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Abstract. We address the problem of high-quality image capture of
fast-moving objects in moderate light environments. In such cases, the
use of a traditional shutter is known to yield non-invertible motion blur
due to the loss of certain spatial frequencies. We extend the flutter shut-
ter method of Raskar et al. to fast-moving objects by first demonstrating
that no coded exposure sequence yields an invertible point spread func-
tion for all velocities. Based on this, we argue that the shutter sequence
must be dependent on object velocity, and propose a method for com-
puting such velocity-dependent sequences. We demonstrate improved im-
age quality from velocity-dependent sequences on fast-moving objects, as
compared to sequences found using the existing sampling method.

1 Introduction

In challenging photographic situations, where ambient illumination is low or sub-
ject/camera motion is high, blur is a significant image quality problem for both
consumer photographic and computer vision applications. Both optical and mo-
tion blur have been studied in the literature, and the limits of de-blurring are well
understood. With respect to motion blur, it is well-known that the use of a tra-
ditional open/closed shutter results in motion blur that is non-invertible. That
is, the use of a traditional shutter precludes the recovery of a sharp image infor-
mation at certain spatial frequencies, and images processed by de-convolution
will contain significant reconstruction artifacts. In order to address this short-
coming, recent work in computational photography has advocated the use of
non-traditional capture methods to ensure invertibility of blur in the captured
images. The use of coded exposure has demonstrated an ability to produce im-
ages with good contrast at all spatial frequencies without significant artifacts.

The fundamental idea of the flutter shutter approach is to open and close
the shutter several times during image capture in order to produce an image
with invertible motion blur. The motion blur is considered to be invertible if the
associated modulation transfer function (MTF - the Fourier magnitude of the
point spread function [PSF]) is greater than zero for all spatial frequencies. For
such blurs, the deconvolution process is well-posed and the sharp image can be
recovered from the blurred camera image, as illustrated in Fig. 1.

Though the shutter’s fluttering pattern is one determinant, the effective PSF
also depends on the motion of the object As with other current work with mo-
tion blur, we assume that the object follows a linear trajectory with constant
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Fig. 1. We employ an off-the-shelf camera to capture coded exposure imagery of high-
speed motion using velocity-dependent shutter sequences. The coded exposure image
(top right) is then de-blurred to give a sharp image (bottom right) without artifacts.

(unknown) velocity, and that either blur is uniform or that blurred regions have
been segmented in advance. Under these assumptions, a given flutter pattern can
generate any of a family of PSFs, depending on the object’s velocity and motion
direction. Though this dependency has been mentioned in [1], we contribute the
first analytic characterization of the relationship, and demonstrate that no flut-
tering pattern can generate a family consisting entirely of invertible PSFs. We
therefore argue that fluttering patterns must be designed and selected for a par-
ticular velocity. We provide theoretical motivation for our algorithm to generate
velocity-dependent fluttering patterns, which is shown to improve image quality
on reconstructions of fast-moving objects. We also consider (previously ignored)
read-out noise due to the use of an electronic shutter.

2 Related Work

Numerous methods in the category of blind deconvolution [2] have been pre-
sented to mitigate the effects of motion or optical blur in images. Though these
methods may be successful relative to certain aesthetic objectives, they are fun-
damentally limited by the blurred input images. The image of an object moving
along a straight line with constant velocity is equivalent to a sharply-focused
image convolved with a 1D rectangular point spread function. The magnitude of
the Fourier transform of such a PSF (known as the Modulation Transfer Func-
tion or MTF) is small at middle and high spatial frequencies, and goes to zero
at several frequencies. As a result, contrast of a motion-blurred object will be
significantly muted at the middle and high spatial frequencies, and there will be
no contrast at a number of lost frequencies (the frequencies at which the MTF
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vanishes). These spatial frequencies are lost when captured through a traditional
shutter, and post-processing the image cannot recover them and may instead in-
troduce artifacts. Such images can, however, be processed by learning methods
that use outside information (priors, etc.) to produce visually pleasing images [3,
4]. While successful in that regard, hallucinating image content is inappropriate
for many applications, e.g. forensics, that require the recovery of the true scene.

