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Abstract— We propose a graphon regulation methodology
to solve linear quadratic regulator (LQR) problems for com-
plex networks of dynamical systems following the formulation
initiated in [1]. Conditions for the exact and approximate
controllability of graphon dynamical systems are investigated.
Approximation schemes are then developed to obtain finite
dimensional LQR control laws which are utilized on large-scale
network systems and for which the convergence properties are
established. Finally, an example of the application of graphon-
LQR control to networks of dynamical systems is given in
which the Riccati equation of the limit graphon system is solved
explicitly.

I. INTRODUCTION

The problem of controlling complex networks of dynam-
ical systems emerges in many applications ranging from the
Internet of Things (IoT), smart grids, neuronal networks,
food webs, social networks, to stock market networks, and
it has received a great deal of attention during the past two
decades. Related research studies have been focusing on (a)
analysis problems such as controllability [2], observability
[3] and control energy metric [4], etc., and (b) synthesis
problems with simple objectives or simple control laws
such as consensus [5], synchronization [6], [7], flocking [8],
ensemble control [9], etc. In spite of these contributions, the
understanding of complex networks of dynamical systems
and furthermore the creation of a control theory for such
systems still pose fundamental problems. One of the rea-
sons that controlling these networks is so difficult or even
intractable lies in their large (or even continuously growing)
sizes and the complexity of their interconnections. To address
these issues, we proposed the graphon control methodology
[1] in which graphon theory [10]–[12] and the theory of
infinite dimensional systems [13], [14] are combined to
model complex networks of dynamical systems and to design
control laws.

In the work of [1], the minimum energy state-to-state
control problem for networks of linear dynamical systems
is formulated and solved. In this paper, we further develop
the graphon control theoretic method to solve regulation
problems on complex network systems with linear quadratic
costs. In addition, we investigate conditions for the exact and
approximate controllability of graphon dynamical systems.

Consider the problem of applying linear quadratic reg-
ulation to each member of a sequence of networks. The
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proposed graphon regulation strategy consists of the follow-
ing steps: (1) Identify a graphon either as a limit of the
sequence of networks as the number of nodes grows without
bound, or as an approximation to the sequence in the finite
sequence case. (2) Solve the corresponding LQR problem for
the graphon system by solving the graphon system Riccati
equation. (3) Approximate the Riccati equation solution for
the graphon system so as to generate approximated control
laws for the original sequence of finite network systems.

II. PRELIMINARIES

A. Graphon

Graphons can be considered as the limit objects of con-
vergent graph sequences under the so-called cut metric [12].
This concept is illustrated by a sequence of half graphs
([12]) represented by a sequence of pixel diagrams on the
unit square converging to its limit in Fig. 1. In this paper,
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Fig. 1. Graph Sequence Converging to Its Limit

unless stated otherwise, the term ”graphon” is used to refer to
symmetric Lebesgue measurable functions W1 : [0, 1]2 !
[�1, 1] and G̃sp

1 denotes the space of graphons. Let G̃sp
0

represent the space of all graphons satisfying W0 : [0, 1]2 !
[0, 1]; let G̃sp denote the space of all symmetric measurable
functions W : [0, 1]2 ! R. The cut norm of a graphon is
then defined as

kWk⇤ = sup
M,T⇢[0,1]

|
Z

M⇥T
W(x, y)dxdy| (1)

with the supremum taking over all measurable subsets M

and T of [0, 1]. Evidently, the following inequalities hold
between norms on a graphon W

kWk⇤  kWk1  kWk2  kWk1  1. (2)

Denote the set of measure preserving bijections from [0, 1]
to [0, 1] by S[0,1]. The cut metric between two graphons V
and W is then given by

�⇤(W,V) = inf
�2S[0,1]

kW� �Vk⇤, (3)

where W�(x, y) = W(�(x),�(y)). By identifying functions
V and W for which �⇤(V,W) = 0, we can construct
the space Gsp

1 which denotes the image of G̃sp
1 under this
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identification. Similarly we construct Gsp
0 from G̃sp

0 and
Gsp from G̃sp.

