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Abstract— In this paper, we investigate optimal networked
control of coupled subsystems where the dynamics and the
cost couplings depend on an underlying weighted graph. We
use the spectral decomposition of the graph adjacency matrix
to decompose the overall system into (L+ 1) systems with
decoupled dynamics and cost, where L is the rank of the
adjacency matrix. Consequently, the optimal control input at
each subsystem can be computed by solving (L+ 1) decoupled
Riccati equations. A salient feature of the result is that the
solution complexity depends on the rank of the adjacency
matrix rather than the size of the network (i.e., the number of
nodes). Therefore, the proposed solution framework provides
a scalable method for synthesizing and implementing optimal
control laws for large-scale systems.

I. INTRODUCTION

A. Motivation

The recent proliferation of low cost sensors and actuators
has resulted in many applications such as Internet of Things,
smart grids, smart buildings, etc., where multiple subsystems
are connected over a network. In such systems, the evolution
of the state of a subsystem depends on its local state and
control input and is also influenced by the states and controls
of its neighbors.

Such networks, which are often referred to as large-scale
systems or complex networks, have been investigated since
the early 1970s [1], [2]. Various aspects of such systems
have been investigated including issues such as controllabil-
ity [3], [4], observability [4], [5], control energy metric [6],
decentralized control [7]–[10] and adaptive control [10].

A key theme for investigating large-scale systems is to
identify conditions under which the optimal control laws may
be synthesized and implemented with low-complexity. These
include simplified control objectives (e.g., consensus [11]–
[13] or synchronization [14]), simplified control inputs
(e.g., pinning control [15]–[17] or ensemble control [18]),
simplified coupling between subsystems (e.g., symmetric
interconnections [4], [7], [8], [19], [20], exchangeable or
anonymous subsystems [21], [22], or patterned systems [23]),
or approximate optimality as the number of subsystems
become large (e.g., mean-field games [24]–[27] or graphon-
based control [28]). In this paper, we present a framework for
the control of coupled subsystems where network couplings
appear in the dynamics, control and cost. For systems
where the adjacency matrix has low rank, our proposed
framework provides a low-complexity method to synthesize
and implement optimal control laws.
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B. Contributions of this paper

In this paper, we investigate a control system with mul-
tiple subsystems connected over an undirected graph. Each
subsystem has a local state and takes a local control action.
The evolution of the state of each subsystem depends on its
local state and local control as well as a weighed combination
(which we call the network field) of the states and controls of
its neighbors. Each subsystem is also coupled to its multi-hop
neighbors via a quadratic cost. The objective is to choose the
control inputs of each subsystem to minimize the total cost
over time.

The above model is a linear quadratic regulation problem
and a centralized solution can be obtained by solving
ndx × ndx-dimensional Riccati equation, where n is the
number of subsystems and dx is the dimension of the state
of each subsystem. In this paper, we propose an alternative
solution that has low complexity and may be implemented
in a distributed manner.

Our solution proceeds as follows. Let (λ1, . . . , λL) be the
non-zero eigenvalues of the adjacency matrix M for the un-
derlying network and let (w1, . . . , wL) be the corresponding
orthonormal eigenvectors. We define eigenstates {x`i}L`=1 and
eigencontrols {u`i}L`=1 for each subsystem i as

x`i(t) =

n∑
j=1

xj(t)w
`
jw

`
i and u`i(t) =

n∑
j=1

uj(t)w
`
jw

`
i

and show that the eigenstates {x`i(t)}L`=1 have decoupled
dynamics that are identical for all subsystems i. We then
define auxiliary states and controls

x̆i(t) = xi(t)−
L∑

`=1

x`i(t) and ŭi(t) = ui(t)−
L∑

`=1

u`i(t)

and show that the auxiliary states {x̆i(t)}ni=1 have identical
and decoupled dynamics that don’t depend on the eigenstates
{x`i(t)}L`=1. Next, we show that the instantaneous cost can
be decoupled in terms of (x`i(t), u

`
i(t)) and (x̆i(t), ŭi(t)).