Given the incremental improvements of camera sensitivity, researchers have
begun to use computational photographic methods to achieve fundamental new
gains. Hasinoff and Kutulakos [5, 6] propose light-efficient photography as a faster
way of capturing images with large depth of field from multiple images. Telleen
et al. [7] combine multiple, poorly-exposed images from a hand-held camera to
produce low-noise images of stable image regions. Ben-Ezra and Nayar [8] use
a hybrid camera to simultaneously acquire high-resolution/low frame rate and
low-resolution/high frame rate videos; the point spread function estimated from
the low resolution video is used to deblur the high resolution video. Synthetic
apertures [9] have been shown capable of acquiring both scene radiance and
depth in a single image; scene depth can subsequently be used to deblur optically-
defocused regions of the scene, increasing depth of field. Levin et al. [10] acquire
and process uniformly motion-blurred images with an invertible PSF by moving
the camera during exposure, assuming a priori knowledge of the motion direction.

We extend the fluttering shutter method of Raskar, et al. [11] and do not
require a priori knowledge of the motion direction. The flutter shutter approach
chooses a shutter timing pattern with the intent of optimally preserving image
content at all spatial frequencies, and preserving those frequencies at a nearly
uniform level of contrast. Because the effective PSF is zero-padded, the MURA
pattern [12] is not necessarily optimal. Raskar’s shutter timing pattern is found
by dividing the acquisition time into several chops of uniform duration, and by
assigning a label of open or closed shutter to each of the chops subject to a
constraint on the total exposure. Representing the timing pattern as a binary
sequence (with 1s and 0s corresponding to open and closed shutter chops, respec-
tively), the search for an optimal sequence is carried out by random sampling and
a fitness function computed on the Fourier magnitude of the binary sequence,
which is assumed to be the effective MTF. Agrawal and Xu [13] present a method
to determine chop sequences that are optimal with respect to both invertibility
and ease of blur estimation via alpha matting, but continue to conflate the PSF
and the chop sequence. As we demonstrate in the next section, the equivalence
of the binary chop sequence and the PSF only holds at a particular velocity and,
at all other velocities, the invertibility of the effective PSF cannot be guaranteed.

3 Velocity Dependence

The fundamental notion behind the fluttering shutter concept is that the open/close
sequence of the shutter should be chosen to give a PSF that passes all spatial
frequencies with nearly uniform levels of contrast. In addition to the binary chop
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Fig. 2. For a particular fluttering sequence, the effective PSF/MTF depends on sub-
ject velocity. (Top Left) The effective MTFs of motion through a particular fluttering
shutter for object velocities of 3 pixels per ms (black), 4p/ms (green), and 6p/ms (red).
(Top Right) Reference image of stationary target. (Lower Images) Coded exposure im-
ages [top] of a dot moving left to right and de-blurred images [bottom]. Though the
reconstructed image quality is good for object speeds of 3p/ms (bottom left), there
are lost frequencies at 6p/ms (bottom right) and the reconstruction has noticeable
artifacts.

sequence S(t), t ∈ {0, 1, ...N − 1}1, the fluttering pattern is specified by the du-
ration tchop of each chop. As such, the exposure time of the flutter shutter image
is tchop

∑
S(t) and the total acquisition time (the time from the start of the first

open chop to the end of the last) is Ntchop. By convention, the fluttering pattern
is chosen to have an acquisition time no greater than twice the exposure time,
i.e. no fewer than half of the S(t) are open shutter chops. In order to implement
an arbitrary chop sequence on a particular camera, it is necessary for the camera
to support open and closed shutter periods as short as tchop, a constraint that
we discuss further in Section 4.