We define the L
2

metric distance between any graphons
W and V as

dL2(W,V) = kW �Vk2 (4)

and the �2 metric as �2(W,V) = inf�2S[0,1]
dL2(W�

,V).
Similarly, we define the L

1
metric as

dL1(W,V) = kW �Vk1 (5)

and the �1 metric as �1(W,V) = inf�2S[0,1]
dL1(W�

,V).
For any two graphons W and V the following inequalities

hold immediately:

�⇤(W,V)  �1(W,V)  �2(W,V)  dL2(W,V). (6)

The �2 (or �1) metric and �⇤ metric share the same equiv-
alence classes [12, Corollary 8.14]. Clearly, the �2 (or �1)
metric is also well defined on Gsp

1 .

B. Compactness of the Graphon Space

Theorem 1 ([12]). The space (Gsp
0 , �⇤) is compact.

This remains valid if Gsp
0 is replaced by any uniformly

bounded subset of Gsp closed in the cut metric [12].
Theorem 2 ([12]). The space (Gsp

1 , �⇤) is compact.
Sets in Gsp

1 (or Gsp
0 ) compact with respect to the �2

metric are compact with respect to the cut metric. It follows
immediately from (6) and Theorem 2 (or Theorem 1), if a
graphon sequence is Cauchy in the �2 metric then it is also
a Cauchy sequence in the cut metric and under both metrics,
the limits are identical in Gsp

1 (or Gsp
0 ).

C. Step Functions in the Graphon Space

Graphons generalize weighted graphs in the following
sense (see also [12]). A function W 2 Gsp

1 is a step

function if there is a partition Q = {Q1, ..., Qk} of [0, 1] into
measurable sets such that W is constant on every product set
Qi⇥Qj . The sets Qi are the steps of W. For every weighted
graph G (on node set V (G)), a step function SG 2 Gsp

1

is given as follows: partition [0, 1] into n measurable sets
Q1, · · · , Qn of measure µ(Qi) =

↵i
↵G

, then for x 2 Qi and
y 2 Qj , we let SG(x, y) = �ij(G), where ↵i denotes the
node weight of ith node, ↵(G) =

P
i ↵i and �ij(G) denotes

the weight of the edge from node i to node j (i.e., �ij
is the ij

th entry in the adjacency matrix of G). Evidently
the function SG depends on the labelling of the nodes of
G. We define the uniform partition P

N = {P1, P2, ..., PN}
of [0, 1] by setting Pk = [k�1

N ,
k
N ), k 2 {1, N � 1} and

PN = [N�1
N , 1]. Then µ(Pi) =

1
N , i 2 {1, 2, ..., N}. Under

the uniform partition, the step functions can be represented
by the pixel diagram on the unit square.

D. Graphons as Operators

Following [12], a graphon W 2 Gsp
1 can be interpreted

as an operator W : L2[0, 1] ! L
2[0, 1]. The operation on

v 2 L
2[0, 1] is defined as follows:

[Wv](x) =

Z 1

0
W(x,↵)v(↵)d↵. (7)

The operator product is then defined by

[UW](x, y) =

Z 1

0
U(x, z)W(z, y)dz, (8)

where U,W 2 Gsp
1 . For simplicity of notation, UW is

used to denote the graphon given by the convolution in (8);
similarly, Wv denotes the function defined by (7). Note that
if U 2 Gsp

1 and W 2 Gsp
1 , then UW 2 Gsp

1 , since for all
x, y 2 [0, 1]

|[UW](x, y)| 
Z 1

0
|U(x, z)W(z, y)|dz  1. (9)

Consequently, the power Wn of an operator W 2 Gsp
1 is

defined as

Wn(x, y) =

Z

[0,1]n
W(x,↵1) · · ·W(↵n�1, y)d↵1 · · · d↵n�1

with Wn 2 Gsp
1 (n � 1). W0 is formally defined as the

identity operator on functions in L
2[0, 1], but we note that

W0 is not a graphon.

E. The Graphon Unitary Operator Algebra

It is evident that the operator composition defined in (8)
above yields an operator algebra with a multiplicative binary
operation possessing the associativity, left distributivity, right
distributivity properties and compatibility with the scalar
field R. By adjoining the identity element I to the algebra GA
(see e.g. [15]) we obtain a unitary algebra GAI . The identity
element I is defined as follows: for any W 2 L

2[0, 1]2

[IW](x, y) =

Z 1

0
W(z, y)�(x, z)dz = W(x, y), (10)

where �(·, z)dz is the measure satisfying
R 1
0 u(z)�(x, z)dz =

u(x) for all u 2 L
2[0, 1], and in particular

R 1
0 �(x, z)dz = 1.

