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Abstract— Graphon-based control has recently been pro-
posed and developed to solve control problems for dynamical
systems on networks which are very large or growing without
bound (see Gao and Caines, CDC 2017, CDC 2018). In this
paper, spectral representations, eigenfunctions and approxima-
tions of graphons, and their applications to graphon-based
control are studied. First, spectral properties of graphons are
presented and then approximations based on Fourier approx-
imated eigenfunctions are analyzed. Within this framework,
two classes of graphons with simple spectral representations
are given. Applications to graphon-based control analysis are
next presented; in particular, the controllability of systems
distributed over very large networks is expressed in terms of
the properties of the corresponding graphon dynamical systems.
Moreover, spectral analysis based upon real-world network data
is presented, which demonstrates that low-dimensional spectral
approximations of networks are possible. Finally, an initial,
exploratory investigation of the utility of the spectral analysis
methodology in graphon systems control to study the control
of epidemic spread is presented.

I. INTRODUCTION

Graphon theory has been developed to study large net-
works and graph limits [1]–[3]. Recently it has been applied
to study dynamical systems such as the heat equation [4],
coupled oscillators [5] and power network synchronization
[6], to analyze network centrality [7], to investigate static
and dynamic games [8], [9], and to control large networks
of dynamical systems [9]–[13]. Graphon theory provides a
theoretical tool for the study of arbitrarily large and, in
the limit, infinite network systems, and thus enables low-
complexity approximate solutions to control problems on
such systems [9]–[13].

Among these applications, graphon spectral properties are
very significant [14]. In fact, the spectral analysis of large-
scale systems has been studied since the late 1960s [15] and
it plays a key role to the low-complexity control synthesis of
such systems [15]–[17]. This leads us to the study of spectral
representations and approximations of graphons in this paper.

As operators, graphons are Hilbert-Schmidt integral op-
erators and hence are compact. Moreover, the symmetry
property of graphons ensures that the Spectral Theorem
[18] applies to graphon operators. Topics on Hilbert-Schmidt
integral operators and self-adjoint compact operators have
been extensively studied in the literature (see e.g. [18]–[20]),
and the spectral properties of graphons, for instance, are
investigated in [21].
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This paper studies the control and analysis of graphon
systems and their associated networks via the exploitation
of their spectral properties. The contributions of this paper
include 1) the presentation of the spectral representations
of two types of graphons, 2) an analysis of the exact
controllability of a class of graphon dynamical systems
based on spectral decompositions, 3) the study of network
spectral properties based on real-world network data which
demonstrates that low-dimensional spectral approximations
of networks are possible, and 4) the initial, exploratory in-
vestigation of the utility of the spectral analysis methodology
in graphon systems control to study the controlled epidemic
spread process

Notation

R, R+ and Z+ represent respectively the sets of all real
numbers, all positive real numbers and all positive integers.
h·, ·i and k · k denote respectively inner product and norm.
Bold face letters (e.g. A, B, u) are used to represent
graphons and functions. Blackboard bold letters (e.g. I, A,
B, W) are used to denote linear operators which are not
necessarily compact; in particular, I denotes the identity
operator.

II. GRAPHS AND GRAPHONS

Network structures can be modeled as graphs. A graph
G = (V,E) is specified by an node set V and an edge set
E ⇢ V ⇥ V . It has a representation by the corresponding
adjacency matrix A = [aij ] where the element aij is
one when there is an edge from node i to node j, and
zero otherwise. For a weighted graph, the elements of its
adjacency matrix represent the corresponding edge weights.
Furthermore, if one embeds the adjacency matrix on [0, 1]2

as a pixel picture where each pixel has a side length 1
|V | with

|V | representing the cardinality of V , then it gives a function
A : [0, 1]2 ! [0, 1].

Formally, graphons are defined as bounded symmetric
Lebesgue measurable functions A : [0, 1]2 ! [0, 1], which
can be interpreted as weighted graphs on the node set [0, 1].
A meaningful convergence with respect to the cut metric (see
e.g. [3]) is defined for sequences of dense and finite graphs.
Graphons are then the limit objects of converging graph
sequences. Moreover, graphons can be used as generative
models for exchangeable random graphs [22]. These proper-
ties make graphons suitable to model extremely large-scale
networks. We note that in some papers, for instance [23],
the word “graphon” refers to symmetric, integrable functions
from [0, 1]2 to R. In this paper, unless stated otherwise, the
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term “graphon” refers to a bounded symmetric Lebesgue
measurable function A1 : [0, 1]2 ! [�1, 1], so as to include
networks with possibly negative weights, and W1 denotes
the set of all graphons. Let W0 represent the set of all
graphons satisfying A0 : [0, 1]2 ! [0, 1]. W0 and W1 are
both compact under the cut metric (after identifying points
of zero distance) [3].

III. GRAPHON OPERATORS

A. Graphon Operators

Let L2(⌦) be the standard Lebesgue space defined on ⌦
endowed with the 2-norm kxk2 = (

R
⌦ x(↵)2d↵)

1
2 . L2[0, 1]

and L2[0, 1]2 are defined by specializing ⌦ to be [0, 1] and
[0, 1]2, respectively.