Though the fluttering sequence is one determinant, the effective PSF of mo-
tion blur also depends on the object’s velocity on the image sensor. Though the
velocity on the image sensor depends both on the object’s real-world velocity
and its distance from the camera, it is the image velocity that determines the

1 By convention, the chop sequence begins and ends with a 1 representing open shutter
chops, i.e. S(0) = S(N − 1) = 1.
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PSF. Because of the PSF’s dependence on velocity, a particular fluttering se-
quence defines a family of PSFs, as illustrated in Fig. 2. A notable member of
this family, which we refer to as the ‘nominal‘ PSF, is effective when the object
moves over a range of N pixels during the course of exposure with a fluttering
sequence composed of N chops. In this case the effective PSF (call it BN ) is
equal to a scaled version of the chop sequence S,

BN (t) =
S(t)∑
S(t)

, for t = 0, 1, ...N − 1. (1)

In this case, which has been considered in [11, 13], the Fourier transform B̂N
of the PSF BN will be the same as that of the chop sequence S (up to a scale
factor). Presuming that S was chosen to preserve all frequencies, this nominal
PSF is invertible and the sharp image can be recovered.

In the general case, however, the PSF is a stretched version of the chop
sequence and may not be invertible. In fact, no chop sequence can generate a
family consisting of invertible PSFs for all velocities. In particular, if the object
moves over 2N pixels during the course of exposure, the effective PSF will be

B2N =
1

2
∑
S(t)

∗ [S(0) S(0) S(1) S(1)...S(N − 1) S(N − 1)] , (2)

where * represents an element-wise multiplication of the sequence. As we will
now demonstrate, B2N suffers lost frequencies that cannot be recovered post-hoc.

Lemma 1. Let S be an arbitrary chop sequence of length N . The effective PSF
B2N for an object that moves over 2N pixels during exposure will have a lost
frequency at k = N

2 .

Proof. Let A = 1
2

P
S(t) .

B̂2N (k) = A

N−1∑
t=0

S(t)
(
e−i

2π
N k(2t+1) + e−i

2π
N k2t

)
= A

N−1∑
t=0

S(t)e−i
2π
N kt

(
e−i

2π
N k(t+1) + e−i

2π
N kt

)
B̂2N (N2 ) = A

N−1∑
t=0

S(t)e−iπt
(
e−iπ(t+1) + e−iπt

)
= A

N−1∑
t=0

S(t)e−iπt0 = 0ut

(3)

It can similarly be shown that PSFs of the general form

BκN =
1

κ
∑
S(t)

∗

S(0)...S(0)︸ ︷︷ ︸
κ times

, ... S(N − 1)...S(N − 1)︸ ︷︷ ︸
κ times

 , (4)



6 Scott McCloskey

Fig. 3. Use of an electronic shutter for coded exposure imposes read-out noise propor-
tional to the number of open shutter periods. (Left) Plots shows root mean squared
error (RMSE) due to read-out noise in the captured image (blue), and the de-blurred
image (red). For all captures, the exposure time is fixed at 30ms. (Top right) Re-
constructed patch derived from an image captured with a physical shutter (taken from
[11]). (Bottom right) Reconstructed image patch derived from an image with simulated
read-out noise corresponding to 13 open chop periods, i.e. representing the electronic
shutter implementation of the sequence given in [11].

will have κ−1 lost frequencies. As well, it can be shown that for any object that
moves over more than 2N pixels, the MTF will have at least one zero in the
range 0 ≤ k ≤ N

2 . The implication of this result is that the invertibility of coded
exposure blur depends on the velocity; one cannot expect a flutter sequence
designed for motion over N pixels to perform well when the velocity produces
an effective motion of 2N pixels. We demonstrate the image quality implications
of this in the Fig. 2 and the experiments of Section 6.

