphon dynamical system
model in (5) is time-varying; more specifically, the parameter
matrices A(·), B(·), D(·) and E(·) are time-varying, but the
underlying graphon is time-invariant. This time-varying for-
mulation is crucial in enabling the representation of solutions
to the limit LQG-GMFG problems via two coupled time-
varying graphon differential equations (see Section IV-C). 2

B. Graphon Models of Finite Network Systems

Consider an N -node network with the following nodal
dynamics: for i ∈ {1, ..., N},

ẋi(t) = A(t)xi(t)+B(t)ui(t)+D(t)xGi (t)+E(t)uGi (t) (8)

where xi(t) ∈ Rn and ui(t) ∈ Rn represent respectively
the state and the control of ith node at time t, and xGi (t) ,
1
N

∑N
j=1mijxj(t) and uGi (t) , 1

N

∑N
j=1mijuj(t) represent

respectively the network influence of states and that of the
control at time t ∈ [0, T ]. The coupling weights satisfy that
mij ≤ c for all i, j ∈ {1, ..., N} where c is the same constant
for the graphon set Wc. We note that problems with m-
dimensional control inputs (m < n) for the nodal dynamics
can be represented by placing zeros in columns (with indices
between m and n) of D(t) and E(t). Consider a uniform
partition {P1, . . . , PN} of [0, 1] with P1 = [0, 1

N ] and Pk =
(k−1
N , kN ] for 2 ≤ k ≤ N . The step function graphon M[N]

that corresponds to MN , [mij ] is defined by

M[N](ϑ, ϕ) =

N∑
i=1

N∑
j=1

1
Pi

(ϑ)1
Pj

(ϕ)mij , (ϑ, ϕ) ∈ [0, 1]2,

where 1
Pi

(·) is the indicator function (that is, 1
Pi

(ϑ) = 1 if
ϑ ∈ Pi and 1

Pi
(ϑ) = 0 if ϑ /∈ Pi). Let x[N](t) ∈ (L2[0, 1])n

be the piece-wise constant function (in the ϑ argument)
corresponding to x(t) , (x1(t)

ᵀ
, ..., xN (t)

ᵀ
)ᵀ ∈ RnN that

1That is, the solution x is continuous on [0, T ], x(t) lies in the domain
of [A(t)I +D(t)M] for all t ∈ [0, T ], x is continuously differentiable on
(0, T ] and satisfies (5).

is given by x
[N]
ϑ (t) ,

∑N
i=1 1Pi (ϑ)xi(t), ∀ϑ ∈ [0, 1].

Similarly, define u[N](t) ∈ (L2[0, 1])n that corresponds to
u(t) , (u1(t)

ᵀ
, ..., uN (t)

ᵀ
)ᵀ ∈ RnN .

Then the network system in (8) may be compactly repre-
sented by the following graphon dynamical system

ẋ[N](t) =
[
A(t)I +D(t)M[N]

]
x[N](t)

+
[
B(t)I +D(t)M[N]

]
u[N](t), t ∈ [0, T ],

(9)

where x[N](t),u[N](t) ∈ (L2
pwc[0,1])

n, M[N] ∈ Wc repre-
sents the step function graphon associated with the underly-
ing graph adjacency matrix MN , and (L2

pwc[0, 1])n denotes
the set of all piece-wise constant (over each element of the
uniform partition) functions in (L2[0, 1])n.

The trajectories of the graphon dynamical system in (9)
correspond one-to-one to the trajectories of the network
system in (8), following a similar proof argument to [16,
Lemma 3]. Moreover, the system in (5) can represent the
limit system for a sequence of systems represented in the
form of (9) when the underlying step function graphon
sequence converges to a limit graphon under the operator
norm and the sequence of initial conditions converges to
a limit initial condition in (L2[0, 1])n (following a similar
proof argument to [16, Theorem 7]).

