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Abstract

We use temporally sequenced flash illumination to cap-
ture coded exposure images of fast-moving objects in low
light environments. These coded flash images allow for ac-
curate estimation of blur-free latent images in the presence
of object motion. By distributing flashes over a window of
time, we lessen eye safety concerns associated with power-
ful all-at-once flashes. We show how our flash-based coded
exposure system has better robustness to increasing object
velocity than shutter-based exposure coding, thereby obvi-
ating the need for pre-exposure velocity estimation. We also
show that the quality of the estimated sharp image is robust
to varying levels of ambient illumination. This and other
benefits of our coded flash system are demonstrated with
real images acquired using prototype hardware.

1. Introduction
We address sharp image acquisition of moving objects

in low light environments using active illumination. Using
a camera-based flash to stop motion is often considered a
solution to this problem, though there are well-known lim-
itations. Because camera-mounted flashes are point light
sources, illumination falls off with the square of the dis-
tance to an object. The light reflected by the object falls
off, as well, with the distance squared to the camera, sig-
nificantly limiting the effective range of flash photography.
Though it may seem straightforward to increase the power
of the flash illumination, considerations such as power re-
quirements and flash charging times limit this strategy’s ef-
fectiveness. More fundamentally, flash power is limited by
eye safety, in that very powerful flashes needed to illuminate
distant subjects may blind nearby people.

We propose to use a bank of conventional flash modules
and to temporally sequence their firings in order to achieve
a target level of illumination without emitting light at the
same time. We capture a single image with coded motion
blur by firing the flashes according to a temporal sequence
during the acquisition of a single image. An example is

Figure 1. (Top) Image of a moving object taken with temporally
coded flash illumination. (Bottom) De-blurred result. Inset regions
show the track of a point feature in both images. Because they are
dark, these and other images in the paper may not print well.

shown in Fig. 1. The flash sequence timing is determined in
order to ensure that the resulting blur point spread function
(PSF) can be removed by numerically stable deconvolution.
This requires that the modulation transfer function (MTF),
which is the absolute value of the Fourier transform of the
PSF, does not vanish at any spatial frequency.

As our approach is similar to coded exposure using a
fluttering shutter [14], we emphasize important differences
between the two. Beyond demonstrating the feasability of
flash-based coded exposure, our contributions are:

• We model flash- and shutter-based coded exposure in



order to point out important advantages of our flash
system with respect to increased velocity, as described
in Sec. 3.

• It has been pointed out in [11] that shutter-based ex-
posure coding requires pre-capture velocity estimation
to select an optimal shutter sequence. Since velocity
estimation is impractical for flash-based coded expo-
sure, out algorithm selects flash sequences that opti-
mally preserve image content over a range of motions.

• Our flash-based coded exposure uses hardware that is
compatible with any camera with a hot-shoe flash, and
is demonstrated on the natural motion of human gait.

2. Related Work

No discussion of stop-motion flash photography would
be complete without first mentioning the pioneering work
of Harold Edgerton, who used strobe flash photography at
MIT to capture high speed events illustrating the laws of
physics. The approach emits high levels of illumination
in a short period of time, unlike our use of stock flashes.
More recently, Raskar et al. [15] captured multiple images
with different flash positions to find depth edges and pro-
duced stylized renderings for illustrations. Koh et al. [7]
extended this work to detect unoccluded objects using the
same spatially-distributed flashes. Spatially-varying active
illumination is also used in Photometric Stereo [18] for 3D
shape reconstruction from multiple photographs.

Motion de-blurring from images acquired with ambient
illumination has a long history in image processing and
computer vision. The longest standing motion de-blurring
problem is that of blind deconvolution [4], where algo-
rithms take only a blurred image as input, from which blur is
estimated and removed. Blind motion de-blurring in tradi-
tional images remains an active area of research, with recent
work by Levin [8], Jia [5], and Shan et al. [16].