The graphon unitary operator algebra GAI will be used in
the definition of the controllability Gramian and the input
operator. More specifically, we use the subset G1

AI = {(aI+
A) : A 2 G1

A, a 2 R} where G1
A is the subset of GA that

corresponds to G̃sp
1 .

F. Graphon Differential Equations

Let X be a Banach space. A linear operator A : D(A) ⇢
X ! X is closed if {(x,Ax) : x 2 D(A)} is closed in the
product space X ⇥X (see [13]). L(X) denotes the Banach
algebra of all linear continuous mappings T : X ! X.

L
p([a, b];X) denotes the Banach space of equivalent classes

of strongly measurable (in the Böchner sense) mappings
[a, b] ! X that are p-integrable, 1  p < 1, with norm

kfkLp([a,b];X) =
hR b

a |f(s)|pds
i 1

p
. Let A : [0, 1]2 ! [�1, 1]

be a graphon and hence a bounded and closed linear operator
from L

2[0, 1] to L
2[0, 1]. Following [16], A is the infinites-

imal generator of the uniformly (hence strongly) continuous
semigroup SA(t) := e

At =
P1

k=0
tkAk

k! . Therefore, the
initial value problem of the graphon differential equation

ẏt = Ayt, y0 2 L
2[0, 1] (11)



has a solution given by yt = e
Aty0.

Theorem 3 ([17]). Let {AN}1N=1 be a sequence of graphons
such that AN ! A⇤ as N ! 1 in the L

2 metric. Then
for all x 2 L

2[0, 1], e
ANtx ! e

A⇤tx as N ! 1 in the
L
2 metric where the convergence is pointwise in time and

uniform on any time interval [0, T ].

III. NETWORK SYSTEMS AND THEIR LIMIT SYSTEMS

A. Scaled Network Systems with Node Averaging Dynamics

Consider an interlinked network S
N of linear (symmetric)

dynamical subsystems {SN
i ; 1  i  N}, each with an n

dimensional state space. The subsystem S
N
i at the node Vi in

the network GN (V,E) has interactions with S
N
j , 1  j  N,

specified as below:

S
N
i :

ẋ
i
t =

1

nN

NX

j=1

Aijx
j
t +

1

nN

NX

j=1

Biju
j
t ,

x
i
t, u

i
t 2 Rn

, i 2 {1, ..., N},
with AN = [Aij ], BN = [Bij ] 2 RnN⇥nN , the (symmetric)
block-wise adjacency matrices of GN (V,E) and of the input
graph, where Aij = [0] if SN

i has no connection to S
N
j and

similarity for Bij . Then the (symmetric) linear dynamics for
the network system S

N (AN , BN , GN ) can be described by

S
N :

ẋt = AN � xt +BN � ut,

xt, ut 2 RnN
, AN , BN 2 RnN⇥nN

,
(12)

where � denotes the so called averaging operator given by
AN � x = 1

(nN)ANx. Let S = ⇥1
N=1SN where SN =

[AN ,BN ,GNS
N (AN , BN , GN ). For simplicity, we require

the elements of AN and BN to be in [�1, 1] for each N

(note that in general AN and BN have elements that are
bounded real numbers for which case we would achieve
similar results). In addition, we note that if we take the
supremum norm on vectors in RnN , i.e. kxk1 = supi |xi|,
and the corresponding � operator norm of A, i.e. kAkop =
supkxk1 6=0

kA�xk1
kxk1

, then kAkop  1.

B. Network Systems with Node Averaging Dynamics De-

scribed by Step Functions in the Graphon Space

Let {(AN ;BN )}1N=1 2 S be a sequence of systems with
the node averaging dynamics each of which is described
according to (12). Let |ANij |  1 and |BNij |  1 for
all i, j 2 {1, ..., nN}. Let A[N]

s ,B[N]
s 2 Gsp

1 be the step
functions corresponding one-to-one to AN and BN ; these
are specified using the uniform partition P

nN of [0, 1] by
the following matrix to step function mapping MG: for all
i, j 2 {1, 2, ..., nN},

A[N]
s (x, y) := ANij , 8(x, y) 2 Pi ⇥ Pj , (13)

and similar for B[N]
s .