IV. LQG GRAPHON MEAN FIELD GAMES

A. Stochastic Dynamic Games on Finite Networks

Consider an N -node graph where each node is associated
with a homogeneous population of agents. Each individual
agent is influenced by the mean field of its nodal population
and the mean fields of other nodal populations over the graph.
Let Vc denote the set of nodes and N = |Vc| denote the total
number of nodes. Let Cq denote the set of agents in the qth
cluster. Then the total number of agents is K =

∑N
q=1 |Cq|.

Following the problem formulation in [1]–[3], the dynam-
ics of an individual agent i ∈ {1, ...,K} are given by

dxi(t) = (Axi(t) +Bui(t) +Dzi(t))dt+ Σdwi(t), (10)

where t ∈ [0, T ], xi(t), ui(t), and zi(t) are respectively
the state, the control and the network influence in Rn.
{wi, 1 ≤ i ≤ K} are independent standard n-dimensional
Wiener processes and are independent of the initial condi-
tions {xi(0), 1 ≤ i ≤ K} which are also assumed to be
independent. Σ is a constant n×n matrix. We drop the time
index for A(·), B(·), D(·) purely for notation simplicity. For
an agent i ∈ Cq , the network influence is given by

zi(t) =
1

N

N∑
`=1

mq`
1

|C`|
∑
j∈C`

xj(t) =
1

N

N∑
`=1

mq`x̄`(t) (11)

where MN = [mq`] is the adjacency matrix of the underlying
graph, x̄`(t) ,

∫
Rn
xµ̂`(t, x)dx with µ̂`(t, ·) as the empirical

distribution of agent states in cluster C` at time t. The



individual cost for agent i is given by

Ji(ui) , E
(∫ T

0

(
‖xi(t)− νi(t)‖2Q + ‖ui(t)‖2R

)
dt

+ ‖xi(T )− νi(T )‖2Q
T

)
(12)

where Q,QT ≥ 0, R > 0, νi(t) , H(zi(t) + η), η ∈ Rn
and H ∈ Rn×n.

Let γi(·, ·) : [0, T ] × Ii → Rn denote the strategy of
agent i, i ∈ {1, ...,K} where Ii denotes the information set
available to agent i. The control action of agent i at time
t is then given by ui(t) = γi(t, η) with η ∈ Ii. A strategy
K-tuple (γ1, ..., γK) is a Nash equilibrium if it satisfies that
for all i ∈ {1, . . . ,K},

Ji(γi, γ−i) ≤ Ji(γ, γ−i), ∀γ(·, ·) : [0, T ]× Ii → Rn,

where γ−i , (γ1, ..., γi−1, γi+1, ..., γK), and J(γ, γ−i) de-
notes the cost for agent i when agent i follows strategy
γ(·, ·) : [0, T ] × Ii → Rn and all the other agents follow
strategies specified in γ−i. Given that all other agents are
taking strategies specified by γ−i, the best response of
agent i is defined by arg infγ∈Ui Ji(γ, γ−i), where the sets
of admissible strategies (Ui)Ki=1 may consist of open-loop,
close-loop, or state-feedback strategies depending on the
information structures (see [19] for detailed discussions).

Directly finding Nash equilibria for such problems on
large-scale networks is generally intractable. To tackle this
the graphon mean field game approach [1]–[3] employs the
idea of finding approximate solutions based on both the
mean field limit and the graphon limit. The corresponding
best response for each individual agent in the approximate
solution is decentralized in the sense that only local state
observation is required in Ii.

B. Infinite Nodal Population Problems on Finite Networks

In the asymptotic local population limit (i.e. |Cq| → ∞
for all q ∈ {1, ..., N}), the dynamics of a generic agent α in
the cluster Cq (i.e. α ∈ Cq) in the problem are then given by

dxα(t) = (Axα(t) +Buα(t) +Dzα(t))dt+ Σdwα(t) (13)

where zα(t) = 1
N

∑N
`=1mq`x̄`(t) and

x̄`(t) , lim
|C`|→∞

1

|C`|
∑
j∈C`

xj(t) =

∫
Rn
xµ`(t, dx).

with µ`(t, ·) as the probability measure at cluster C` at time
t. The cost for a generic agent α ∈ Cq is then given by

Jα(uα) = E
(∫ T

0

(
‖xα(t)− να(t)‖2Q + ‖uα(t)‖2R

)
dt

+ ‖xα(T )− να(T )‖2Q
T

)
(14)

where Q,QT ≥ 0, R > 0 and να(t) , H(zα(t) + η).
For cluster C`, let z̄`(t) , lim|C`|→∞

1
|C`|
∑
j∈C` zj(t).