In addition to work on blind motion de-blurring, there
has been a significant amount of work that uses informa-
tion beyond the image in order to better constrain blur
estimation. Yuan et al. [19] capture high ISO noisy im-
ages in addition to the blurred image. Ben-Ezra and Nayar
[1] used a hybrid camera to simultaneously acquire high-
resolution/low frame rate and low-resolution/high frame
rate videos; the point spread function estimated from the
low resolution video is then used to deblur the high resolu-
tion video. Joshi et al. [6] added inertial sensors to a DSLR
to improve estimation of spatially-varying blur.

In recent computational photography work, others have
advocated alternative capture techniques that simplify mo-
tion de-blurring in various ways. Levin et al. [10] capture
images while the lens or sensor is translated along a line
parallel to subject motion, producing a blur PSF that does

not depend on the velocity of a moving subject and thereby
obviating blur estimation. Cho et al. [2] propose a 2D ex-
tension of this method based on two exposures with orthog-
onal translations. Raskar et al. [14] have advocated coded
exposure using a fluttering shutter, through which linear,
constant-velocity motion produces an invertible PSF that
can be removed through deconvolution. Narasimhan et al.
[13] later demonstrated that coded exposure could be im-
plemented by modulating a projector’s output using a DLP
device. Though our approach is similar to the flutter shut-
ter, and though we use active illumination, there are critical
differences described in the next section.

There are analogous approaches to the above-mentioned
methods for handling defocus blur. Whereas coded tem-
poral exposure was used for motion de-blurring, spatially
coded apertures have been used by Levin et al. [9] and Veer-
araghavan et al. [17] to simplify defocused image restora-
tion. Whereas sensor motion orthogonal to the optical axis
can be used to capture an image with invariant blur over
different velocities, Nagahara et al. [12] have shown that
sensor motion along the optical axis can be used to capture
images with defocus blur that is invariant to the distance
between the camera and objects in the scene.

3. Coded Exposure: Shutter vs. Flash
In order to avoid eye safety issues, our system acquires

a single image while it fires a temporal sequence of flashes
to distribute illumination over a safe time interval. Because
objects in the scene are assumed to be in motion throughout
the exposure time, they will appear blurred in the resulting
image. As in other work in motion blur removal, we model
the coded flash (blurred) image

I ′ = I ∗B + η, (1)

where I is the sharp latent image that we wish to estimate,
B is the blur PSF, and η represents noise. The use of
this model has a well-known drawback, namely that it only
applies within planar regions with the same motion. The
model does not apply near occluding contours, or within re-
gions with significant depth variations that lead to motion
parallax. For scenes with multiple moving objects, multiple
B can be estimated as in [8] by performing motion segmen-
tation and applying de-blurring within segmented regions.
The model also assumes that the light reflected by an ob-
ject in the direction of the camera does not change based on
the object’s position, i.e. that there are no highly specular
surfaces and that shadowing does not change.

When an object is moving laterally with constant veloc-
ity, and when image acquisition is done using a traditional
shutter, the PSF B is a rectangle function whose size de-
pends on the velocity. This results in reduced image sharp-
ness in the motion direction and smoother intensity transi-



Figure 2. (Left) MTFs of BN , B2N , and B3N for our flash sequence. (Center) MTFs of SN , S2N , and S3N for the shutter sequence given
in [14]. (Right) RMSE of reconstructed images with simulated blur corresponding to the MTF shown in this figure.

tions, as high frequencies in that direction are muted. Un-
fortunately, as pointed out in [14], such PSFs are problem-
atic in that the latent image I can’t be reliably estimated
at certain lost spatial frequencies where the MTF vanishes.
One way to avoid such lost frequencies is to flutter the shut-
ter, opening and closing it during the capture of a single im-
age. The sequence of shutter transitions is chosen in such
a way as to produce a blur PSF B whose MTF retains high
contrast at all spatial frequencies, and which has relatively
uniform contrast at middle and high frequencies. In that our
flash sequences are chosen to produce an invertible PSF B,
our approach is similar to a flutter shutter camera. However,
there are key differences between the two.