Define a piece-wise constant (PWC) function on R to
be any function of the form

Pl
k=1 ↵k Ik where ↵1, ...,↵l

are complex numbers and each Ik is a bounded interval
(open, closed, or half-open). Let L2

pwc[0, 1] denote the space
of piece-wise constant L2[0, 1] functions under the uniform
partition P

nN . Let us
t 2 L

2
pwc[0, 1] correspond one-to-one to

ut 2 RnN via the following vector to PWC function mapping

also denoted by MG: for all i 2 {1, ..., nN},

us
t(↵) := ut(i), 8↵ 2 Pi; (14)

and similarly xs
t 2 L

2
pwc[0, 1] corresponds to xt 2 RnN .

Lemma 1 ([17]). The trajectories of the system in (12) corre-
spond one-to-one under the mapping MG to the trajectories
of the system

ẋs
t = A[N]

s xs
t +B[N]

s us
t,

xs
t,u

s
t 2 L

2
pwc[0, 1],A

[N]
s ,B[N]

s 2 Gsp
1 ⇢ G1

AI
(15)

with graphon operations defined according to (7).

C. Limits of Sequences of Network Systems

Now the sequence of network systems with the node
averaging dynamics can be described by the sequence of step
function operators as {(A[N]

s ;B[N]
s )}1N=1. Let the graphon

sequences {A[N]
s } and {B[N]

s } be Cauchy sequences of step
functions in L

2[0, 1]2. Due to the completeness of L2[0, 1]2,
the respective graphon limits A and B exist and these will
then necessarily be the limits in the cut metric (see [12]).
In fact, we can generalized the control input operator B to
G1
AI , i.e., B can consists of the identity operator part and the

graphon part as B = �I+B.
Consider a sequence of systems {(A[N]

s ;B[N]) 2 G̃sp
1 ⇥

G1
AI}1N=1. Decompose the input operator into the identity

part and the graphon part as B[N] = �NI+B[N]
s .

Definition 1. A sequence of systems {(A[N]
s ;B[N]) 2 G̃sp

1 ⇥
G1
AI}1N=1 is convergent if

1) there exist � 2 R such that limN!1 �N = �

2) there exist A,B 2 G̃sp
1 such that {(A[N]

s ;B[N]
s )}

converges to (A;B) in the L
2 metric, i.e. A[N]

s ! A
and B[N]

s ! B under the same sequence of measure
preserving bijections in the L

2 metric.

Then the limit system is represented by (A;B) where B =
�I+B. With an abuse of notation, in the following sections
we use B and B[N]

s to represent input operators in G1
AI .

IV. THE LIMIT GRAPHON SYSTEM AND ITS PROPERTIES

A. Infinite Dimensional Graphon Systems

We follow [13] and specialize the Hilbert space of states
H and the Hilbert space of controls U appearing there to the
space L

2(R;L2[0, 1]). We formulate an infinite dimensional
linear system as follows:

LS
1 : ẋt = Axt +But, x0 2 L

2[0, 1], (16)

where A 2 Gsp
1 , B 2 G1

AI , and hence bounded operators
on L

2[0, 1], xt 2 L
2[0, 1] is the system state at time t and

ut 2 L
2[0, 1] is the control input at time t.



B. Uniqueness of the Solution

A solution x(·) 2 L
2(R;L2[0, 1]) is a (mild) solution of

(16) if xt = e
(t�a)Axa +

R t
0 e

(t�s)ABusds for all a and t

in R such that a  t. Following [13] the assumptions on the
operators A and B are

(H1)

8
<

:

(i) A generates a strongly continuous
semigroup e

tA on L
2[0, 1],

(ii) B 2 L(L2[0, 1]).

Under assumption (H1), the system (16) has a unique
solution x 2 C([0, T ];L2[0, 1]) for any x0 2 L

2[0, 1] and
any u 2 L

2([0, T ];L2[0, 1]).
Theorem 4 ([1]). The graphon system LS

1 in Eq. (16) has a
unique solution x 2 C([0, T ];L2[0, 1]) for any x0 2 L

2[0, 1]
and any u 2 L

2([0, T ];L2[0, 1]).