Definition 1 A linear map T : L2[0, 1] ! L2[0, 1] is said to
be compact if T maps the open unit ball in L2[0, 1] to a set
in L2[0, 1] that has compact closure.

Definition 2 ([3]) A graphon operator TA : L2[0, 1] !
L2[0, 1] is defined by a graphon A 2 W1 as follows:

[TAf ](x) =

Z 1

0
A(x, y)f(y)dy, f(·) 2 L2[0, 1]. (1)

2

Clearly, the operator TA is Hermitian (or self-adjoint), since
for any x, y in L2[0, 1], hx,TAyi = hTAx, yi. Moreover, the
graphon operator TA is a linear operator that is bounded,
(hence) continuous, and compact [24].

For simplicity of notation we henceforth use the bold
face letter (e.g. A, B) to represent both a graphon and its
corresponding graphon operator. Let Af denote the function
defined by (1).

The graphon operator product is then defined by

[AB](x, y) =

Z 1

0
A(x, z)B(z, y)dz, (2)

where A,B 2 W1. Let AB denote the graphon given by
the convolution in (2). Consequently, the power An of an
operator A 2 W1 is given by

An(x, y) =

Z

[0,1]n
A(x,↵1) · · ·A(↵n�1, y)d↵1 · · · d↵n�1

with An 2 W1, n 2 Z+. A0 is formally defined as the
identity operator I on functions in L2[0, 1], and hence A0

is neither a graphon nor a compact operator. Furthermore,
eA :=

P1
k=0

1
k!A

k of a graphon operator A is a bounded
linear operator from L2[0, 1] to L2[0, 1].

B. Spectral Representations

Denote the operator norm for a linear operator T on
L2[0, 1] as

kTkop = sup
f2L2[0,1],kfk2=1

kTfk2. (3)

Following [19], we define kernel space, spectrum, eigenvalue

and eigenfunction below.

Definition 3 Define the kernel space (or null space) for a
linear operator T on L2[0, 1] as :

Ker(T) := {x 2 L2[0, 1] : Tx = 0}.

Definition 4 The spectrum �(T) of a linear bounded oper-
ator T on L2[0, 1] is the set of all (complex or real) scalars
� such that T � �I is not invertible, where I is the identity
operator. Thus � 2 �(T) if and only if at least one of the
following two statements is true:

(i) The range of T� �I is not all of L2[0, 1], i.e., T� �I
is not onto.

(ii) T� �I is not one-to-one.
If (ii) holds, � is said to be an eigenvalue of T; the corre-
sponding eigenspace is Ker(T� �I); each x 2 Ker(T� �I)
(except x = 0) is an eigenfunction of T; it satisfies the
equation Tx = �x. 2

Lemma 1 ([12]) For any graphon A or any function A in

L2[0, 1]2,

kAkop  kAk2,

where kAk2 =
� R 1

0

R 1
0 (A(x, y))2dxdy

� 1
2

. 2

Hence a graphon sequence convergences under k ·k2 implies
it convergences under k · kop. Furthermore, the following
inequalities hold [8], [25]:

kAk2  kAkop 
p

8kAk2, (4)

where the cut norm of a graphon A 2 W1 is defined as

kAk2 = sup
M,T⇢[0,1]

|
Z

M⇥T
A(x, y)dxdy|. (5)

The cut metric between two graphons V and W is then
given by

�2(W,V) = inf
�2S[0,1]

kW� �Vk2, (6)

where W�(x, y) = W(�(x),�(y)) and S[0,1] denotes the
set of measure preserving bijections from [0, 1] to [0, 1]. See
[3], [25] for more details on different norms.

Proposition 1 Consider the graphon operator A corre-

sponding to a graphon A 2 W1. Then there is a set {f`}
consisting of a countable number of orthonormal elements

in L2[0, 1] such that the elements f` are eigenfunctions to

the eigenvalues �` 2 R ordered as follows:

kAkop = |�1| � |�2| � |�3| � ... � 0,

If the set {f`} is infinite, we have the asymptotic behavior

lim`!1 �` = 0. Furthermore, for any u 2 L2[0, 1], Au has

representations as:

Au =
1X

`=1

�`hf`,uif` and hu,Aui =
1X

`=1

�`|hf`,ui|2.

This result is a special case of [18, Theorem 7.3], where
the compact Hermitian operators there are specialized to
graphon operators.



C. Convergence of Eigenvalues

For a graphon A, the eigenvalues form two sequences
µ1(A) � µ2(A) � ... � 0 and µ0

1(A)  µ0
2(A) 

...  0 converging to zero, where µi(A) and µ0
i(A) denote

respectively the ith non-negative eigenvalue and the ith non-
positive eigenvalue.

Theorem 1 ([2]) Let {Ai}1i=1 be a sequence of uniformly

bounded graphons, converging in the cut metric to a graphon

A. Then for every i � 1,

µi(An) ! µi(A) and µ0
i(An) ! µ0

i(A) as n ! 1.