The first and most obvious difference is that flash-based
exposure coding can produce well-exposed images in lower
light situations. If the level of light and the camera’s settings
require Tms of exposure to produce a good image, and if
the lens’s field of view is d meters at a particular distance,
we can’t expect to capture a flutter shutter image for objects
moving faster than 1000d/T meters per second. In fact,
since the shutter is closed for as much as 50% of a flutter
shutter image capture, the upper bound of speed is reduced
by as much as half.

The second key difference has to do with PSF scaling
relative to a moving object’s velocity. We represent a flutter
shutter sequence as a binary sequence of chops

C = [C(0) C(1) ... C(N − 1)], C(x) ∈ {0, 1} ∀x, (2)

where N is the number of chops. Whatever the duration of
a single chop, an object moving with constant velocity over
N pixels during exposure will produce a blur PSF

SN (x) =

{
C(x)∑
x C(x) for x = 0, 1, ...N − 1,

0 otherwise
(3)

The shutter sequence is chosen in order to ensure that this
is invertible. However, in [11], it was shown that, when the

object velocity is twice this nominal velocity, the blur PSF

S2N (x) =

{
C(b x2 c)

2
∑
x C(x) for x = 0, 1, ...2N − 1,

0 otherwise
(4)

always has a lost content at the Nyquist frequency, and that
additional frequencies are lost for higher object velocities.
In short, a given flutter shutter sequence will produce a PSF
that is invertible over a small range of velocities. In order to
assure that motion blur is invertible, then, it is necessary to
estimate an object’s velocity in order to select a flutter shut-
ter sequence or chop duration that avoids lost frequencies.

Velocity-related scaling of PSFs from temporal flash se-
quences, however, is more forgiving. Consider firing Nf

flashes in a temporal sequence and assume that the contribu-
tion of ambient illumination during exposure is negligible1.
The PSF will be a superposition of delta functions and, for
an object traveling over N pixels during exposure, will be
of the form

BN (x) =

{
F (x)
Nf

for x = 0, 1, ...N − 1,
0 otherwise

(5)

where F (x) is 1 if a flash was fired during the correspond-
ing time, and 0 otherwise. For an object traveling over 2N
pixels during exposure, on the other hand, the PSF is

B2N (x) =

{
F ( x2 )

Nf
for x = 0, 2, 4, ...2N − 2,

0 otherwise
(6)

Whereas values are repeated when a flutter shutter PSF
scales in velocity, temporal flash PSFs have zeros inter-
leaved. This is because, while the flutter shutter distributes
light evenly when the shutter is opened, individual flashes
still stop motion even if they don’t provide sufficient expo-
sure. The advantage is that the MTF |B̂2N | corresponding

1We demonstrate the small effect of ambient illumination in Sec. 6.3.



to the PSF B2N does not suffer from lost frequencies. At
any spatial frequency k, it can be shown that

|B̂2N (k)| = |B̂N (2k)|. (7)

That is, if a flash sequence avoids lost frequencies for a
given velocity, then it avoids lost frequencies over multiple
scales, since B̂2N (k) = 0 ⇐⇒ B̂N (2k) = 0.

Fig. 2 (left) shows the MTFs of our flash sequence over
three scales, and we see that no new minima appear in the
MTF as the velocity increases. By contrast, Fig. 2 (center)
shows the MTFs of shutter-based coded exposure over three
scales; the expected lost spatial frequency appears for S2N

and migrates to a lower spatial frequency for S3N . Fig. 2
(right) shows the root mean squared error (RMSE) of a re-
constructed image corresponding to these MTFs, including
simulated white noise with standard deviation 1. Whereas
the RMSE of flutter shutter images degrades with the veloc-
ity of a moving object, the RMSE of a reconstructed coded
flash image stays nearly constant. It is important to note
that, though the scaling of coded flash PSFs do not intro-
duce lost spatial frequencies, the scale of the blur PSF must
still be estimated for de-blurring.