In order to capture images with invertible motion blur, the shutter’s flut-
tering pattern must be selected according to the object velocity. The use of an
inappropriate fluttering pattern may cause artifacts in the processed images,
as illustrated in Fig. 2. As such, it is necessary to compute different fluttering
patterns for specific velocities. On naive way to ensure invertibility of blur is to
shorten the duration tchop of each chop to compensate for higher than expected
velocity. There are two problems with this approach, namely that (1) the expo-
sure time would be reduced (and noise increased) and (2) the camera hardware
may not support the shortened chop duration. Before describing our method to
determine velocity-dependant fluttering patterns for each exposure time, we first
discuss hardware limitations on the fluttering sequence.
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4 Hardware Considerations

Though the original flutter shutter work [11] was demonstrated with a custom-
made camera, more recent work [13] (including our own) has employed off-the-
shelf cameras from Point Gray Research. Several of their cameras support flutter
shutter image acquisition through an external trigger and multiple-exposure cap-
ture mode. This mode captures a single image whose exposure is accumulated
over a pre-set number of pulses of variable duration. Because the camera lacks
a physical shutter, the CCD sensor is cleared at the beginning of each pulse and
at the end of a pulse the charge is added to the accumulated exposure. This
transfer imposes read-out noise at the end of each open shutter period of a flut-
ter shutter capture, a fact that has not been noted elsewhere. The noise level in
the coded exposure image is proportional to the number of open shutter periods,
as shown by the blue line in Fig. 3. Because de-convolving the flutter shutter
PSF from the captured image amplifies noise, images de-blurred from those cap-
tured with more open shutter periods will have still more noise, as shown by
the red line. The two images in Fig. 3 illustrate the difference in reconstructed
image quality between a physical shutter implementation (top) and electronic
shutter implementation (bottom) of the sequence given in [11]. In order to avoid
such noise-related degradation, we bias our shutter finding method to favour
sequences with fewer open shutter periods, as described in the next section.

A second result of the lack of a physical shutter is that there are constraints
on both the minimum open shutter pulse length and the minimum time between
pulses. These constraints depend on the image format and frame rate; for the
Flea R©2 camera used in our experiments, the 800-by-600 pixel grayscale image
mode at 15Hz is the least restrictive, requiring pulse lengths of at least 1µs and
at least 1.21ms between pulses. This second constraint is quite restrictive in
light of the use of randomly-sampled binary chop sequences. In the event that
the chop sequence contains the subsequence 101, this means that tchop cannot
fall below 1.21ms, meaning that (for example) the minimum acquisition time
of the 52 tap sequence given in [11] is 62ms and the minimum exposure time
is 31ms. In the event that the image velocity of an object is 4 pixels per ms (a
velocity that we consider in our experiments), the effective PSF would be 248
pixels long. Because of edge effects in the de-convolution, less than half of our
800-by-600 images could be recovered in this scenario.

5 Shutter Finding Method

Though it is possible to employ rejection sampling to find sequences without a
101 subsequence, this strategy would be extremely inefficient, as the frequency of
random binary strings without a 101 subsequence decreases exponentially with
the sequence length. For 32 element chop sequences, more than 98% of all se-
quences have a 101 substring, and for 52 element sequences the proportion is
more than 99.9%. Use of rejection sampling, therefore, would add a factor of
50 to 1000 to the time required to find a suitable sequence. Instead of attempt-
ing to find a good sequence by sampling random sequences and rejecting those
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that can’t be implemented, our method constructs a near optimal sequence that
respects given hardware constraints.