Let z̄(t) , (z̄1(t)ᵀ, ..., z̄
N

(t)ᵀ)ᵀ, and let s̄(t) and x̄(t) be
represented similar to z̄(t). Let I

N
denote the identity matrix

of dimension N ×N .

Proposition 1 ([34]) If there exists a unique solution pair
(s̄, z̄) to the following coupled forward-backward equations

− ˙̄s(t) = I
N
⊗
(
A−BR−1B

ᵀ
Πt

)ᵀ
s̄(t)

− I
N
⊗ (QH −ΠtD)z̄(t)− (I

N
⊗QH)(1n ⊗ η)

s̄(T ) = (I
N
⊗QTH)(z̄(T ) + 1n ⊗ η),

(15)
˙̄z(t) = I

N
⊗ (A−BR−1B

ᵀ
Πt)z̄(t)

+
1

N
MN ⊗Dz̄(t)−

1

N
MN ⊗BR−1B

ᵀ
s̄(t)

z̄(0) =
1

N
MN x̄(0),

(16)

where t ∈ [0, T ] and Π(·) is given by the n× n-dimensional
matrix Riccati equation

−Π̇t = A
ᵀ
Πt+ΠtA−ΠtBR

−1B
ᵀ
Πt+Q, ΠT = QT , (17)

then the game problem defined by (13) and (14) has a unique
Nash equilibrium and the best response in the equilibrium is
given as follows: for a generic agent α in cluster Cq ,

uα(t) = −R−1B
ᵀ
(Πtxα(t) + s̄q(t)), α ∈ Cq. (18)

2

The solution pair to the two joint equations (15) and (16)
together with the sufficient conditions for the existence and
uniqueness can be provided based on the standard fixed point
method (see for instance [27]) or the solution method based
on Riccati equations following [35]–[37]. See [34] for two
computational algorithms.

Each individual agent, in order to generate the mean field
best response in (18), needs to solve two nN -dimensional
equations (15) and (16), and moreover each agent is required
to know the exact graph structure. To overcome these dif-
ficulties, we employ the idea of approximating large graph
structures by their graphon limit(s) in the following section.

C. Infinite Nodal Population Problems on Graphons

Consider a uniform partition {P1, . . . , PN} of [0, 1] with
P1 = [0, 1

N ] and Pk = (k−1
N , kN ] for 2 ≤ k ≤ N . Let node

q be associated with the partition Pq . If we embed the func-
tions z̄ and s̄ into the Hilbert space L2

(
[0, T ]; (L2[0, 1])n

)
,

denoted by s[N] and z[N] following Section III-B, then the
joint equations (15) and (16) can be equivalently represented
by the following graphon time-varying dynamical systems:

ṡ[N](t) = −
[
A(t)

ᵀ]
s[N](t) + [(QH −ΠtD)I]z[N](t)

+[QHI](η1), s[N](T ) = [QTHI](z[N](T ) + η1),
(19)

ż[N](t) = [A(t) +DM[N]]z[N](t)− [BR−1B
ᵀ
M[N]]s[N](t)

z[N](0) =

∫
[0,1]

M[N](·, β)x̄β(0)dβ ∈ (L2[0, 1])n

(20)
where A(t) , [(A − BR−1BᵀΠt)I], and s[N], z[N] ∈
L2([0, T ]; (L2

pwc[0, 1])n).
This equivalent formulation enables us to represent the

joint equations (15) and (16) on arbitrary-size graphs, since



any graph of a finite size can be represented by M[N] through
a step function graphon as illustrated in Section III-B.