Given that Narasimhan et al. [13] use a projector with
a high-speed mirror to capture coded exposure images, one
might expect that it has the same velocity scaling perfor-
mance as our flash-based system. However, there is a
very large difference in the instantaneous light ouput by
each: high-end (>US$100,000) DLP lamps output 30,000
lumens, whereas cheap (<US$100) flash units output more
than 1,000,000. In order to produce good exposure in the
cases shown in our experiments, a projector-based system
would need to illuminate the scene for about a second. Do-
ing so using short bursts of illumination (needed to get the
delta-type PSF) would have prohibitively long acquisition
times: several seconds, during which our moving objects
would have left the camera’s view. With more manageable
acquisition times, one would need longer periods of illumi-
nation, which give rise to the box-type PSFs that, as with
the fluttering shutter, have poor velocity scaling properties.

4. Flash Timing Sequences

Though coded flash PSFs have better scaling properties
than flutter shutter PSFs, it is still necessary to wisely select
flash timing sequences that produce invertible PSFs. Our
objective is to choose a timing sequence so that, in the pres-
ence of subject motion, the resulting blur is invertible with
de-convolution. This implies not only that we wish to avoid
lost spatial frequencies, but also that we maintain high con-
trast at all spatial frequencies in order to avoid unnecessarily
amplifying noise in reconstruction. As such, we adopt the
convention of [11] and measure the quality of a particular

MTF as

Q(|B̂|) = q1 mink(|B̂(k)|) + q2 vark(|B̂(k)|)
+q3 meank(|B̂(k)|),

(8)

to prefer MTFs with the largest minimum contrast (the first
term), low variation in contrast (the second term, when q2 is
negative), and high mean contrast (the third term). We use
q1 = 0.10, q2 = −0.25, and q3 = 3.4.

There is a disconnect between that which we control - the
flash timing sequence - and that which we wish to optimize -
the MTF of motion blur. The MTF depends on both the tim-
ing sequence and an object’s motion, but we have no control
over the motion. We represent a flash timing sequence T as
a ordered list of Nf flash firing times t1, t2, ...tNf , where tj
represents the time between the beginning of exposure and
the firing of the jth flash. Given a flash sequence, along
with starting image velocity v0 (in pixels per second) and
acceleration a, we can write the PSF

B(x) =
1

Nf

Nf∑
j=1

δ

(
x−

(
v0tj +

at2j
2

)
− 1

)
, (9)

where δ is a discrete delta function (δ(0) = 1, δ(x) =
0 ∀x 6= 0). Likewise, the MTF can be written as

|B̂(k)| = | 1
Nf

Nf∑
j=1

e
−i 2π

N k

(
v0tj+

at2j
2 +1

)
|. (10)

Unlike the method of [11], we do not assume that a given
sequence can be selected based on a pre-capture estimate
of an object’s velocity and acceleration, in which case it
is necessary to choose a timing sequence that produces in-
vertible PSFs over a range of different velocities and ac-
celerations. Instead of producing a timing sequence that is
optimal with respect to a particular constant velocity, then,
we produce flash timing sequences that produce good MTFs
over a range of motions. We define an object’s motionM
as its starting velocity v0 and acceleration a, and a func-
tional B mapping a flash sequence T and motionM to the
resulting MTF, using eq. 10. Given an expected distribution
of object motions, and corresponding probabilities for each,
we evaluate the overall quality of a flash sequence as the
probabilistically-weighted qualities of the MTFs produced
under different motions, as

Q(T ) =
∑
M

Q(B(T ,M))P (M). (11)

If exposure time is quantized into T discrete intervals,
there are

(
T
Nf

)
potential flash sequences. Presuming that

the first flash is fired at the beginning of exposure, the
set of candidate sequences is reduced to

(
T−1
Nf−1

)
. Though

this search space is still exponential in Nf , it is unlikely



Figure 3. The capture setup used for experiments in this paper. An
array of 9 physical flashes is controlled by custom hardware and is
triggered by the hot shoe output of a DSLR camera.

that very large numbers of physical flashes would be avail-
able, and we have found that this space can be exhaustively
searched for Nf ≤ 10. In searching for the best flash se-
quence, we restrict the maximum flash firing time so that
the PSF is no more than 25% of the width w (in pixels) of
the image, in order to ensure that at least 50% of the image
can be reconstructed without edge effects. As such, every
flash time in a sequence must be less than

tmax =

√
v2o + aw

2 − v0
a

. (12)

Using this algorithm, and quantizing time into T = 100
intervals, we find the optimal flash sequence for Nf = 7
with respect to a uniform probability over v0 ∈ {1, 2, 3}
and a ∈ {0, 1}. That gives the sequence used in our experi-
ments, T =[0 28 30 32 40 46 67] (ms).