Based on the above decomposition, we show that the
optimal control input ui(t) may be written as

ui(t) = −K̆(t)x̆i(t)−
L∑

`=1

K`(t)x`i(t)

where the control gains (K̆(t),K1(t), . . . ,KL(t)) are the
same for all subsystems and are obtained by solving L+ 1
decoupled Riccati equations.

The decoupling method for generating the optimal control
is inspired by [22], [29]. The coupling in this paper it takes
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into account the network weights and hence is more general
than (weighted or unweighted) mean-field coupling in [10],
[27], and the spectral decomposition of networks is further
required.

The solution has the following salient features.
• The optimal control law is obtained by solving L+ 1

Riccati equations of dimension dx × dx. In contrast,
obtaining the centralized solution requires solving a
ndx × ndx-dimensional Riccati equation.

• To implement the optimal control input, subsys-
tem i needs to know the (L+ 1)dx-dimensional vector
(x̆i(t), x

1
i (t), . . . , xLi (t)). In contrast, to implement the

centralized solution, each subsystem needs to know the
ndx dimensional global state (x1(t), . . . , xn(t)).

In many real-world network applications [30]–[33],
rank(M)� dim(M) (i.e., L� n). Therefore, the method
proposed in paper leads to considerable simplification in
synthesizing and implementing the optimal control law.

C. Notation

We use N and R to denote the sets of natural and real
numbers. For a matrix A, Aᵀ denotes its transpose. Given
vectors v1, . . . , vn, V = cols(v1, . . . , vn) denotes the matrix
formed by horizontally stacking the vectors. 1n×n denotes
the n× n matrix of ones.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Consider a network consisting of n nodes connected over
an undirected weighted graph G(N , E ,M), where N =
{1, ..., n} is the set of nodes, E ⊆ N×N is the unordered set
of edges, and M = [mij ] ∈ Rn×n is the weighted adjacency
matrix.1 For any node i ∈ N , let Ni := {j ∈ N : (i, j) ∈ E}
denote the set of neighbors of node i.

The system operates in continuous time for a finite
horizon [0, T ]. A state xi(t) ∈ Rdx and a control input
ui(t) ∈ Rdu are associated with each node i ∈ N . At time
t = 0, the system starts from an initial state (xi(0))i∈N and
for t > 0, the state of node i evolves according to

ẋi(t) = Axi(t) +Bui(t) +Dzi(t) + Evi(t), (1)

where A, B, D and E are matrices of appropriate dimensions
and

zi(t) =
∑
j∈Ni

mijxj(t) and vi(t) =
∑
j∈Ni

mijuj(t) (2)

are the locally perceived network field of states and control
actions at node i.

We follow an atypical representation of the “vectorized”
dynamics. Define

x(t) = cols(x1(t), . . . , xn(t)),

u(t) = cols(u1(t), . . . , un(t)),

1Since the graph is undirected, M is symmetric.

as the global state and control actions of the system. Similarly
define

z(t) = cols(z1(t), . . . , zn(t)), v(t) = cols(v1(t), . . . , vn(t)),

as the global network field of states and actions. Note that
x(t), z(t) ∈ Rdx×n and u(t), v(t) ∈ Rdu×n are matrices and
not vectors.

The system dynamics may be written as

ẋ(t) = Ax(t) +Bu(t) +Dz(t) + Ev(t). (3)

Furthermore, we may write

z(t) = x(t)M
ᵀ

= x(t)M and v(t) = u(t)M
ᵀ

= u(t)M.

B. System performance and control objective

At any time t ∈ [0, T ), the system incurs an instantaneous
cost

c(x(t), u(t)) =
∑
i∈N

∑
j∈N

[
gijxi(t)

ᵀ
Qxj(t)+hijui(t)

ᵀ
Ruj(t)

]
(4)

and at the terminal time T , the system incurs a terminal cost

cT (x(T )) =
∑
i∈N

∑
j∈N

gijxi(T )
ᵀ
QTxj(T ), (5)

where Q, QT , and R are matrices of appropriate dimensions
and gij and hij are real-valued weights. Let G = [gij ]
and H = [hij ]. We assume that the weight matrices G

and H are polynomials of M , i.e., G =
∑KG

k=0 qkM
k and

H =
∑KH

k=0 rkM
k where KG and KH denote the degree of

the polynomials and {qk}KG

k=0 and {rk}KH

k=0 are real-valued
coefficients.