As the number of nodes goes to infinity, the limit of joint
equations (15) and (16) (if existing) is given by the following
joint equations (21) and (22). (The existence, uniqueness and
convergence properties of the solutions are presented later in
detail in Theorem 1).
The Global LQG-GMFG Forward-Backward Equations

ṡ(t) = −
[
A(t)

ᵀ]
s(t) + [(QH −ΠtD)I]z(t) + [QHI](η1),

s(T ) = [QTHI](z(T ) + η1) ∈ (L2[0, 1])n,
(21)

ż(t) = [A(t) +DM]z(t)− [BR−1B
ᵀ
M]s(t),

z(0) =

∫
[0,1]

M(·, β)x̄β(0)dβ ∈ (L2[0, 1])n,
(22)

where A(t) , [(A−BR−1BᵀΠt)I], Π(·) is given by

−Π̇t = A
ᵀ
Πt+ΠtA−ΠtBR

−1B
ᵀ
Πt+Q, ΠT = QT , (23)

s(t), z(t) ∈ (L2[0, 1])n for all t ∈ [0, T ], and s, z ∈
L2([0, T ]; (L2[0, 1])n).

If the joint solutions s and z to (21) and (22) ex-
ist in L2([0, T ]; (L2[0, 1])n), then by Lemma 1 they also
lie in C

(
[0, T ]; (L2[0, 1])n

)
. By the Arzelà–Ascoli The-

orem and the Uniform Limit Theorem [38], the space
C([0, T ]; (L2[0, 1])n) is complete under the uniform norm
‖ · ‖C defined by

‖v‖
C
, sup
t∈[0,T ]

‖v(t)‖(L2[0,1])n , ∀v ∈ C([0, T ]; (L2[0, 1])n).

(24)

Proposition 2 ([34]) Assume there exists a unique classical
solution pair (s, z) to equations (21) and (22). Then the
graphon limit game problem has a unique Nash equilibrium
and the best response in the equilibrium for a generic agent
α in cluster Cϑ for almost all ϑ ∈ [0, 1] is given by

uα(t) = −R−1B
ᵀ
(Πtxα(t) + sϑ(t)), α ∈ Cϑ, ϑ ∈ [0, 1]

(25)
where (sϑ(t))ϑ∈[0,1],t∈[0,T ] is given by the joint equations
(21) and (22), and Π is given by (23). 2

The best response in the Nash equilibrium for the limit
problem is the same as that in [1]–[3], but the characteriza-
tion of the offset process s is different. The Global LQG-
GMFG Forward-Backward Equations explicitly specify the
space for the solution pair (s, z) following similar lines of
analysis in Graphon Control in [14]–[16], whereas in [1]–
[3] these processes are specified in a point-wise manner
without specifying the space for the global processes z and
s. The formulation in this paper further enables the analysis
of LQG-GMFG solutions based on subspace decompositions
and the convergence analysis of finite network mean fields
to the limit graphon mean field later in Theorem 1.

V. SOLUTIONS BASED ON THE FIXED-POINT ANALYSIS

A. Existence, Uniqueness and Convergence

Let A(t) , [(A−BR−1BᵀΠt)I]. Let φM1 (·, ·) and φ2(·, ·)
denote the evolution operators ([33, Chapter 5]) respectively

relative to [A(·) +DM] and [−A(·)ᵀ]. Following [33, The-
orem 5.2, Chapter 5], the evolution operators satisfy

dφM1 (t, τ)

dt
= [A(t) +DM]φM1 (t, τ), φM1 (τ, τ) = I,

dφ2(t, τ)

dt
= [−A(t)

ᵀ
]φ2(t, τ), φ2(τ, τ) = I,

in Lu
(
(L2[0, 1])n

)
(the space of all bounded linear operators

on (L2[0, 1])n under the uniform operator topology). Define
the mapping L0(·) :Wc → [0,∞) as follows:

L0(M) , sup
t∈[0,T ]

{∫ t

0

∫ T

τ

∥∥∥{φM1 (t, τ)[BR−1B
ᵀ
M]

φ2(τ, q)[(QH −ΠqD)I]
}∥∥∥

op
dqdτ

}
+

sup
t∈[0,T ]

{∫ t

0

∥∥∥φM1 (t, τ)[BR−1B
ᵀ
M]φ2(τ, T )[QTHI]

∥∥∥
op
dτ

}
(26)

for any M ∈ Wc. With a slight abuse of notation, we use
‖·‖op to denote the operator norm for both L((L2[0, 1])n) and
L(L2[0, 1]), as it will become clear in the specific context
which operator norm is referred to.

Theorem 1 ([34] Network MF to Limit Graphon MF)
If there exists a constant c0 (0 ≤ c0 < 1) such that

L0(M) ≤ c0 and L0(M[N]) ≤ c0 for all N, (27)

and lim
N→∞

‖M−M[N]‖op = 0, lim
N→∞

‖z(0)−z[N](0)‖2 = 0,

(28)
then (i) there exist a unique classical solution pair
(s[N], z[N]) to the joint equations (19) and (20) for
each N and a unique classical solution pair (s, z) to
the joint equations (21) and (22) in the product space
C([0, T ]; (L2[0, 1])n)×C([0, T ]; (L2[0, 1])n) under the uni-
form norm; (ii)

lim
N→∞

‖s− s[N]‖C = 0 and lim
N→∞

‖z− z[N]‖C = 0; (29)

(iii) moreover, the asymptotic errors are given by

‖z− z[N]‖
C

= O
{

max(‖M−M[N]‖op, ‖z(0)− z[N](0)‖2)
)}

,

‖s− s[N]‖
C

= O
{

max(‖M−M[N]‖op, ‖z(0)− z[N](0)‖2)
)}

.
2

Remark 2 In the characterization of the graphon conver-
gence in (28), the cut norm ‖ · ‖2 may also be employed,
since for any M ∈ W1 the following inequalities hold

1

8
‖M‖2op ≤ ‖M‖2 ≤ ‖M‖op (30)

where ‖M‖2 , supS,T⊂[0,1]

∣∣∣∫S×T M(x, y)dxdy
∣∣∣. The two

inequalities in (30) are immediate consequences of [39,
Lemma E.6 and Eq. (4.4)]. The cut metric δ2(·, ·) is defined
by δ2(U,V) = infφ∈Φ ‖Uφ − V‖2 for any U,V ∈ Wc,



where Φ denotes the set of all measure preserving transfor-
mations from [0, 1] to [0, 1] and Uφ(x, y) , U(φ(x), φ(y))
(see [6]). Following the procedures in [6, p.157], random
graphs are generated as follows: first sample N points
{x1, ..., xN} randomly from the uniform distribution in [0, 1]
and then connect all the unordered nodes pairs (i, j), i 6= j,
with probability M(xi, xj) (or with weight M(xi, xn)). If
the finite graphs (with the associated step function graphons
{M[N]}) are random graphs generated from an underlying
graphon M ∈ W0 ⊂ W1 following the procedures above,
the upper bound of the asymptotic error to the graphon limit
in the cut metric given by [6, Lemma 10.16] is O( 1

logN )

with probability at least 1−exp(− N
2 logN ) under the optimal

φ∗ ∈ Φ required by the cut metric. Following Theorem 1
and (30), under the conditions in (27), the asymptotic error
for ‖z− z[N]‖

C
and ‖s− s[N]‖

C
in this case is then

O

{
max

( 1√
logN

, ‖z(0)− z[N](0)‖2
)}

(31)

with probability at least 1− exp(− N
2 logN )). The probability

here is due to the randomness in the sampling procedure to
generate random graphs in [6, p.157]. 2