5. Flash Device and Calibration
Fig. 3 shows our flash device used for the experiments

described in the next section. The setup consists of an ar-
ray of 9 flashes connected to a controller that triggers the
individual flashes in sequence. Though nearby, the differ-
ent positions of the flashes will give rise to flash-dependent
shadowing. We note that, when objects are far from the
camera, such lighting effects will be minimized. The image
in Fig. 1 is captured by an off-the-shelf DSLR camera, with

the sequence triggered by the camera’s hot shoe flash out-
put. For others, flashes are triggered by a computer which
synchronizes sequence timing with a FireWire camera.

In early experimentation, we found that - though all nine
flashes are the same model and age - different flashes had
consistently different output. In order to calibrate these dif-
ferences, we took several single-flash images of a diffuse,
stationary surface in order to calibrate their power. We
found that two of the flashes produced significantly less
output, and that these deviations produced artifacts in the
reconstructed images. As such, the experiments carried out
in the next section used only 7 flashes in the sequence given
above. In our experiments, the exposure time is 70ms.

6. Experiments
In this section, using real images, we demonstrate:

1. That de-blurred coded flash images provide better de-
tail of an object’s appearance than a single traditional
flash.

2. That our coded flash system produces high quality im-
ages over a range of object velocities.

3. That changing levels of ambient illumination have lit-
tle impact on the reconstructed image quality.

4. That, despite the assumptions made in our analysis,
coded flash can be used to capture sharp images of peo-
ple walking naturally.

Throughout this section, we will show de-blurred coded
flash images. In order to produce these, we manually iden-
tified the direction and extent of motion blur, and applied
de-convolution using the reference code given in [14].

6.1. Comparing to a Single Flash

Fig. 4 illustrates that, in low light situations for distant
moving objects, a single flash may not put out enough light
to produce a well exposed image. The use of seven simul-
taneous flashes may cause damage to nearby viewers’ eyes,
and was not tested. Instead, we capture a coded flash im-
age and estimate the latent sharp image, from which we can
make out that the objects are two pennies. Despite the fact
that the pennies have specular reflectance, we can still make
out image details that would not otherwise be evident.

6.2. Object Velocity Scaling

In Sec. 3 we show that, because of the scaling properties
of coded flash PSFs, a given flash sequence can produce a
high quality reconstruction over a wider range of object ve-
locities than a flutter shutter sequence. To demonstrate this,
we captured coded flash images of the same object moving
laterally with three different speeds and de-blurred them us-
ing the scaled PSFs corresponding to our flash sequence.



Figure 5. Reconstructed images of an object moving with increasing velocity. (Top row) Reference image of still object. Left column
of lower rows show, from top to bottom, coded flash images with 73, 147, and 225 pixels of blur, corresponding to real world speeds of
≈ 0.4, 0.8, 1.2m/s for an object at ≈ 3 meters. Right column shows estimated latent images with consistent image quality.

Fig. 5 shows the latent sharp images estimated from
these captured images, and a reference image taken with-
out motion. We can see that, while there are slight recon-
struction artifacts in the middle image (due to motion jitter),
there is no systematic degradation in image quality with in-
creased velocity. The quality of the reconstruction from the
image with 225 pixels of blur is qualitatively similar to that
of the object moving at a third of that speed, and both have
good quality when compared to the stationary image. This
confirms the synthetic results presented in Fig. 2.