This implies that if a sequence of graphs converges in
the cut metric [3] to a graphon limit with a simple spectral
characterization by a few non-zero eigenvalues, then the
sequence of graphs admits simple low-dimensional spectral
approximations. Furthermore, if the graphs in the sequence
are increasing in size, then the low-dimensional approxima-
tions perform better as the networks increase in size. This can
be illustrated by the sequence of random graphs generated by
the Erdös-Rényi model in Fig. 1. For general random graphs
generated by dense low-rank models, reasonable low-rank
approximations exist [26].
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Fig. 1: The eigenvalue distribution of a graph with 100 nodes
in a convergent sequence of random graphs to the graphon
limit W (x, y) = 0.5. Notice that the eigenvalues accumulate
at 0 and 0.5 ⇥ 100 which correspond to the eigenvalues
of the graphon W (x, y) = 0.5. This feature makes it
possible to approximate certain large random networks by
low dimensional spectral characterizations.

IV. APPROXIMATION OF GRAPHONS

If the eigenvalues and the corresponding eigenfunctions
of a graphon are known, one can approximate the graphon
by a finite spectral sum. Consider the approximation of a
graphon A by Am(x, y) =

Pm
`=1 �`f`(x)f`(y). Then the

mean square error is given as follows:

kA�Amk2 =

vuutkAk22 �
mX

`=1

�2` . (7)

Denote p`(·) as a polynomial function and p`(e2⇡i·) is
used to approximate the `th eigenfunction f`(·) of A with
A(x, y) =

P1
`=1 �`f`(x)f`(y). Note that if the polynomial

p`(·) permits terms up to infinite order, p`(e2⇡i·) is simply
the Fourier representation of f`(·). Denote the spectral sum
with Fourier approximated eigenfunctions as

Apm(#, ) =
mX

`=1

�`p`(e
2⇡i#)p`(e

2⇡i ) (8)

There are two levels of approximations: (a) Fourier ap-
proximation of eigenfunctions; (b) spectral decomposition
approximation of the graphon operator. Hence the approx-
imation error is bounded as follows:

kA�Apmk2  kA�Amk2 + kAm �Apmk2.

Moreover, the approximation error for functions of operators
is given in the following.

Proposition 2 ([13]) If there exists c > 0 such that kAk2 
c and kApmk2  c, then

kAn � (Apm)nk2  ncnkA�Apmk2, (9)
keA � eApmkop  ceckA�Apmk2. (10)

2

Consider a polynomial p`(e2⇡i·) with highest order 2n,
then there exists a matrix T` 2 Rn⇥n such that

p`(e
2⇡i·) = (e1, e2, ...en)T`(e1, e2, ...en)

T

with ek = e2⇡ki·. Since Fourier basis forms a complete
basis for L2[0, 1] (see e.g. [27]), any function f 2 L2[0, 1]
can be approximated by finite Fourier series and hence by
polynomial functions of e2⇡i·.

V. GRAPHONS WITH SIMPLE SPECTRAL
REPRESENTATIONS

A. Sinusoidal Graphons

A sinusoidal graphon is defined as any graphon that can
be represented by

A(',#) = a0 +
1X

k=1

bk cos(2⇡k('� #)), (',#) 2 [0, 1]2.

(11)
Clearly sinusoidal graphons are symmetric and diagonally
constant and hence they are suitable to fit Toeplitz matrices
[28].

Sinusoidal graphons have simple spectral characteriza-
tions. The eigenfunctions of the graphon in (11) are L2[0, 1]
functions as follows:

1, {
p
2 cos 2⇡k(·) : k 2 Z+}, {

p
2 sin 2⇡k(·) : k 2 Z+}.

The corresponding eigenvalues are: a0, { bk
2 : k 2 Z+}, { bk

2 :
k 2 Z+}. Moreover, the eigenfunctions form a complete
orthonormal basis for L2[0, 1] (see [27]).

1) Operation on L2[0, 1] functions: Consider a function
x 2 L2[0, 1] represented by Fourier series as

x(#) = K0 +
1X

k=1

(↵k sin(#) + �k cos(#)), # 2 [0, 1].

Then operating a sinusoidal graphon A on x yields

[Ax](#) = a0K0+
1X

k=1

bk
2
(↵k sin(#)+�k cos(#)), # 2 [0, 1].



Similarly, for m 2 Z+ and # 2 [0, 1],

[Amx](#) = am0 K0 +
1X

k=1

✓
bk
2

◆m

(↵k sin(#) + �k cos(#)),

[eAx](#) = ea0K0 +
1X

k=1

e
bk
2 (↵k sin(#) + �k cos(#)).

2) Functions of sinusoidal graphons: Power functions of
a sinusoidal graphon A are given by

Am(',#) = am0 +
1X

k=1

(
bk
2
)m�1 · bk cos(2⇡k('� #)),

where (',#) 2 [0, 1]2,m 2 Z+. Moreover, the time-varying
exponential function of a sinusoidal graphon is given by
eAt = I + Ut, t 2 R, where Ut is defined as follows:
for all (',#) 2 [0, 1]2

Ut(',#) =
�
ea0t � 1

�
+ 2

1X

k=1

⇣
e

bk
2 t � 1

⌘
cos 2⇡k('� #).

We note that, for any t 2 R, eAt is an element of the graphon
unitary operator algebra [11].