Since M is real and symmetric, it has real eigenvalues. Let
L denote the rank of M and λ1, . . . , λL denote the non-zero
eigenvalues. For ease of notation, for ` ∈ {1, . . . , L}, define

q` =

KG∑
k=0

qk(λ`)k and r` =

KH∑
k=0

rk(λ`)k.

We impose the following assumptions on the cost function.
(A1) The matrices Q and QT are symmetric and positive

semi-definite and R is symmetric and positive definite.
(A2) For ` ∈ {1, . . . , L}, q` is non-negative and r` is strictly

positive; q0 ≥ 0 and r0 > 0.
We are interested in the following optimization problem.

Problem 1 Choose a control trajectory u : [0, T )→ Rdu×n

to minimize

J(u) =

∫ T

0

c(x(t), u(t))dt+ cT (x(T )). (6)

Remark 1 The assumption that the system is time-
homogeneous is made only for notational simplicity. It will
be evident from the solution approach that results extend
to systems with time-varying A,B,D,E,Q and R matrices.
See e.g. [34]. The assumption (A2) ensures that, for any
y ∈ Rn, yᵀGy ≥ 0 and yᵀHy > 0. 2
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Fig. 1: A graph and its 2-hop neighborhood.

C. Salient features of the model

We highlight salient features of the model via an example.
Consider a system with 4 nodes connected via a network
shown in Fig. 1(a), with

G = q0I + q1M + q2M
2 and H = r0I + r1M + r2M

2,

where M and M2 are the weighted adjacency matrix of the
graph G and that of the 2-hop neighborhood of G, respectively,
given by

M =


0 2 0 1
2 0 2 0
0 2 0 1
1 0 1 0

 and M2 =


5 0 5 0
0 8 0 4
5 0 5 0
0 4 0 2

 .
1) Salient features of the dynamics: For this example,

z1(t) = 2x1(t) + x4(t), z2(t) = 2x1(t) + 2x3(t),

z3(t) = 2x2(t) + x4(t), z4(t) = x1(t) + x3(t).

Thus, each subsystem is affected by its neighbors. The
influence of each neighbor is not homogeneous but depends
on the weight associated with the corresponding edge in
the graph. Furthermore, the “network field” z(t) is not
homogeneous and varies from subsystem to subsystem.

2) Salient features of the cost: Since M is the weighted
adjacency matrix of the graph G, the matrix Mk, k ∈ N,
represents the weighted adjacency matrix of the k-hop
neighborhood of G. Thus, G = q0I + q1M + q2M

2 means
that the each node has a coupling of q0 with its own state, a
coupling of q1 with it’s 1-hop neighborhood and a coupling of
q2 with its 2-hop neighborhood. Similar interpretation holds
for H . Note that

G = q0I + q1M + q2M
2 =

[
q0+5q2 2q1 5q2 q0+q1
2q1 q0+8q2 2q1 4q2
5q2 2q1 q0+5q2 q1
q1 4q2 q1 q0+2q2

]
.

Thus, the agents are not interchangeable, i.e., in general,
Gii 6= Gjj and Gki 6= Gkj .

III. SPECTRAL DECOMPOSITION OF THE SYSTEM

Since the weight matrix M is real and symmetric, it
admits a spectral factorization. In particular, there exist non-
zero eigenvalues (λ1, . . . , λL) and orthonormal eigenvectors
(w1, . . . , wL) such that

M =

L∑
`=1

λ`w`w`ᵀ. (7)

In the rest of this section, we decompose the dynamics and
the cost based on the above spectral decomposition.

A. Spectral decomposition of the dynamics

For ` ∈ {1, . . . , L}, define eigenstates and eigencontrol
actions as

x`(t) = x(t)w`w`ᵀ, (8)

u`(t) = u(t)w`w`ᵀ, (9)

respectively. Multiplying both sides of (3) by w`w`
ᵀ

, we get

ẋ`(t) = (A+ λ`D)x`(t) + (B + λ`E)u`(t), (10)

where we have used the fact that Mw`w`
ᵀ

= λ`w`w`
ᵀ

. Let
x`i(t) and u`i(t) denote the i-th column of these matrices, i.e.,

x`(t) = cols(x`1(t), . . . , x`n(t)),

u`(t) = cols(u`1(t), . . . , u`n(t)).