C. Controllability

A system (A;B) is exactly controllable on [0, T ] if
for any initial state x0 2 L

2[0, 1] and any target state
xf 2 L

2[0, 1], there exists a control u 2 L
2([0, T ];U)

driving the system from x0 to xf , i.e. xT = xf with
xT = e

ATx0 +
R T
0 e

A(T�t)Butdt. A system (A;B) is
approximately controllable on [0, T ] if for any initial state
x0 2 L

2[0, 1], any target state xf 2 L
2[0, 1] and any " > 0,

there exists a control u 2 L
2([0, T ];U) driving the system

from x0 to points in the state space within a "-distance
from xf , i.e. kxT � xfk2  ". The controllability Gramian

operator Wt : L2[0, 1] ! L
2[0, 1] is defined as

Wt :=

Z t

0
e
A(t�s)BBT

e
AT (t�s)

ds, t > 0.

A necessary and sufficient condition for exact controllability
on [0, T ] is the uniform positive definiteness of WT , that
is, hWTh, hi � cT khk2 for all h 2 L

2[0, 1] where cT >

0 and k · k is the L
2[0, 1] norm (see [13], [14]). The

positive definiteness of the controllability Gramian operator
WT is equivalent to the approximate controllability of the
corresponding system (see [13], [14]).
Theorem 5 ([17]). Let A be a graphon in G̃sp

1 and let B
be a bounded linear operator on L

2[0, 1]. The linear system
(A;B) is exactly controllable on a finite time horizon [0, T ]
if all the values in the spectrum of BBT are lower bounded
by a strictly positive constant.
Proposition 1 ([17]). Let A and B be graphons in G̃sp

1 .
Then (A;B) is not exactly controllable on any finite time
horizon [0, T ].

V. GRAPHON LINEAR QUADRATIC REGULATION OF
NETWORK SYSTEMS

A. LQR Problems for Graphon Dynamical Systems

Let k · k and h·, ·i denote the norm and the inner product
in L

2[0, 1]. For finite T > 0, consider the problem of
minimizing the cost given by

J(u) =

Z T

0

⇥
kCx⌧k2 + ku⌧k2

⇤
d⌧ + hP0xT ,xT i (17)

over all controls u 2 L
2([0, T ];L2(0, 1)) subject to the

system model constrains in (16). The assumptions for C and
P0 are:

(H2)

8
<

:

(iii) P0 2 L(L2[0, 1]) is hermitian and
non-negative,

(iv) C 2 L(L2[0, 1]).

B. Existence and Uniqueness of Solutions to LQR Problems

Finding the feedback control via dynamic programming
consists of the two following steps:

Step 1. Solve the Riccati equation

Ṗ = ATP+PA�PBBTP+CTC, P(0) = P0 (18)

Step 2. Given the solution P to the Riccati equation, it
can be proved that the optimal control u⇤ is given by

u⇤
t = �BTP(T � t)x⇤

t , t 2 [0, T ] (19)

and moreover that x⇤ is the solution of the closed loop
equation

ẋt = Axt �BBTP(T � t)xt,

t 2 [0, T ],x0 2 L
2[0, 1].

(20)

Applying the results in [13] to L
2[0, 1] space, we establish

the existence and uniqueness of the solution to the Riccati
equation (18) and the existence and uniqueness of optimal
solution pair (u⇤

,x⇤) in (19) and (20) under the assumptions
(H1) and (H2).

C. The Graphon-Network LQR (GLQR) Strategy

Consider the control problem of regulating the states of
each member of {(AN ;BN )}1N=1 2 S .

The Graphon-Network LQR (GLQR) Strategy is then:
S.1 Let {(A[N]

s ;B[N]
s ) 2 G̃sp

1 ⇥G1
AI}1N=1 be the sequence of

step function systems equivalent to {(AN ;BN )}1N=1 2
S under the mapping MG and assume that it converges

to the graphon system (A;B) 2 G̃sp
1 ⇥ G1

AI .