B. Step Function Graphons

A graphon A 2 W1 is a step function if there is a partition
Q = {Q1, ..., QN} of [0, 1] into measurable sets such that
A is constant on every product set Qi ⇥ Qj . A uniform

partition PN = {P1, P2, ..., PN} of [0, 1] is given by setting
Pk = [k�1

N , k
N ), k 2 {1, N � 1} and PN = [N�1

N , 1]. In this
paper, we focus on step functions with uniform partitions.
For general step functions, see [3].

The piece-wise constant function Su in L2[0, 1] corre-
sponding to u 2 RN is defined as

Su(x) =
NX

i=1

1Pi
(x)ui, 8x 2 [0, 1] (12)

where 1Pi
(·) denotes the indicator function, that is, 1Pi

(x) =
1 if x 2 Pi and 1Pi

(x) = 0 if x /2 Pi. Let Su · STv be given
as follows:

[Su · STv ](x, y) :=
NX

i=1

1Pi
(x)ui

NX

i=1

1Pj
(y)vj (13)

where Su and STv share the same uniform partition PN =
{P1, ..., PN}.

Proposition 3 If the matrix A = [aij ] has a spectral

decomposition A = V ⇤dV
|

, where ⇤d = diag(�1, ...,�d)
and V = (v1, ...., vd) with v` representing the normalized

eigenvector of �`, then the step function graphon A defined

by

A(x, y) =
NX

i=1

NX

j=1

1Pi
(x)1Pj

(y)aij , (x, y) 2 [0, 1]2 (14)

has a spectral representation given by

A(x, y) =
dX

`=1

�`[Sv` · S
|
v` ](x, y), (x, y) 2 [0, 1]2, (15)

where the underlying partition {P1, ..., PN} of [0, 1] is

uniform. 2

PROOF For all (x, y) 2 [0, 1]2,

A(x, y) =
NX

i=1

NX

j=1

1Pi
(x)1Pi

(y)
dX

`=1

�`vl(i)vl(j)

=
dX

`=1

�`

NX

i=1

1Pi
(x)v`(i)

NX

j=1

1Pj
(y)v`(j)

=
dX

`=1

�`[Sv` · STv` ](x, y),

where v`(i) denotes the ith element of v`. ⌅

We note that hSv` , Svki = 0, if ` 6= k; hSv` , Svki =
1
N , if ` = k and hence the corresponding eigenvalues for
A are given by { 1

N �`}
d
`=1.

Piece-wise constant functions in L2[0, 1] form eigenfunc-
tions of step function graphons. Since piece-wise constant
functions in L2[0, 1] form a dense subset of L2[0, 1] space,
they can also be used to approximate eigenfunctions of
general graphons.

VI. GRAPHON DYNAMICAL SYSTEMS

Consider a group of linear dynamical subsystems
{SN

i ; 1  i  N} coupled over an undirected graph GN .
The subsystem SN

i at the node i of GN has interactions
with SN

j , 1  j  N, specified as below:

ẋi
t = ↵0x

i
t +

1

N

NX

j=1

aijx
j
t + �0u

i
t +

1

N

NX

j=1

biju
j
t ,

t 2 [0, T ], ↵0,�0 2 R, xi
t, u

i
t 2 R,

(16)

with AN = [aij ] and BN = [bij ] 2 RN⇥N as the symmetric
adjacency matrices of GN and of the input graph. Let xt =
[x1, . . . , xN ]| and ut = [u1, . . . , uN ]|.

Define the graphon step functions A[N] and B[N] that
correspond to AN and BN according to (14), respectively.
Next, define the piece-wise constant functions x[N]

t and u[N]
t

that correspond respectively to xt and ut according to (12).
Then the corresponding graphon dynamical system is given
by

ẋ[N]
t = (↵0I+A[N])x[N]

t + (�0I+B[N])u[N]
t , t 2 [0, T ],

↵0,�0 2 R, x[N]
t ,u[N]

t 2 L2
pwc[0, 1], A[N],B[N] 2 W1

(17)
where L2

pwc[0, 1] represents the set of all piece-wise constant
functions in L2[0, 1]. The trajectories of the system in (16)
correspond one-to-one to the trajectories of the system (17).

We formulate the infinite dimensional graphon linear sys-
tem as follows:

ẋt =(↵0I+A)xt + (�0I+B)ut, t 2 [0, T ], (18)

where ↵0,�0 2 R, A,B 2 W1, and xt,ut 2 L2[0, 1].
xt and ut represent respectively the system state and the
control input at time t. The space of admissible control is



taken to be L2([0, T ];L2[0, 1]), that is, the Banach space
of equivalence classes of strongly measurable mappings
x : [0, T ] ! L2[0, 1] that are integrable with the norm
kxkL2([0,T ];L2[0,1]) = (

R T
0

R 1
0 x⌧ (↵)2d↵d⌧)

1
2 .

Evidently, ↵0I + A and �0I + B are bounded linear
operators on L2[0, 1]. Therefore the system model is well
defined and has a unique mild solution following [29]. For
simplicity, let A = (↵0I + A) and B = (�0I + B). Hence
A and B lie in the graphon unitary operator algebra [12].
Denote the graphon dynamical system in (18) by (A;B).