Therefore, the dynamics (10) can be written as a collection
of decoupled “local” dynamics: for i ∈ N ,

ẋ`i(t) = (A+ λ`D)x`i(t) + (B + λ`E)u`i(t). (11)

Using the spectral factorization (7), we may write:

z(t) = x(t)M =

L∑
`=1

λ`x`(t), (12)

v(t) = u(t)M =

L∑
`=1

λ`u`(t). (13)

Now, define auxiliary state and control actions as

x̆(t) = x(t)−
L∑

`=1

x`(t) and ŭ(t) = u(t)−
L∑

`=1

u`(t).

Then, by subtracting (10) from (3) and substituting (12)
and (13), we get

˙̆x(t) = Ax̆(t) +Bŭ(t). (14)

Note that x̆(t) ∈ Rdx×n and ŭ(t) ∈ Rdu×n. Let x̆i(t) and
ŭi(t) denote the i-th column of these matrices, i.e.,

x̆(t) = cols(x̆1(t), . . . , x̆n(t)),

ŭ(t) = cols(ŭ1(t), . . . , ŭn(t)).

Therefore, the dynamics (14) of the auxiliary state can be
written as a collection of decoupled “local” dynamics:

˙̆xi(t) = Ax̆i(t) +Bŭi(t), i ∈ N . (15)

The above decomposition may be summarized as follows.

Proposition 1 The local state and control at each node i ∈
N may be decomposed as

xi(t) = x̆i(t) +

L∑
`=1

x`i(t), (16)

ui(t) = ŭi(t) +

L∑
`=1

u`i(t), (17)

where the dynamics of x̆i(t) depend on only ŭi(t) and are
given by (15) and the dynamics of x`i(t) depends on only
u`i(t) and are given by (11). 2



B. Spectral decomposition of the cost

For any n × n matrix P = [pij ], any d × n matrices
x = cols(x1, . . . , xn) and y = cols(y1, . . . , yn), we use the
following short hand notation:

〈x, y〉P =
∑
i∈N

∑
j∈N

pijx
ᵀ
i yj . (18)

Proposition 2 The instantaneous cost may be written as

c(x(t), u(t)) = 〈x(t), Qx(t)〉G + 〈u(t), Ru(t)〉H ,

which can be simplified as follows:

〈x(t), Qx(t)〉G

=
∑
i∈N

[
q0x̆i(t)

ᵀ
Qx̆i(t) +

L∑
`=1

q`x`i(t)
ᵀ
Qx`i(t)

]
,

〈u(t), Ru(t)〉H

=
∑
i∈N

[
r0ŭi(t)

ᵀ
Rŭi(t) +

L∑
`=1

r`u`i(t)
ᵀ
Ru`i(t)

]
. 2

See Appendix for the proof.

IV. MAIN RESULT: STRUCTURE AND SYNTHESIS OF
OPTIMAL CONTROL STRATEGIES

The main result of the paper is the following.

Theorem 1 For ` ∈ {1, . . . , L}, let P ` : [0, T ] → Rdx×dx

be the solution to the backward Riccati differential equation

−Ṗ `(t) = (A+ λ`D)
ᵀ
P `(t) + P `(t)(A+ λ`D)

− P `(t)(B + λ`E)(r`R)−1(B + λ`E)
ᵀ
P `(t) + q`Q

(19)
with the final condition P `(T ) = q`QT . Similarly, let
P̆ : [0, T ]→ Rdx×dx be the solution to the backward Riccati
differential equation

− ˙̆
P (t) = A

ᵀ
P̆ (t) + P̆ (t)A− P̆ (t)B(r0R)−1B

ᵀ
P̆ (t) + q0Q

(20)
with the final condition P̆ (T ) = q0QT .

Then, under assumptions (A1) and (A2), the optimal control
strategy for Problem 1 is given by

ui(t) = −K̆(t)x̆i(t)−
L∑

`=1

K`(t)x`i(t), (21)

where
K̆(t) = (r0R)−1B

ᵀ
P̆ (t),

K`(t) = (r`R)−1(B + λ`E)
ᵀ
P `(t).