B. Spectral Decompositions of the Joint Equations

Consider all the normalized eigenfunctions {f`}`∈Iλ of M
associated with eigenvalues {λ`}`∈Iλ , where Iλ denotes the
index set for all the non-zero eigenvalues (allowing repeated
eigenvalues) of M. Since the graphon operator M defined
as (1) is a Hilbert–Schmidt integral operator and hence a
compact operator in L(L2[0, 1]), the number of elements in
Iλ can be finite or countably infinite (see for instance [12,
Proposition 1]). Let S = span(f`, ` ∈ Iλ) and let S⊥ denote
the orthogonal complement of S in L2[0, 1]. Projecting the
processes z and s governed by (21) and (22) into the
orthogonal subspaces (S⊥)n and (span(f`))

n ⊂ (S)n for
all ` ∈ Iλ yields the following result.

Proposition 3 ([34]) If the Global LQG-GMFG Forward-
Backward Equations (21) and (22) have a unique classical
solution pair (s, z), then the solution pair satisfies the
following: for almost all θ ∈ [0, 1] and for all t ∈ [0, T ],

sθ(t) =
∑
`∈Iλ

f`(θ)s
`(t) + s̆(t)(1−

∑
`∈Iλ

f
ᵀ
` 1f`(θ))),

zθ(t) =
∑
`∈Iλ

f`(θ)z
`(t),

(32)

where for all ` ∈ Iλ, s`(t)f` ∈ (span(f`))
n and z`(t)f` ∈

(span(f`))
n, s̆(t)(1−

∑
`∈Iλ f

ᵀ
` 1f`) ∈ (S⊥)n, and s`, z` and

s̆ ∈ C([0, T ];Rn) are given by

ṡ`(t) =− (A−BR−1B
ᵀ
Πt)s

`(t) + [QH −ΠtD]z`(t)

+QHη, s`(T ) = QTH(z`(T ) + η), ` ∈ Iλ,
(33)

ż`(t) = (A−BR−1B
ᵀ
Πt + λ`D)z`(t)− λ`BR−1B

ᵀ
s`(t),

z`(0) = λ`

∫
[0,1]

f`(β)x̄β(0)dβ, ` ∈ Iλ,

(34)

˙̆s(t) = −(A−BR−1B
ᵀ
Πt)s̆(t) +QHη, s̆(T ) = QTHη.

(35)
2Remark 3 (Solution Complexity) It is worth emphasizing

that (33), (34) and (35) are all n-dimensional differential
equations, that is, z`(t), s`(t) and s̆(t) are n-dimensional
vectors. The solution pair to the joint equations (33) and (34)
can be numerically computed via fixed-point iterations (see
Algorithm 1 in [34]). Each agent only needs to solve ddist
number of forward-backward coupled n-dimensional equa-
tions as (33) and (34), and one n-dimensional differential
equation as (35), where ddist denotes the number of distinct
non-zero eigenvalues of M. We note that ddist ≤ rank(M).
If ddist is infinite, one may rely on approximations via a
finite number of eigendirections. A special case of the joint
equations (33) and (34) is studied in [24]. 2

VI. SOLUTIONS BASED ON RICCATI EQUATIONS

A. Decoupling Joint Equations Based on Riccati Equations

Extending the idea for decoupling finite dimensional cou-
pled forward-backward differential equations in [35]–[37] to
the infinite dimensional case, we may decouple equations
(21) and (22) based on the following non-symmetric operator
Riccati equation

−Ṗ = A(t)
ᵀP + PA(t) + P[DM]−P[BR−1B

ᵀ
M]P

−[(QH −ΠtD)I], P(T ) = [QTHI]
(36)

where A(t) = (A−BR−1BᵀΠt)I and Π(·) is the solution to
the matrix differential Riccati equation in (23). Consequently
we formulate the following assumption:

(A1) The operator Riccati equation (36) has a unique
mild solution2 P in Cs

(
[0, T ];L

(
(L2[0, 1])n

)
.

Proposition 4 ([34]) If Assumption (A1) holds, then the
joint equations (21) and (22) have a unique classical solution
pair.