The system in (18) can represent the limit system for (17)
when the underlying step function graphons convergence in
the operator sense or the L2[0, 1]2 sense [12].

VII. CONTROLLABILITY ANALYSIS BASED ON
SPECTRAL REPRESENTATIONS

A graphon A is a compact operator, and hence it has a
discrete spectrum. Its spectral decomposition is given as fol-
lows A(x, y) =

P
`2I�

�`f`(x)f`(y) for all (x, y) 2 [0, 1]2.
where f` is the normalized eigenfunction corresponding to
the non-zero eigenvalues �` and I� is the index set for non-
zero eigenvalues of A, which contains a countable number
of elements [3].

For infinite dimensional systems there are two notions of
controllability: approximate controllability and exact control-
lability [30]. We only discuss exact controllability in this
paper.

Definition 5 A graphon dynamical system (A;B) in (18) is
exactly controllable in L2[0, 1] over the time horizon [0, T ]
if the system state can be driven to the origin at time T from
any initial state x0 2 L2[0, 1]. 2

We define the controllability Gramian operator as WT =R T
0 eA⌧BB|eA

|
⌧d⌧. If there exists c > 0 such that, for

every � 2 �(WT ), |�| � c holds, then the system is
exactly controllable [12] and the minimum control energy
J =

R T
0 kutk22dt (see. e.g. [10]) required to drive the system

from state x0 2 L2[0, 1] to the origin at time T is given by
J(x0) = heATx0,W�1

T eATx0i.
For any graphon system (A;B) with a compact operator B,

exact controllability cannot be achieved over a finite horizon
[31]. If B lies in the graphon unitary operator algebra [12],
then exact controllability of (A;B) in (18) over [0, T ] implies
�0 6= 0.

In general, it is not obvious how to find the explicit forms
of the controllability Gramian operator. However, when A
and B share the same structure, explicit forms are possible.

Proposition 4 Assume A 2 W1 and B =
Pd

k=1 �kA
k
.

Denote ⌘` =
Pd

k=0 �k�
k
` . Then the controllability Gramian

operator for the system (A,B) in (18) is explicitly given by

WT =

Z T

0
e↵0tdt�2

0I

+
X

`2I�

 
(⌘`)

2

Z T

0
e2(↵0+�`)tdt�

Z T

0
e↵0tdt�2

0

!
f`f

|
` ;

(19)

furthermore, if �0 6= 0, then the inverse of the controllability

Gramian operator for (A;B) in (18) is explicitly given by

W�1
T =

1
R T
0 e↵0tdt�2

0

I

� 1
R T
0 e↵0tdt�2

0

X

`2I�

(⌘`)2
R T
0 e2�`tdt� T�2

0

(⌘`)2
R T
0 e2�`tdt

f`f
|
` .

(20)
2

PROOF Consider any z 2 L2[0, 1]. Let z̆ = z �P
`2I�

hz, f`if`. Then

WT z =

Z T

0
eAtBB|

eA
|
tdt

 
z̆+

X

`2I�

hz, f`if`

!

=

Z T

0
eAtBB|

eA
|
tdtz̆+

X

`2I�

Z T

0
eAtBB|

eA
|
tdthz, f`if`

=

Z T

0
e2↵0tdt�2

0 z̆+
X

`2I�

Z T

0
e2(↵0+�`)t⌘2`dthz, f`if`

=

Z T

0
e2↵0tdt�2

0z

+
X

`2I�

 
⌘2`

Z T

0
e2(↵0+�`)tdt�

Z T

0
e2↵0tdt�2

0

!
hz, f`if`.

(21)
This yields the equivalent representation in (19).

If �0 6= 0, WT is invertible [12]. Suppose u = WT z. To
find W�1

T , we need to find the operator that maps u back
to z. Taking the inner product with f` on both sides of (21)
yields:

hu, f`i =
X

`2I�

 
⌘2`

Z T

0
e2(↵0+�`)tdt

!
hz, f`i. (22)

Then by replacing hz, f`i in (21) based on (22), we obtain

z =
1

R T
0 e↵0tdt�2

0

u

� 1
R T
0 e↵0tdt�2

0

X

`2I�

(⌘`)2
R T
0 e2�`tdt� T�2

0

(⌘`)2
R T
0 e2�`tdt

hu, f`if
|
` ,

(23)
and hence (20) holds. ⌅

If ↵0 = 0, then the controllability Gramian operator for
the system (A,B) in (18) is given by

WT = T�2
0I+

X

`2I�

 
(⌘`)

2

Z T

0
e2�`tdt� T�2

0

!
f`f

|
` ; (24)

furthermore, if �0 6= 0, then the inverse of the controllability
Gramian operator for (A;B) in (18) is explicitly given by

W�1
T =

1

T�2
0

I� 1

T�2
0

X

`2I�

(⌘`)2
R T
0 e2�`tdt� T�2

0

(⌘`)2
R T
0 e2�`tdt

f`f
|
` .

These then recover the result on exact controllability in [12].