We attempt to find an optimal PSF with respect to reconstructed image
quality. In previous work [11], the minimum contrast in the MTF and variance
of the MTF are mentioned as optimization criteria. We add a third criteria,
mean contrast in the MTF and, when targeting a camera with an electronic
shutter, a fourth term (number of open shutter periods) to limit read-out noise.
Numerically, the fitness of a given PSF is a weighted sum of these terms,

F (B) = w1 mink(|B̂(k)|) + w2 vark(|B̂(k)|) + w3 meank(|B̂(k)|) + w4 C, (5)

where C represents the number of open shutter pulses.
In order to find reasonable values for these weights, we have simulated all

PSFs for N = 16 and measured the RMSE of the reconstructed image in the
presence of Gaussian noise (including a noise component proportional to C). By
computing these errors for 5 random images from the Corel dataset, we find
the optimal weights in the least-squares sense, and set w1 = 0.1, w2 = −0.2,
w3 = 3.4, and w4 = −0.1.

Because Lemma 1 tells us that no single sequence can be expected to produce
a good coded exposure image for all velocities, our method determines a unique
flutter sequence for each combination of subject velocity and total required expo-
sure time. Sequences can be completely specified by the open shutter segments,
each segment having a duration and start time. The segments are constrained
to be non-overlapping, have durations and spacings that respect hardware con-
straints, and have a total open shutter duration that equals the required exposure
time. Our method builds a flutter pattern by first determining the segment du-
rations and then determining each segment’s start time. As we will show, the
choice of segment durations (without start times) gives an upper bound to the
contrast at all spatial frequencies; it determines the envelope of the MTF.

Lemma 2. Let B be an arbitrary PSF of length N , let B1, B2, ...BC represent
N -length PSFs such that B(t) =

∑C
c=1B

c(t), and let
←−
B1,
←−
B2, ...

←−
BC represent

shifted versions of the Bc such that its first non-zero entry appears at t = 0 (see
Fig. 4). The sum of the MTFs of the

←−
Bc is an upper bound of the MTF of B.

Proof.

‖B̂(k)‖ = ‖
N−1∑
t=0

B(t)e−i
2π
N kt‖ = ‖

N−1∑
t=0

C∑
c=1

Bc(t)e−i
2π
N kt‖

≤
C∑
c=1

‖
N−1∑
t=0

Bc(t)e−i
2π
N kt‖

=
C∑
c=1

‖B̂c(k)‖ =
C∑
c=1

‖
←̂−
Bc(k)‖ ≡ d‖B̂(k)‖eut

(6)
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Fig. 4. PSF B (top row), its decomposition into chops (rows 2-4), and the shifted
versions of these chops (rows 5-7). Lemma 2 shows that the MTF of B is bounded at
each spatial frequency by the sum of the MTFs of the shifted chops.

We denote this final quantity d‖B̂‖e for future reference. This insight allows us
to significantly limit the search space of potential flutter sequences, investigating
only those composed of chop durations that might result in an invertible PSF.

Our algorithm produces a shutter sequence given the required exposure, sub-
ject velocity (given in pixels per ms), and hardware constraints on the shortest
chop duration cchop and shortest period between open shutter periods cgap. We
find an optimal shutter sequence by first ranking each combination of open shut-
ter durations and then by exploring arrangements of these in priority order, as
in Algorithm 1. The search is terminated either when the fitness of the current
best shutter sequence is greater than that of the envelope of the next combina-
tion of open shutter chop durations or when an optional timeout is reached. We
describe the steps in greater detail in the remainder of this section.

Our method first determines all partitions of the required exposure time into
sets of valid open shutter chop durations. We take tchop to be the larger of either
the minimum integration constraint or the value 1

v , where v is the object’s image
velocity expressed in pixels per ms. The set of potential open chop lengths is
taken to be all integer multiples of this shortest duration, and we compute all
partitions of the exposure time into open shutter chops from this set. For each
such partition, we compute the MTF envelope d‖B̂‖e and measure the fitness of
that envelope. This gives a ranking of each partition based on the potential fitness
of a PSF corresponding to a shutter timing with that set of chop durations.