2

PROOF Consider the following collections of dynamical
systems:

• Eigensystem (`, i), ` ∈ {1, . . . , L}, i ∈ N , with state
x`i(t), control inputs u`i(t), dynamics

ẋ`i(t) = (A+ λ`D)x`i(t) + (B + λ`E)u`i(t),

and cost

J`
i (u`i) =

∫ T

0

[
q`x`i(t)

ᵀ
Qx`i(t) + r`u`i(t)

ᵀ
Ru`i(t)

]
dt

+ q`x`i(T )
ᵀ
Qx`i(T ).

• Auxiliary system i, i ∈ N , with state x̆i(t), control
inputs ŭi(t), dynamics

˙̆xi(t) = Ax̆i(t) +Bŭi(t),

and cost

J̆i(ŭi) =

∫ T

0

[
q0x̆i(t)

ᵀ
Qx̆i(t) + r0ŭi(t)

ᵀ
Rŭi(t)

]
dt

+ q0x̆i(T )
ᵀ
Qx̆i(T ).

Note that all systems have decoupled dynamics and decoupled
nonnegative cost. By Proposition 2, we have

J(u) =
∑
i∈N

[
J̆i(ŭi) +

L∑
`=1

J`
i (u`i)

]
.

Thus, instead of solving:
(P1) choose control trajectory u : [0, T ) → Rdu×n to

minimize J(u),
we can equivalently solve the following optimization prob-
lems:

(P2) choose control trajectory u`i : [0, T ) → Rdu to
minimize J`

i (u`i) for i ∈ N , ` ∈ {1, . . . , L},
(P3) choose control trajectory ŭi : [0, T ) → Rdu to

minimize J̆i(ŭi) for i ∈ N .
Given the solutions of Problems (P2) and (P3), we can use
Proposition 1 and choose ui(t) according to (17).

Problems (P2) and (P3) are standard optimal control
problems and their solution are given as follows. Let
P ` : [0, T ]→ Rdx×dx and P̆ : [0, T ]→ Rdx×dx be as given
by (19) and (20). Then, for all i ∈ N , the optimal solution of
(P2) is given by u`i(t) = K`(t)x`i(t), ` ∈ {1, . . . , L}, and the
solution of (P3) is given by ŭi(t) = K̆(t)x̆i(t). The result
follows by combining the above two equations using (17).�

A. Remarks on the implementation of the optimal strategy

Since we are interested in regulating a deterministic
system, we may implement the optimal control law either
using open-loop (i.e. pre-computed) control inputs or using
closed-loop (i.e. state feedback) control inputs. For the both
implementations, the eigenvalues {λ`}L`=1 need to be known
at all subsystems.

For the open-loop implementation, one can write

ui(t) = −K̆(t)Φ̆(t, 0)x̆i(0)−
L∑

`=1

K`(t)Φ`(t, 0)x`i(0), (22)

where the state transition matrices Φ̆(t, 0) and Φ`(t, 0) are
given by

Φ̆(t, 0) = exp
( ∫ t

0

(
A−BK̆(s)

)
ds
)
,

Φ`(t, 0) = exp
( ∫ t

0

(
A+ λ`D − (B + λ`E)K`(s)

)
ds
)
.



Thus, to implement the control action, subsystem i needs to
know x̆i(0) and {x`i(0)}L`=1, which can be obtained using
one of the following three information structures:

1) All subsystems know the initial condition x(0) and the
eigendirections {w`}L`=1. Using these, subsystem i can
compute {x`i(0)}L`=1 and x̆i(0), and implement (22).

2) Subsystem i, i ∈ N , knows its local initial state xi(0)
and its local initial eigensystem states {x`i(0)}L`=1. Then
subsystem i can compute x̆i(0) and implement (22).

3) All subsystems knows the initial state {x(0)w`}L`=1.
In addition, subsystem i knows wi := (w1

i , · · · , wL
i )

and its local initial state xi(0). Then subsystem i can
compute {x`i(0)}L`=1 and x̆i(0), and implement (22).

The closed-loop implementation, which is given by (21),
can be obtained by using one of the three information
structures described above where x(0), xi(0) and x`i(0) are
replaced by x(t), xi(t) and x`i(t), respectively.