(a) C-elegans metabolic network where edges represent metabolic reactions
between substrates [32].
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(b) Infectious contact network [33].
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(c) Zachary karate club network [34].

Fig. 2: Structures, eigenvalues, distributions of the absolute
values of eigenvalues, and the corresponding step function
graphons for networks and their spectral approximations by
10% of the most significant eigendirections.

VIII. SPECTRAL ANALYSIS OF NETWORK DATA

Real world networks are finite in size and can be repre-
sented by step function graphons. The corresponding eigen-
functions for non-zero eigenvalues are necessarily L2

pwc[0, 1]
functions. By analyzing these finite networks, we infer
possible properties of the limits if such limits exist. In this
section, numerical properties of the low-rank approximations
to finite networks are analyzed.

The spectral properties of real-world network structures
based on an open data set available on-line [35] are shown
in Fig. 2. It is observed that most of the eigenvalues of
many symmetric networks are distributed around zero and a
few eigenvalues are large. This implies that low dimensional
approximations of these networks are possible. Notice that
for these networks the data set only characterizes interactions

among different nodes and hence there are no self-loops in
the network structures. This means that the diagonal elements
of the corresponding adjacency matrices are zeros and hence
the trace (i.e. sum of all eigenvalues) of each is zero. Note
that only connection structures are captured in the data sets
and the underlying dynamical systems need to be investigated
in the future.

The spectral approximation by 10% of the most significant
eigendirections is given for each network data. As shown in
Fig. 2, this approximation preserves the patterns of the corre-
sponding graphon. In practice, the threshold for selecting the
eigenvalues in this approximation depends on the tolerance
of the approximation error. The spectral approximations of
these sparsely connected graphs typically give rise to graphs
with dense structures since the eigenvectors corresponding to
the removed eigenvalues contain many non-zero elements.

IX. CONTROLLING EPIDEMIC PROCESSES ON
NETWORKS BASED ON SPECTRAL DECOMPOSITION

Consider the process of an infectious disease spreading
over contact networks where controls via vaccinations and
medications are possible. Each node on the network has a
state representing the infection level and each node can have
a control action to receive medications or vaccinations to
reduce the level of the infection. The nodes affect each other
through the underlying contact network and their actions
influence each other. The objective is to optimally reduce
the level of the infection in the whole network with some
cost constrains.

Based on the meta-population model for the epidemic
process [37], the dynamics of the spread over a network is
described by:

ṗit = �↵pit + ⌘
NX

j=1

aijp
j
t (1� pit), t 2 R+, (25)

where pit 2 [0, 1] is interpreted as the fraction of the ith

subpopulation that is infected, ↵ is the recovering rate, ⌘ is
the infection strength and N is the number of subpopulations
(i.e. communities, cities). The origin is a global asymptotic
stable equilibrium if and only if ↵ � ⌘�max(A) [37]. If the
underlying networks grows (i.e. more nodes are connected to
the networks), the limit spectral properties of the networks
would be useful to estimate the �max(A). It is also important
to recognize the network eigendirections with significant
eigenvalues and act in those directions.

Notice (1 � pit)  1 is close to 1 when pit is close to
zero. Under normal conditions pit 2 [0, 1] should be small.
We linearized the model around the origin and study the
problem of regulating the state of the following system to
the origin:

ṗit = �↵0p
i
t + ⌘̄

1

N

NX

j=1

aijp
j
t + �0u

i
t, t 2 [0, T ] (26)

where ui
t represents the control actions (via vaccinations or

medications) at each node and ⌘̄ = ⌘N .
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Fig. 3: The simulation of the controlled disease process with couplings represented by the contact network corresponding
to USAir97 [36]. In (b), the eigenstates and eigencontrols in only the two most significant eigendirections are shown due
to space limitations.

For finite networks this scaling by 1
N makes no difference

since it can be absorbed into aij or ⌘. Since the averaged
strength of the connection between any given group and the
other groups in the network will adjust as new groups join
the network, and since the model must retain the relative
strengths of the various groups, the infection strength ⌘ is
decreased at a rate 1/N as the model size increases.

Let the quadratic cost associated with this problem be
given by

J(u) =
NX

i=1

Z T

0

�
qt(p

i
t)

2 + (ui
t)

2 + (ui
t �

1

N

NX

j=1

aiju
j
t )

2
�
dt

+qT (p
i
T )

2,
(27)

where qt, qT � 0. We want to reduce the infection level, limit
the actions cost and make sure that subpopulations on the
network receive almost the same amount of resources as their
weighted neighbors for equity purposes. This forms a good
example to illustrate the polynomial structures appearing in
the cost functions in [14], [38].

The adjacency matrix A = [aij ] of an undirected contact
network has a spectral decomposition A =

PL
`=1 µ`v`v

|
` ,

with v` representing the normalized eigenvector of the non-
zero eigenvalue µ`. The number L of non-zero eigenvalues
can be much smaller than N . The optimal solution [38] to
be executed at community i is given by

ui
t =

�0
2
⇧̆tp

i
t +

LX

`=1

⇣ �0⇧`t
(µ`

N )2 � 2µ`

N + 2
� �0⇧̆t

2

⌘
p
|
t v`v`(i),

where ⇧̆t and ⇧`t are given by

� ˙̆⇧t = �2↵0⇧̆t �
�2
0(⇧̆t)2

2
+ qt,

�⇧̇`t = �2(↵0 �
⌘̄µ`
N

)⇧`t �
�2
0(⇧

`
t)

2

(µ`

N )2 � 2µ`

N + 2
+ qt,

(28)

with ⇧̆T = ⇧`T = qT , and pt = [p1t , . . . , p
N
t ]|.