S.2 Define the linear quadratic cost for (A;B) as

J(u) =

Z T

0
[kCx⌧k2 + ku⌧k2]d⌧ + hP0xT ,xT i

and the linear quadratic cost for (A[N]
s ;B[N]

s ) as

J(u[N]) =

Z T

0
[kC[N]

s x[N]
t k2 + ku[N]

t k2]dt

+ hP[N]
s0 x[N]

T ,x[N]
T i

where it is assumed that C[N]
s ! C and P[N]

s0 ! P in

the strong operator sense. Solve the infinite dimensional

Riccati equation for (A;B) to generate the solution P.

S.3 Approximate P to generate P̃N and hence the control

law u[N]
t = �B[N]

s
T
P̃N(T � t)x[N]

t for (A[N]
s ;B[N]

s ).
In this work, the basic assumption in the formulation of

LQR problems for linear systems distributed on complex
networks is that the regulation problem for the infinite
dimensional graphon limit systems can be solved (e.g. by es-
tablished approximation methods or through methods based
on spectral decompositions [18]) while the finite dimensional
LQR problems for the original complex network systems are
intractable due to their cardinality.



D. Control Law Approximations

By approximating the Riccati equation solution P for
(A;B) we can generate P̃N that provides the control law
for the finite dimensional network system.

u[N]
t = �B[N]

s

T
P̃N(T � t)x[N]

t .

Let ⌃(L2[0, 1])) = {T 2 L(L2[0, 1])) : T is Hermition}
and

⌃+(L2[0, 1])

= {T 2 ⌃(L2[0, 1]) : hTx, xi � 0, 8x 2 L
2[0, 1]}.

Denote the topological space of all strongly continuous map-
pings F : I ! ⌃(L2[0, 1]) endowed with strong convergence
(see [13]) by Cs(I;⌃(L2[0, 1])).

1) Approximation of the Solution to the Riccati Equation:

First, we construct the equivalent representation of the linear
operator P in Cs([0, T ];⌃+(L2[0, 1])) by integration against
measures, that is, we first represent P by

P(·)(x, y)d�(x, y), (x, y) 2 [0, 1]2, (21)

where �(x, y) represents the measure (which can be a
singular measure, a Lebesgue measure or a mixed measure).

Second, we introduce a method to approximate the oper-
ator P by local integration with respect to measures over
partitions. The local step function approximation against

measures P̃N of P is defined by integration against measures
as follows: for (x, y) 2 Si ⇥ Sj with Si, Sj ⇢ [0, 1]
representing the elements of the partition,

P̃N(·)(x, y) =

R
Si⇥Sj

P(·)(x, y)d�(x, y)

µ(Si)⇥ µ(Sj)
, (22)

where µ(Si) represents the length of the interval Si and
�(x, y) represents the measure (which can be a singular
measure, a Lebesgue measure or a mixed measure).

2) Approximation of the Riccati Solution and Its Conver-

gence to the Optimal Riccati Solution: Based on the defini-
tion of the step function approximation against measures,
P̃N(·)x is the PWC function approximation of P(·)x in
L
2[0, 1], and hence for any x 2 L

2[0, 1],

lim
N!1

sup
t2[0,T ]

kP̃N(t)x�P(t)xk2 = 0.

Therefore we obtain the following lemma.
Lemma 2 ([17]). Let P̃N be generated by step function
approximation against measures from P via an N ⇥ N

uniform partition of [0, 1]2. Then

lim
N!1

P̃N = P, in Cs([0, T ];⌃(L
2[0, 1])).

Theorem 6 ([17]). Let P̃N be generated by step function
approximation against measures from P via N ⇥N uniform
partition of [0, 1]2. For any x 2 L

2[0, 1], for any t 2 [0, T ],

lim
N!1

kP̃N(t)x�P[N]
s (t)xk2 = 0,

where P[N]
s is the solution of Riccati equation of

(A[N]
s ;B[N]

s ) that converges strongly to the solution P.

3) Convergence of States and Convergence of Costs:

Let P[N]
s denote the solution of the Riccati equation for

(A[N]
s ;B[N]

s ) that converges strongly to the solution P of the
Riccati equation for (A;B). And further let P̃N be the step
function approximation against measures for P generated via
the N ⇥N uniform partition of [0, 1]2.
Theorem 7 ([17]). Consider the time horizon [0, T ]. Let the
optimal linear quadratic control law for (A[N]

s ;B[N]
s ) be

generated by

uN⇤
t = �B[N]

s

T
P[N]

s (T � t)xN⇤
t ,

where the optimal state trajectory is given by xN⇤, and let
the graphon approximate control law for (A[N]

s ;B[N]
s ) be

u[N]
t = �B[N]

s

T
P̃N(T � t)x[N]

t ,

where the corresponding state trajectory is given by x[N].
Then for all t 2 [0, T ], lim

N!1
kxN⇤

t � x[N]
t k2 = 0, and

lim
N!1

|J(uN⇤)� J(u[N])| = 0.