Furthermore, for the information structures in 2) and 3), a
mixed implementation which combines open-loop and close-
loop implementations can also be obtained via only replacing
xi(0) by xi(t) in 2) and 3).

B. An illustrative example

Consider a network with n = 4 subsystems connected over
a graph G, as shown in Fig. 2, with the adjacency matrix
M . Note that L = rank(M) = 2. Consider the following

3 4
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Fig. 2: Graph G with n = 4 nodes and its adjacency matrix

couplings in the cost

G = I − 2M +M2 and H = I. (23)

For the ease of notation define ρ =
√

(a2 + b2)/2 and
θ = tan−1(b/a). Then it is easy to verify that the non-
zero eigenvalues of M are λ1 = −ρ and λ2 = ρ. The
corresponding eigenvectors are ω1 =

[
− 1

2
sin(θ)√

2
− 1

2
cos(θ)√

2

]ᵀ
and ω2 =

[
1
2

sin(θ)√
2

1
2

cos(θ)√
2

]ᵀ
. Observe that q` = (1− λ`)2

is non-negative and r` = 1 is strictly positive, ` ∈ {1, 2}.
Thus the model satisfies assumption (A2).

To illustrate how to use the result of Theorem 1, let’s pick
a subsystem say subsystem 1, and consider the calculations
that need to be carried out at that subsystem. Recall that for
all i ∈ N , x`i(0) = x(0)ω`w`

i . Thus

x11(0) =
1

4
x1(0)− sin(θ)

2
√

2
x2(0) +

1

4
x3(0)− cos(θ)

2
√

2
x4(0),

x21(0) =
1

4
x1(0) +

sin(θ)

2
√

2
x2(0) +

1

4
x3(0) +

cos(θ)

2
√

2
x4(0).

Following the mixed implementation with information struc-
ture 3) described in Section IV-A, subsystem 1 can calculate
the trajectory for x11(t), x21(t), t ∈ (0, T ] based on the initial

conditions. This together with real time local observation
x1(t) yields x̆1(t).

Subsystem 1 solves three Riccati equations to compute
P 1(t), P 2(t), and P̆ (t) for t ∈ [0, T ], and then applies the
optimal control action given by

u1(t) = −R−1
(
B
ᵀ
P̆ (t)x̆1(t) + (B − ρE)

ᵀ
P 1(t)x11(t)

+ (B + ρE)
ᵀ
P 2(t)x21(t)

)
according to Theorem 1. Similar implementations hold for
other subsystems.

Note that if each xi(t) ∈ Rdx then x(t) ∈ R4dx . A
naive centralized optimal solution of the above system would
involve solving a 4dx× 4dx-dimensional Riccati equation. In
contrast, the above solution involves solving three dx × dx-
dimensional Riccati equations. These computational savings
increase with the size of the networks. For example, consider
the graph G4n = G ⊗Kn where G is the 4-node graph shown
in Fig. 2 and Kn is the complete graph with n-nodes and
each edge weight is 1

n . The graph G4n has 4n nodes and its
adjacency matrix is given by M4n = M ⊗ Kn, where M
and Kn = 1

n1n×n are the adjacency matrices of graph G
and Kn respectively. The only non-zero eigenvalue of Kn is
1. Thus, the eigenvalues of M4n are the same as eigenvalues
of M . The corresponding eigenvectors are different. Note
also that the Riccati equations in Theorem 1 only depends
on the eigenvalues. So the Riccati equations for all graphs
G4n, n ∈ N are the same.

Thus, a naive solution requires solving a 4ndx × 4ndx-
dimensional Riccati equation. In contrast, the method pro-
posed in Theorem 1 would require solving the same three
dx × dx-dimensional Riccati equations as above.

As an illustration, we consider graph G with the weights
a = 2 and b = 1. Let dx = 1 and du = 1. Consider the
dynamics with parameters A = 2, B = 1, D = 3, E = 0.5
and the cost with parameters Q = 5, QT = 6, R = 2. Recall
that G and H are given by (23). As argued above, the matrix
M4n has two non-zero eigenvalues and the optimal control
at each subsystem can be obtained by solving 3 Riccati
equations. Let us set n = 5. Then M20 = M ⊗ 1

515×5. The
evolutions of the corresponding eigenstates and the auxiliary
states along with the eigencontrols and the auxiliary controls
are shown in Fig. 3.