Given the solution to (36), the proof in [34] actually provides
a direct computation procedure for decoupling and solving
the joint equations (21) and (22) by introducing a new
process e(t) = s(t)− Pz(t), t ∈ [0, T ] (see [34] for details).

Proposition 5 ([34]) If L0(M) < 1, then (A1) holds. 2

B. Subspace Decomposition for Riccati Equations

Let the subspace S ⊂ L2[0, 1] be the graphon invariant
subspace of M defined in Section II-B and let S⊥ de-
note its orthogonal complement subspace in L2[0, 1]. T̄ ∈
L((L2[0, 1])n) is called the (S)n-equivalent operator of
T ∈ L((L2[0, 1])n) in the subspace if

T̄v = Tv and T̄u = 0, ∀v ∈ (S)n, ∀u ∈ (S⊥)n. (37)

Let P̄(t) ∈ L((L2[0, 1])n) denote the (S)n-equivalent oper-
ator of P(t). Let IS (resp. IS⊥ ) in L(L2[0, 1]) denote the

2That is, P ∈ Cs([0, T ];L((L2[0, 1])n) and satisfies the following
equation for all v ∈ (L2[0, 1])n, P(t)v = P(T )v +

∫ T
t

(
A(τ)ᵀP(τ) +

P(τ)(A(τ) + [DM])−P(τ)[BR−1BᵀM]P(τ)−[(QH − ΠτD)I]
)
vdτ

with terminal condition P (T ) = [QTHI].



S-equivalent operator (resp. S⊥-equivalent operator) of the
identity operator I ∈ L(L2[0, 1]).

Theorem 2 ([34] Riccati Eqn. Subspace Decomposition)
If (A1) holds, then the solution to the non-symmetric
operator Riccati equation (36) is equivalently given by

P(t) = [P⊥(t)IS⊥ ]+P̄(t) ∈ L((L2[0, 1])n), t ∈ [0, T ],

where [P⊥(t)IS⊥ ] ∈ L((S⊥)n), P̄(t) ∈ L((S)n), P⊥(t) ∈
Rn×n is given by the matrix differential equation

− ˙P⊥ = (A−BR−1B
ᵀ
Πt)

ᵀ
P⊥ + P⊥(A−BR−1B

ᵀ
Πt)

−(QH −ΠtD), P⊥(T ) = γQT , t ∈ [0, T ],
(38)

and P̄(t) ∈ L((S)n) is the mild solution to the non-
symmetric operator Riccati equation

− ˙̄P = [(A−BR−1B
ᵀ
Πt)IS ]

ᵀP̄ + P̄[(A−BR−1B
ᵀ
Πt)IS ]

+ P̄[DM]−P̄[BR−1B
ᵀ
M]P̄−[(QH −ΠtD)IS ],

P̄(T ) = [QTHIS ], t ∈ [0, T ].
2

Remark 4 The decomposition in Theorem 2 is due to the
property that the parameter operators [(A−BR−1BᵀΠt)I],
[DM], [BR−1BᵀM], [(QH − ΠtD)I] and [QTHI] in the
Riccati equation (36) share the same orthogonal invariant
subspaces (S)n and (S⊥)n (see [17, Proposition 3]). Such
decompositions can be generalized to Riccati equations with
general parameter operators in L((L2[0, 1])n) where the
parameter operators are only required to share some common
orthogonal invariant subspaces (S)n and (S⊥)n. 2

Corollary 1 ([34] Riccati Eqn. Spectral Decomposition)
Assume (A1) holds. Let {f`}`∈Iλ be the orthonormal
eigenfunctions of M where Iλ denotes the index set for all
the non-zero eigenvalues (allowing repeated eigenvalues) of
M. Then the solution to the non-symmetric operator Riccati
equation (36) is equivalently given by