If the graphon limit A exists, then the corresponding
regulation problem for the graphon dynamical system, is
given as follows: for a representative node � 2 [�, �] ⇢ [0, 1]

on the graphon

ṗt(�) = �↵0pt(�) + ⌘̄

Z 1

0
A(�, ⇢)pt(⇢)d⇢+ �0ut(�),

J(u) =

Z T

0
(kptk22 + kutk22 + k(I�A)utk22)dt+ kpT k22

(29)
where pt,ut 2 L2[0, 1]. Let A =

P1
`=1 �`f`f

|
` . Then the

optimal solution [14] is given by

ut(�) =
�0
2
⇧̆tpt(�)

+
1X

`=1

� �0⇧`t
2� 2�` + �2`

� �0
2
⇧̆t

�
hpt, f`if`(�)

(30)

where

� ˙̆⇧t = �2↵0⇧̆t �
�2
0(⇧̆t)2

2
+ qt,

�⇧̇`t = �2(↵0 � ⌘̄�`)⇧
`
t �

�2
0(⇧

`
t)

2

(�`)2 � 2�` + 2
+ qt,

(31)

with ⇧̆T = ⇧`T = qT .
Note that the only difference between (28) and (31) lies

in the eigenvalues µ`/N and �`. This is consistent with
the discussion on the eigenvalues of step function graphons
following Proposition 3.

The global state aggregates (i.e. projections of states in
different eigendirections) instead of local neighboring states
are used in the local control of each subsystem. If A
is an approximation of the underlying network, then the
corresponding approximate control can be applied. See [12],
[14] for more related discussions.

X. NUMERICAL ILLUSTRATION

A numerical simulation is carried out for the controlled
epidemic process with results shown in Fig. 3. Each node
represents a city. The contact network among cities is repre-
sented by the air traffic frequencies among the corresponding
city airports. The network data set USAir97 in [36] is
used in the simulation, which represents a network of 332
American airports in 1997. Note that this example is only
for the purpose of illustration, and many other network



factors and population sizes should be included to have a
better representation of coupling strength among cities. The
parameters for the numerical example are: ↵0 = �0.5,�0 =
1, ⌘ = 1.5, qt = 2, qT = 4, T = 1 time unit. In Fig. 3, the
eigenstate and the eigencontrol in the v` direction (i.e. the
projections of states and controls into the v` eigendirection)
are given by p|t v`v` and u|

t vlvl, respectively; the auxiliary
states and controls are given by p̆t = pt �

PL
`=1 p

|
t v`v` and

ŭt = ut �
PL
`=1 u

|
t v`v`, respectively.

XI. CONCLUSION

For controlling infinite dimensional systems and large-
scale network systems, spectral properties are extremely
useful in both control analysis and synthesis. Many important
topics in the control of graphon dynamical systems still
require further investigation. First, systematic procedures for
specifying graphon labellings and relabellings (in general,
measure preserving transformations, see [3]) need to be
investigated. Furthermore, it is of great interest to develop
low-complexity control solutions to control large-scale net-
works with nonlinear local dynamics. We note that the study
of controllability in this work is limited to the class of
graphon systems where A and B share the same spectral
structure. Hence further investigation is required to extend
this study more general graphon dynamical systems. Finally,
future investigations need to include the control analysis
and synthesis of network systems coupled over exchangeable
random graphs.

REFERENCES

[1] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi,
“Convergent sequences of dense graphs i: Subgraph frequencies,
metric properties and testing,” Advances in Mathematics, vol. 219,
no. 6, pp. 1801–1851, 2008.

[2] ——, “Convergent sequences of dense graphs ii. multiway cuts and
statistical physics,” Annals of Mathematics, vol. 176, no. 1, pp. 151–
219, 2012.

[3] L. Lovász, Large Networks and Graph Limits. American Mathemat-
ical Soc., 2012, vol. 60.

[4] G. S. Medvedev, “The nonlinear heat equation on dense graphs and
graph limits,” SIAM Journal on Mathematical Analysis, vol. 46, no. 4,
pp. 2743–2766, 2014.

[5] H. Chiba and G. S. Medvedev, “The mean field analysis of the
Kuramoto model on graphs I. the mean field equation and transition
point formulas,” Discrete and Continuous Dynamical Systems-Series

A, vol. 39, no. 1, pp. 131–155, 2019.
[6] C. Kuehn and S. Throm, “Power network dynamics on graphons,”

arXiv preprint arXiv:1807.03573, 2018.
[7] M. Avella-Medina, F. Parise, M. Schaub, and S. Segarra, “Centrality

measures for graphons: Accounting for uncertainty in networks,” IEEE

Trans. Netw. Sci. Eng., 2018.
[8] F. Parise and A. Ozdaglar, “Graphon games,” arXiv preprint

arXiv:1802.00080, 2018.
[9] P. E. Caines and M. Huang, “Graphon mean field games and the

GMFG equations,” in Proc. Conf. Decision and Control, December
2018, pp. 4129–4134.