Note that J(u[N]) is not guaranteed to be minimal, since
it is the cost under the approximate control. However, this
result shows that J(u[N]) is guaranteed to converge to the
optimal cost as the size of the network increases.

VI. SIMULATION EXAMPLE

Consider a network system evolving according to the
node averaging dynamics on a weighted graph GN . Suppose
each node has an independent input. Denote the system by
(AN ; IN ), where AN is the adjacency matrix of GN and IN

is the identity input mapping. The network system (AN ; IN )
with (normalized) node dynamics is therefore described by

ẋ
i
t =

1

N

NX

j=1

ANijx
j
t+u

i
t, x

i
t, u

i
t 2 R, i 2 {1, ..., N}. (23)

The regulation objective is to regulate the network states
around origin from random initial states with minimum
quadratic cost.

As an example, we consider a sequence of networks
converging to the graphon limit U(x, y) = 4 cos(2⇡(x�y)),
x, y 2 [0, 1], which is depicted in Figure 2(h), and we solve
the LQR problem over the time horizon [0, T ] for the network
sequence. (See [1] for a detailed description of the generation
of a convergent network sequence). In this simulation, as
shown in Figure 2, a network of size 320 in the sequence is
considered. The system is represented by (A320, I320), with
A320 as the adjacency matrix of the weighted network and
I320 as the identity input matrix of size 320. B = I320,
C =

p
2I320, P0 = I320.

The infinite dimensional limit Riccati equation can be
solved with the solution given by Pt = ↵tI + �tU, where
↵t and �t satisfy

↵̇t = 2� ↵
2
t , �̇t = 2↵t + 16�t � 2↵t�t � 8�2

t ,

with ↵0 = 1,�0 = 0. The finite dimensional control law
is then generated by approximating the Riccati equation



solution as in (22). As the networks increase in size and
converge to the limit graphon, the strong convergence of
the approximated graphon Riccati equation solution to the
finite dimensional Riccati equation solution is guaranteed
by Theorem 6. Furthermore, the convergence in the state
trajectory (and cost) to the optimal state trajectory (and
the optimal cost) is guaranteed by Theorem 7. Both the

(a) State Evolution under
Graphon Control

(b) State Evolution under
Optimal LQR

(c) Control Input of Graphon
Control

(d) Control Input of Optimal
LQR

(e) State Difference (f) Control Signal Difference

(g) Network of 320 Nodes
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1.00.4 0.8
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(h) Graphon Limit

Fig. 2. Simulation on a Network of 320 Nodes

graphon-LQR control and the LQR optimal control regulate
the system to the origin from the same random initial states
as shown in Figures 2(a) and 2(b). Figures 2(e) and 2(f)
depict a remarkably similar performance of the approximated
graphon-LQR control and the LQR optimal control for the
320 node system. The maximum trajectory difference from
the optimal control is less than 4% of the maximum initial
states. With the graph interpreted as an L

2[0, 1]2 function,
the distance between the graph and the graphon limit in
L
2[0, 1]2 is 0.000813, and the graphon-LQR control cost is

only 0.133% higher than the optimal LQR control cost.

VII. CONCLUSION

Important aspects of the theory introduced in this pa-
per which require further research studies include: (1) the

application of the regulation strategy to asymmetric (i.e.,
directed) network systems; (2) an equivalent theory for sparse
networks; (3) the application of graphon control to linear
quadratic tracking problems on networks; (4) the application
of graphon control to stochastic linear quadratic Gaussian
problems; (5) the graphon control of networks of nonlinear
systems. Finally, this paper only deals with centralized
control, however, building upon the approach developed here,
the decentralized control of complex systems is formulated
within a graphon theoretic mean field game framework in
[19] and a team theoretic optimal control framework in [18].
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