Fig. 3: Numerical example under the proposed optimal control
on a network of size 20



C. A special case: mean-field coupling

Suppose the graph G is a complete graph with all edge
weights equal to 1

n . Then, the adjacency matrix M = 1
n1n×n

has rank 1 and λ1 = 1 is the only non-zero eigenvalue
with the normalized eigenvector w1 = 1√

n
[1, . . . , 1]ᵀ. Then

x1(t) = x(t)w1w1
ᵀ

= x(t)M. Thus, the eigenstate x1i (t) =
1
n

∑n
j=1 xj(t), i ∈ N , is the same for all subsystems and

we denote it by x̄(t). Moreover, q1 =
∑KG

k=0 qk := q̄ and
r1 =

∑KH

k=0 rk := r̄. According to Theorem 1, the Riccati
equation of eigensystem is given by

− ˙̄P (t) = (A+D)
ᵀ
P̄ (t) + P̄ (t)(A+D)

− P̄ (t)(B + E)(r̄R)−1(B + E)
ᵀ
P̄ (t) + q̄Q, (24)

where P̄ (t) := P 1(t) and the final condition P̄ (T ) = q̄QT .
The Riccati equation for the auxiliary system is given by

− ˙̆
P (t) = A

ᵀ
P̆ (t)+P̆ (t)A−P̆ (t)B(r0R)−1B

ᵀ
P̆ (t)+q0Q

with the final condition P̆ (T ) = q0QT . The optimal control
strategy is given by ui(t) = −K̆(t)(xi(t)−x̄(t))−K̄(t)x̄(t),
where K̆(t) = (r0R)−1BᵀP̆ (t) and K̄(t) = (r̄R)−1(B +
E)ᵀP̄ (t).

The above result is similar in spirit to [22, Theorem 1].

V. CONCLUSION

We consider the optimal networked control of coupled
subsystems where the dynamics and the cost couplings depend
on an underlying weighted graph. The main idea of a low-
dimensional decomposition is to project the state x(t) into
L orthogonal eigendirections which generates {x`(t)}L`=1

and an auxiliary state x̆(t) = x(t)−
∑L

`=1 x
`(t). A similar

decomposition is obtained for the control inputs. These
L+ 1 components are decoupled both in dynamics and cost.
Therefore, the optimal control input for each component can
be obtained by solving decoupled Riccati equations.

The proposed approach requires solving L+ 1 Riccati
equations, each of dimension dx×dx. In contrast, a centralized
solution requires solving a ndx × ndx-dimensional Riccati
equation. Thus, even when L = n, the proposed approach
leads to considerable computational savings. These savings
improve significantly when L� n, as is the case for many
real-world networks.
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APPENDIX

A. Preliminary properties of the state decomposition

Lemma 1 Let k be a positive integer k and `, `′ ∈
{1, . . . , L}. Then, we have the following:
(P1) x`(t)M = λ`x`(t) and u`(t)M = λ`u`(t).

(P2) x`(t)Mk = (λ`)kx`(t) and u`(t)Mk = (λ`)ku`(t).

(P3) x`(t)G = q`x`(t) and u`(t)H = r`u`(t).

(P4) x̆(t)M = 0 and ŭ(t)M = 0.

(P5) x̆(t)Mk = 0 and ŭ(t)Mk = 0.

(P6) x̆(t)G = q0x̆(t) and ŭ(t)H = r0ŭ(t).

(P7) x(t)G = q0x̆(t)+
∑L

`=1 q
`x`(t) and u(t)G = r0ŭ(t)+∑L

`=1 r
`u`(t).

(P8)
∑

i∈N x
`
i(t)
ᵀQx`

′

i (t) = δ``′
∑

i∈N x
`
i(t)
ᵀQx`

′

i (t),
where δ``′ is the Kronecker delta function.