[10] S. Gao and P. E. Caines, “The control of arbitrary size networks of
linear systems via graphon limits: An initial investigation,” in Proc.

Conf. Decision and Control, Melbourne, Australia, December 2017,
pp. 1052–1057.

[11] ——, “Graphon linear quadratic regulation of large-scale networks of
linear systems,” in Proc. Conf. Decision and Control, Miami Beach,
FL, USA, December 2018, pp. 5892–5897.

[12] ——, “Graphon control of large-scale networks of linear systems,”
arXiv preprint arXiv:1807.03412, 2018.

[13] S. Gao, “Graphon control theory for linear systems on complex
networks and related topics,” Ph.D. dissertation, McGill University,
2019.

[14] S. Gao and P. E. Caines, “Optimal and approximate solutions to
linear quadratic regulation of a class of graphon dynamical systems,”
Accepted by the 58th IEEE Conference on Decision and Control

(CDC), December 2019.
[15] M. Aoki, “Control of large-scale dynamic systems by aggregation,”

IEEE Trans. Autom. Control, vol. 13, no. 3, pp. 246–253, 1968.
[16] J. Swigart and S. Lall, “Optimal controller synthesis for decentralized

systems over graphs via spectral factorization,” IEEE Trans. Autom.

Control, vol. 59, no. 9, pp. 2311–2323, 2014.
[17] F. M. Callier and J. Winkin, “LQ-optimal control of infinite-

dimensional systems by spectral factorization,” Automatica, vol. 28,
no. 4, pp. 757–770, 1992.

[18] F. Sauvigny, Partial Differential Equations 2: Functional Analytic

Methods. Springer Science & Business Media, 2012.
[19] W. Rudin, Functional Analysis, ser. International Series in Pure and

Applied Mathematics. McGraw-Hill, Inc., New York, 1991.
[20] B. J Mercer, “Functions of positive and negative type, and their

connection the theory of integral equations,” Phil. Trans. R. Soc. Lond.

A, vol. 209, no. 441-458, pp. 415–446, 1909.
[21] B. Szegedy, “Limits of kernel operators and the spectral regularity

lemma,” European Journal of Combinatorics, vol. 32, no. 7, pp. 1156–
1167, 2011.

[22] P. Orbanz and D. M. Roy, “Bayesian models of graphs, arrays and
other exchangeable random structures,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 37, no. 2, pp. 437–461, 2015.
[23] C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao, “An Lp theory of

sparse graph convergence I: limits, sparse random graph models, and
power law distributions,” arXiv preprint arXiv:1401.2906, 2014.

[24] J. B. Conway, A Course in Functional Analysis, 2nd ed. Springer-
Verlag New York, 1990, vol. 96.

[25] S. Janson, “Graphons, cut norm and distance, couplings and rearrange-
ments,” arXiv preprint arXiv: 1009.2376, 2010.

[26] F. Chung and M. Radcliffe, “On the spectra of general random graphs,”
the electronic journal of combinatorics, vol. 18, no. 1, p. 215, 2011.

[27] K. Saxe, Beginning Functional Analysis. Springer Science & Business
Media, 2013.

[28] R. M. Gray et al., “Toeplitz and circulant matrices: A review,”
Foundations and Trends in Communications and Information Theory,
vol. 2, no. 3, pp. 155–239, 2006.

[29] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. Mitter, Represen-

tation and Control of Infinite Dimensional Systems. Springer Science
& Business Media, 2007.

[30] M. Vidyasagar, “On the controllability of infinite-dimensional linear
systems,” Journal of Optimization Theory and Applications, vol. 6,
no. 2, pp. 171–173, 1970.

[31] R. Triggiani, “On the lack of exact controllability for mild solutions in
banach spaces,” Journal of Mathematical Analysis and Applications,
vol. 50, no. 2, pp. 438–446, 1975.

[32] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The
large-scale organization of metabolic networks,” Nature, vol. 407, no.
6804, p. 651, 2000.

[33] SocioPatterns, “Infectious contact networks,”
http://www.sociopatterns.org/datasets/. Accessed 09/12/12.

[34] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of Anthropological Research, vol. 33, no. 4,
pp. 452–473, 1977.

[35] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the

29th AAAI Conference on Artificial Intelligence, 2015. [Online].
Available: http://networkrepository.com

[36] V. Batagelj and A. Mrvar, “Pajek datasets,” 2006, http://vlado.fmf.uni-
lj.si/pub/networks/data.

[37] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control
of epidemics: A survey of spreading processes on complex networks,”
IEEE Control Syst. Mag., vol. 36, no. 1, pp. 26–46, 2016.

[38] S. Gao and A. Mahajan, “Networked control of coupled subsystems:
Spectral decomposition and low-dimensional solutions,” Accepted by
the 58th IEEE Conference on Decision and Control (CDC), December
2019.