P(t) = [P⊥(t)I] +
∑
`∈Iλ

[(P̄ `(t)− P⊥(t))f`f
ᵀ
` ], t ∈ [0, T ],

where P(t) ∈ L((L2[0, 1])n), [P⊥(t)I] ∈ L((L2[0, 1])n),
[(P̄ `(t) − P⊥(t))f`f

ᵀ
` ] ∈ L(Sn), P⊥(t) ∈ Rn×n and

P̄ `(t) ∈ Rn×n are respectively given by n× n-dimensional
matrix differential equation (38) and the following n × n-
dimensional non-symmetric matrix Riccati equation

− ˙̄P ` = (A−BR−1B
ᵀ
Πt)

ᵀ
P̄ ` + P̄ `(A−BR−1B

ᵀ
Πt)

+ λ`P̄
`D−λ`P̄ `BR−1B

ᵀ
P̄ `−(QH −ΠtD),

P̄ `(T ) = QTH, ` ∈ Iλ,

with λ` as the eigenvalue of M corresponding to f`. 2

VII. ILLUSTRATIVE EXAMPLES ON RANDOM GRAPHS

Consider the following stochastic block model (SBM)
that generates random simple graphs of arbitrary sizes (see
for instance [40]) by connecting nodes from three node

communities with probabilities specified below:

[wij ] =

0.25 0.5 0.2
0.5 0.35 0.7
0.2 0.7 0.4

 . (39)

For random graph sequences of increasing sizes gener-
ated from the SBM above, the associated graphon limit is
M(x, y) =

∑3
i=1

∑3
j=1 wij1Pi(x)1Pj (y), (x, y) ∈ [0, 1]2,

where {P1, P2, P3} is a partition of [0, 1] and |Pi| is propor-
tional to the size of ith node community. Clearly rank(M) =
rank([wij ]) = 3.

Fig. 2: A 30-node random graph instance generated from
SBM in (39), and the associated pixel representation.

The parameters in the simulation are:

A =

[
0 10
−10 0

]
, Q =

[
0.5 0
0 0.5

]
, Σ =

[
0.1 0
0 0.1

]
,

B = D = R = QT =

[
1 0
0 1

]
, η =

[
2
2

]
, H =

[
1 0
0 1

]
,

T = 1, n = 2, N = 30, |C`| = 4, 1 ≤ ` ≤ N.
(40)

The initial conditions are independently drawn from Gaus-
sian distributions with variance 1 and mean values that are
generated randomly from [−3, 3]. These mean values are
used in computing the graphon mean field game solutions.

Fig. 3: Simulation on a network generated from the stochastic
block model.

The simulation result on the 30-node graph in Fig. 2
is illustrated in Fig. 3. The relative error ‖zE−z‖C‖zE‖C of the
graphon mean field approximation is 29.256% where zE
is the actual network mean field and z is the graphon
mean field. The error between the graphon limit M and the
step function graphon M[N] (associated with the graph) is
‖M−M[N]‖op = 0.178 and the graphon limit operator norm
is ‖M‖ = 0.434. The relative approximation error ‖zE−z‖C‖zE‖C
decreases as the size of the graph increases, as illustrated in
the results on graphs of different sizes shown in Fig. 4.



0 100 200 300

nNode    [ nPop(4) nState(2) ]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
GMF Approximation Error

mean-rel-error

0 100 200 300

nNode    [ nPop(4) nState(2) ]

0

0.1

0.2

0.3

0.4

0.5
Network Operator Norm

mean-op-norm

mean-op-diff

Fig. 4: Graphon mean field game approximation errors on
networks of different size. 12 independent simulations are
carried out for each size. In the figure on the right, red dots
represent values for ‖M[N]−M‖op in different experiments.

VIII. CONCLUSION

This work studied solution methods for LQG graphon
mean field game problems based on subspace and spec-
tral decompositions, and established new asymptotic error
bounds on the convergence of the network mean fields to
the graphon mean field. Future work should focus on cases
with heterogeneous parameters in dynamics, computational
procedures for nonlinear graphon mean field games, graphon
control theory for nonlinear systems, and the counterpart
theory for sparse graphs.
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