6.3. Ambient Illumination

In both our analysis and implementation of de-
convolution, we have ignored the effects of ambient illu-
mination, and the PSF can be modeled as shown in eq. 9.
However, when there is significant ambient illumination,
the PSF has the slightly different form

B(x) = b+
1

Nf

Nf∑
j=1

δ

(
x−

(
v0tj +

at2j
2

)
− 1

)
, (13)

where b ∈ [0, 1] denotes the relative power of the ambient
illumination to the power of a flash.



Figure 4. (Top) Image of a moving object taken with a single flash,
from which it is difficult to make out the identity of the object.
(Middle) Coded flash image of the moving objects. (Bottom) Es-
timated latent image from the coded flash image, from which we
can see that the moving objects are two pennies.

Fig. 6 (top) shows the expected effects of ambient illu-
mination on motion blur MTF assuming ambient power of
0, 10 and 20% of flash power. We see that this has an im-
pact at lower spatial frequencies, in particular an increase
in average intensity, but almost none at high frequencies.
The images in Fig. 6 shows the effects of ambient illumi-
nation in estimated latent images. We can see the expected
effects in the low spatial frequencies, particularly the lack
of a sharp edge between light and dark blocks of pixels, but
little effect in the fine text details.

6.4. Natural Human Motion

Our use of the blur model of eq. 1 implicitly makes a
number of assumptions. To repeat, it assumes lateral mo-
tion and does not handle occlusions, specular objects, or
self-shadowing of 3D objects. Our use of the deblurring
code from [14] further restricts us to linear motion with
constant velocity. Given these assumptions, readers may
wonder if coded flash capture is useful for natural motions
of real world objects. We point out that others have demon-
strated good results on real world motions using the same
assumptions in previous work [14, 10, 8]. We also demon-
strate that, even with these assumptions, our coded flash
system can estimate a good latent image of a person walk-
ing by the camera during exposure. This scenario violates
the linearity assumption, in that the person’s head moves
up and down while moving forward. The person’s clothing
also casts shadows, and there are a number of specular sur-
faces (buttons, glasses, etc.) Nonetheless, Fig. 7 shows a
good reconstruction of the side of the person’s head.

Figure 6. The effects of ambient light levels on coded flash. (Top)
Blue/green/red curves show the MTF of our coded flash sequence
for blur over 67 pixels with 0/10/20% ambient illumination. (Mid-
dle) Latent image region estimated from a coded flash image with
negligible ambient illumination. (Bottom) Latent image region
estimated from a coded flash image with ambient illumination
≈ 20% of flash power, with slight low-frequency artifacts.

7. Conclusions and Future Work

We have demonstrated that coded flash illumination pro-
vides a way of capturing an image from which we can ac-
curately estimate the sharp appearance of moving objects in
low light. Though our exposure coding by temporal flashes
is similar to coded exposure using a fluttering shutter, we
have described how coded flash acquisition has better scal-
ing properties with respect to object velocity. This obvi-
ates the need for pre-exposure velocity estimation, as we
have demonstrated that the same flash sequence can be used
to estimate good latent images over a range of velocities.
Though not addressed in the paper, we point out that the
spectral differences between ambient and flash illumination
should also be considered when comparing these methods.

We have also demonstrated that our system can be used
to capture sharp images in the presence of natural human
motion, in addition to the linear, constant-velocity motion
modeled throughout the paper. Our motivation has been to
enable capture of distant moving objects in low light, where
current capture methods are limited. By distributing flashes
over a window of time we lessen eye safety concerns as-
sociated with powerful all-at-once flashes and could re-use



Figure 7. Despite assumptions of the blur model, coded flash can
estimate a good quality latent image from an image of a person
walking by the camera. Insets show ear and shirt seam regions.

physical flashes if they have short recharge times. Though
we are not aware of a precise definition of safe flash illumi-
nation, such constraints can be added by rejection sampling
during the search for an optimal flash sequence.

Throughout the paper we have used manual blur estima-
tion and de-blurring. In the future we will experiment with
a modified version of the coded exposure blur estimation
algorithm proposed by Ding et al. [3]. It will be necessary
to modify the PSF scaling used in blur estimation to reflect
the way in which coded flash PSFs scale with velocity, but
otherwise the method should apply.
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