In the order of this ranking, we consider each partition and attempt to find
the matching set of open shutter chop start times that produces the best PSF. We
do this (in the BestSequenceOfPartition function) by starting with a random set
of start times, such that the open shutter chops do not overlap and the required
time between them is maintained. We then pursue a hill climbing strategy of
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Input: Exposure time T , velocity V , constraints cgap and cchop

Output: Shutter sequence S and tchop

tchop = max(1/V, min(cchop, cgap));
numOpenChops = T/tchop;
find all partitions of numOpenChops;
sort partitions by decreasing d‖ bB‖e;
S = zeros(1, 2*numOpenChops);
foreach partition P do

Compute d‖ bB‖e for P ;

if d‖ bB‖e ≤ Fitness(S) then
break;

end

Ŝ = BestSequenceOfPartition(P , V );
if Fitness(S,V ) ≤ Fitness(Ŝ,V ) then

S = Ŝ;
end

end
Algorithm 1: Overall shutter finding method.

computing several deformations of the current start times, selecting the one
with the best fitness, and iterating. We repeat this process for several random
sets of start times, and keep the sequence corresponding to the overall best PSF.

The ranked list of partitions is traversed until the fitness of the envelope
corresponding to the next best partition is less than the fitness of the current
best PSF. Additionally, a time limit can be incorporated to produce a result
within a budgeted amount of computation. At the completion of this process,
the timing sequence with the highest PSF fitness is stored for use when the given
object velocity and exposure time are required.

For our experiments, we have used this method to produce fluttering pat-
terns for a wide range of combinations of subject velocity and required exposure
time. These fluttering patterns are pre-computed and stored on the computer
controlling the camera.

6 Experiments

In order to validate the claim that our velocity-dependant fluttering sequences
provide increased image quality relative to the existing sampling method, we
have carried out a number of experiments on real moving objects. Our coded
exposure images are processed using the example code from [11] to produce a
sharp image of the moving object. Because of the issues described in Sec. 4,
we cannot use the 52 chop sequence given in [11] for comparison. Instead, we
employ Raskar’s sampling method to determine new fluttering patterns with
tchop ≥ 1.25ms, the shortest chop length allowable by the camera. For relatively
short exposure times, the search space of potential binary sequences is small,
and can be searched exhaustively. For a 4ms exposure time, for instance, using
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Fig. 5. Comparing de-blurred results to the existing method. (Top row) De-blurred
flutter shutter image using the sampling and de-blurring methods of [11]. (Centre
row) The same image, de-blurred using the effective PSF. (Bottom row) De-blurred
flutter shutter image, acquired using a fluttering sequence determined by our method.
Images in the left column are 4ms exposures of an object moving at 4 pixels per
ms; image in the bottom row has 32 pixels of blur. Images in the right column (with
annotated insets) are 8ms exposures of an object moving at 4 pixels per ms; image in
the bottom row has 60 pixels of blur.



12 Scott McCloskey

tchop = 1.33ms requires three open chops and the search space has only 26 = 128
elements, of which the optimal sequence is 1101. We use this to capture an image
of an object moving at 4 pixels per ms, and present the de-blurred results in Fig.
5 (left column).

Because the object moves through more than one pixel per tchop, the extent
of the PSF is greater than the sequence’s nominal PSF of [0.33 0.33 0 0.33],
and there are thus two choices for de-blurring. The approach taken in [11] is to
re-sample the image to a smaller one in which the nominal PSF is the effective
PSF. The nominal PSF is then de-convolved from this image, and the result is
re-sampled in order to produce an image of the same size as the input. In this
case, where the effective PSF is more than 4 times the length of the nominal
PSF, the de-blurred image (top row of Fig. 5) has soft edges due to the final
up-sampling by a factor of 4. In order to avoid this re-sampling step, we could
instead de-convolve the effective PSF from the input image directly, as shown
in Fig. 5 (middle row). As predicted by Lemma 1, however, this effective PSF is
non-invertible and the resulting image has noticeable artifacts.