(P9)
∑

i∈N xi(t)
ᵀQx`i(t) =

∑
i∈N x

`
i(t)
ᵀQx`i(t) and∑

i∈N ui(t)
ᵀRu`i(t) =

∑
i∈N u

`
i(t)
ᵀRu`i(t) 2

PROOF We show the result for x̆(t). The result for ŭ(t)
follows from a similar argument.

Since w1, . . . , wL are orthonormal, from (7) we have
w`w`

ᵀ
M = λ`w`w`

ᵀ
, which implies (P1). (P2) follows

immediately from (P1) and (P3) follows from (P2).
(P4) follows immediately from the definition of x̆(t), (12)

and (P1). (P5) follows immediately from (P4) and (P6) follows
from (P5).

(P7) follows from (16), (P3) and (P6). To prove (P8), we
observe that (8) implies that∑

i∈N
x`i(t)

ᵀ
Qx`

′

i (t) =
∑
i∈N

w`
iw

`ᵀx(t)
ᵀ
Qx(t)w`′w`′

i

ᵀ

=
(∑
i∈N

w`
iw

`′

i

)
w`ᵀx(t)

ᵀ
Qx(t)w`′ . (25)

Since w1, . . . , wL is orthonormal, we get
∑

i∈N w
`
iw

`′

i =

w`
ᵀ
w`′ = δ``′ . Substituting this in (25) completes the proof

of (P8). To prove (P9) observe that∑
i∈N

xi(t)
ᵀ
Qx`i(t) =

∑
i∈N

xi(t)
ᵀ
Qx(t)w`w`

i

=
∑
i∈N

w`
ixi(t)

ᵀ
Qx(t)w`

= w`ᵀx(t)
ᵀ
Qx(t)w`. (26)

From (25), we get that the expression in (26) is equal to∑
i∈N x

`
i(t)
ᵀQx`i(t). �

Lemma 2 Let P , x, and y be defined in (18). Let Pi denote
the i-th column of P . Then, we can write

〈x, y〉P =
∑
i∈N

x
ᵀ
i yPi or 〈x, y〉P =

∑
j∈N

P
ᵀ
j x
ᵀ
yj .

2

PROOF The result follows immediately from the definition
of 〈x, y〉P . �

B. Proof for Proposition 2

We consider the terms depending on x(t). The term
depending on u(t) may be simplified in a similar manner.

From (16) and linearity of 〈·, ·〉G in both arguments, we
get

〈x(t), Qx(t)〉G =
〈
x̆(t) +

L∑
`=1

x`(t), Q
(
x̆(t) +

L∑
`=1

x`(t)
)〉

G

= 〈x̆(t), Qx̆(t)〉G + 2
〈 L∑
`=1

x`(t), Qx̆(t)
〉
G

+
〈 L∑
`=1

x`(t), Q
( L∑
`=1

x`(t)
)〉

G
. (27)

From Lemma 2 and (P6), the first term of (27) simplifies to

〈x̆(t), Qx̆(t)〉G = q0
∑
i∈N

x̆i(t)
ᵀ
Qx̆i(t), (28)

and the second term simplifies to〈 L∑
`=1

x`(t), Qx̆(t)
〉
G

= q0
∑
i∈N

L∑
`=1

x`i(t)
ᵀ
Qx̆i(t)

= q0

L∑
`=1

∑
i∈N

x`i(t)
ᵀ
Q
(
xi(t)−

L∑
`′=1

x`
′

i (t)
)

(a)
= q0

n∑
`=1

∑
i∈N

(
x`i(t)

ᵀ
Qx`i(t)− x`i(t)

ᵀ
Qx`i(t)

)
= 0, (29)

where (a) follows from (P8) and (P9). From Lemma 2 and
(P3), the third term of (27) simplifies to〈 L∑

`=1

x`(t), Q
( L∑
`=1

x`(t)
)〉

G

=
∑
i∈N

L∑
`=1

x`i(t)
ᵀ
Q
( L∑
`′=1

q`
′
x`

′

i (t)
)

=

L∑
`=1

∑
i∈N

x`i(t)
ᵀ
Q
( L∑
`′=1

q`
′
x`

′

i (t)
)

(b)
=

L∑
`=1

∑
i∈N

q`x`i(t)
ᵀ
Qx`i(t), (30)

where (b) follows from (P8). We get the result by substitut-
ing (28)–(30) in (27).