The de-blurred result of our shutter sequence is shown in Fig. 5 (bottom
row), and avoids the artifacts due to lost frequencies while still preserving sharp
edges in the scene. The shutter sequence used to capture the coded exposure
image was 100000011111111000000010000011100000111, with tchop = 0.25ms.

Fig. 5 (right column) shows a capture with an 8ms exposure time and ob-
ject velocity of 4 pixels per ms. The fluttering pattern determined by sampling
is 110110000101 with tchop = 1.33ms, and our computed shutter sequence is
111100001111100000111110000111110000100001111 with tchop = 0.33ms. As be-
fore, the de-blurred image resulting from our shutter sequence maintains high-
frequency information without significant lost frequency artifacts, whereas the
fluttering pattern derived from sampling gives either soft edges or significant re-
construction artifacts, depending on the de-blurring approach. All three images
in this column show artifacts at occlusion edges, similar to the images of [11].

Though we have argued for, and demonstrated the benefits of, velocity-
dependant shutter sequences for motion capture, we have not presented a pre-
capture velocity estimation method for shutter selection. While such a method
would be helpful, it is not necessary in all situations. Fig. 6 shows, for example,
the captured and de-blurred images of a car driving down a residential street. In
this case, the street’s posted speed limit serves as a strong prior on a vehicle’s
velocity, obviating the need for explicit motion estimation before image capture.
It is unlikely that any vehicle will travel at twice the posted speed limit, meaning
that the lost frequencies predicted by Lemma 1 are an unlikely problem. One
can imagine, however, that a shutter sequence providing optimal reconstructions
of a residential street will perform poorly on a highway.

7 Conclusions and Future Work

We have presented a method for determining velocity-dependant shutter se-
quences to capture coded exposure imagery of fast-moving objects. We have



Velocity-Dependent Shutter Sequences for Motion Deblurring 13

Fig. 6. (Top) Flutter shutter image captured of a car driving down a residential street,
with 43 pixels of blur. (Bottom) Reconstructed image, in which details on the car are
preserved; note that the static background has artifacts from the deconvolution. In this
case, the street’s speed limit serves as a strong prior on object velocity, obviating the
need for explicit pre-capture velocity estimation. Exposure time is 20ms with velocity of
1.1 pixel per ms; shutter sequence is 1001001001100110001000111100011111111, with
tchop = 1ms.

demonstrated that these shutter sequences produce higher quality de-blurred
imagery than those determined by the existing random sampling method. This
algorithm is motivated by the (heretofore unnoted) observation that a partic-
ular shutter sequence gives rise to a family of PSFs, with the effective PSF
determined by the object’s velocity. We contribute an analytic proof that no
shutter sequence can be devised that produces a family of invertible PSFs and
that, in particular, a shutter sequence will produce non-invertible blur when the
velocity is more than twice a nominal velocity. Our method for determining the
optimal shutter sequence for a given combination of exposure time and object
velocity is based on a priority search over the space of potential sequences, and
features a termination condition that ensures optimality. We have also noted,
measured, and incorporated a term in our optimisation to account for the fact
that implementations of the flutter shutter based on electronic shutters incur
read-out noise proportional to the number of open shutter periods.

Throughout these experiments, we have used manual estimation of the object
velocity in order to select the appropriate fluttering sequence. In order to apply
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our method in unconstrained settings, this step should be performed automati-
cally before initiating image capture. Though this step is non-trivial, we expect
that the large body of literature on tracking and motion estimation will yield a
workable approach, given two facts. First, real-world moving objects have inertia
which precludes sudden changes of direction and velocity. Second, we note that
all cameras already have meters that estimate a quantity (illumination) that po-
tentially changes much quicker than velocity. It should also be noted that many
cameras/lenses already have sensors that provide real-time motion estimates for
optical image stabilisation, and that accurate velocity estimation obviates the
need for explicit blur estimation from the image, as the shutter pattern and
estimated velocity combined determine the extent of the PSF.
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