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Abstract— Five-degree-of-freedom (five-dof) tasks are
of particular interest in industry, since machining, arc-
welding and deburring operations all fall into this cate-
gory. These tasks, normally conducted with industrial six-
dof robots, render the robot functionally redundant. Upon
exploiting this redundancy to minimize the condition num-
ber of the Jacobian matrix, it is expected that the accuracy
of the performed task will be increased. Traditional meth-
ods for redundancy-resolution are normally used to solve
the more popular intrinsic redundancy; however, they can-
not be used to resolve the functional redundancy. Five-
dof tasks are formulated using an approach that leads to
a system of six velocity-level kinematics relations in six un-
knowns, with a6 × 6 Jacobian matrix, of nullity 1, which
reflects the functional redundancy of the problem at hand.
To resolve the foregoing redundancy, a method based on
sequential quadratic programming (SQP) is proposed. An
efficient method to compute the gradient of the condition
number is also discussed as it is a key element for finding
the posture of minimum condition number using a gradient
method. An example then shows how the SQP algorithm
can be applied to offline robot trajectory-planning for five-
dof tasks.

Keywords: sequential quadratic programming, redundancy-
resolution, functional redundancy, trajectory planning, condition
number

I. Introduction

The growing popularity of robots for manufacturing op-
erations has brought about the need of robots with higher
accuracy than what is currently available. The need for ac-
curate robots, however, has not only been reported for man-
ufacturing tasks. Recently, a robot for surgical tasks was
proposed [1]. For high-accuracy robots, not only the com-
ponents of the robot must be precisely built and assembled,
but the path-planing and control algorithms must also be
taken into consideration to improve accuracy. In some in-
stances, the robot might be redundant, in which case more
degrees of freedom(dof) are available than needed; there-
fore, a secondary task can be accomplished. This is the
case in arc-welding and machining operations involving an
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axisymmetric tool [2–5].
Two types of redundancy can be identified,functional

redundancyand intrinsic redundancy. To properly define
these two, it is worthwhile to define three spaces: the
joint spaceJ is the space of joint variables; theopera-
tional spaceO is the reachable Cartesian space of the end-
effector; and thetask spaceT is the Cartesian space of the
task. For the robot to be able to accomplish a task, the rela-
tions below should be observed:

T ⊆ O (1)

dim(T ) ≤ dim(O) ≤ dim(J ) (2)

Serial robots that have a joint-space dimension greater
than their operational-space dimension are termed intrinsi-
cally redundant, their degree of intrinsic redundancy being
computed as

ri = dim(J )− dim(O) (3)

On the other hand,functionally redundant robotshave an
operational-space dimension greater than their task-space
dimension; their degree of functional redundancy is then
computed as

rf = dim(O) − dim(T ) (4)

the total degree of redundancy thus being

rt = ri + rf (5)

Intrinsic redundancy has been discussed extensively in
the literature [6, 7]. Redundancy-resolution algorithms are
generally based on the generalized inverse of the rectangu-
lar Jacobian matrix using the gradient-projection method
(GPM), first introduced by Liégeois [8]. Crucial to the
GPM, the Jacobian matrix must be ofm× n, with m > n,
to be able to exploit the Jacobian matrix null space. This is,
however, not the case for all types of redundancy, as pointed
out by Sciavicco and Siciliano [9].

Functional redundancy, on the other hand, can yield a
non-singular square Jacobian matrix. This is the case of
machining and welding robots. To solve the functional re-
dundancy, Baron proposed to insert a virtual joint [10], thus
adding a column to the Jacobian. Using the modified Jaco-
bian, the GPM can then be used to resolve the redundancy.
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A more geometrically intuitive method, termed thetwist
decomposition algorithm(TWA) [3], makes use of projec-
tion matrices in the operational space to find the null space
of the problem. TWA was shown to be faster than other
methods for functional redundancy-resolution [11]. Here
a redundancy-resolution scheme using sequential quadratic
programming (SQP) [12] via the orthogonal decomposition
algorithm (ODA) [13] is proposed.

SQP has been shown to work as a redundancy-resolution
algorithm, but only for intrinsically redundant robots [14].
The novelty of this work lies in applying SQP to the func-
tionally redundant robot for which the null space of the
robot Jacobian is empty.

As a secondary objective, performance criteria have
been developed to: avoid obstacles [15]; avoid joint limits
[10,16]; minimize joint velocities and joint torques [17];in-
crease power transmission [4]; avoid singularities [10, 18];
or even a combination of multiple criteria [2,10,19]. In this
work, the focus is on avoiding singularities.

In singularity avoidance, the two most popular perfor-
mance criteria are manipulability [20] and condition num-
ber [18]. Manipulability suffers from not being able to mea-
sure distance form singularity, but rather only being able to
identify when the robot is in a singular posture, i.e., when
its manipulability is null. The condition number, on the
other hand, is a measure of distance from singularity [21]
and will be used as a performance index.

The condition number depends on the norm chosen;
however, its significance is independent of the chosen norm.
Since SQP requires the objective function to be twice con-
tinuous differentiable, the Frobenius norm is preferred, as
it is an analytical function of its argument. This condition
number guarantees the continuity of the second derivative.
The Frobenius-norm condition number of the normalized
Jacobian matrix and the Frobenius norm are, respectively,
defined as

κF (J) = ||Jn||F ||J−1
n ||F (6a)

||Jn||F =

√

tr(JnJT
n )

n
(6b)

To calculate the condition number, a normalized Jaco-
bian matrix must be used in order to prevent comparing
numbers with units of length to dimensionless numbers.
The characteristic length, introduced by Angeles [22] and
defined as the length that minimizes the condition number,
is one way of normalizing the Jacobian matrix. The nor-
malized Jacobian matrix using the characteristic lengthL is
defined as

Jn =

[

LA
B

]

(7)

whereA is the sub-matrix that maps joint velocities into an-
gular velocities andB is the sub-matrix that maps joint ve-
locities into the velocity of the end-effector (EE) operation

point (OP ). Gosselin [23] proposed a different method,
by redefining the Jacobian matrix using only point veloci-
ties. In this method, multiple points of the end effector are
used to fully define the motion, instead of the more tradi-
tional method of using the velocity of one point of the end-
effector and the angular velocity of the same. The idea of
using multiple points was then further investigated for par-
allel manipulators [24,25]. In this method, caution must be
used in the selection of the location of the points, as these
locations could influence the condition number.

This work will, in a first section, investigate the SQP
method via ODA for use in the functional redundancy-
resolution. In the second section we discuss the normality
conditions of the Frobenius-norm condition number. In the
third section we show, by an example, how SQP compares
to other functional-redundancy-resolution methods.

II. SQP Redundancy-resolution

A. SQP via ODA

The problem being solved with SQP takes the form:

f(x) → min
x

, s.t. h(x) = 0 (8)

wheref(x) is the objective function to be minimized,h is
a vector of constraints andx is a set of design variables.
In SQP, the functionf(x) to minimize is approximated at
each iteration by a quadratic function, which leeds to the
problem:

f(xk +∆xk) ∼ f(xk) +∇fTk∆xk

+
1

2
(∆xk)T (∇∇f)k∆xk → min

∆xk

(9)

Similar to the ODA [13], the∆xk step vector is decom-
posed into two orthogonal components.

∆xk = ∆vk + Lk∆uk (10)

whereLk is an orthogonal complement of the Jacobian of
hk.

An improvement∆vk in satifying the constraint is com-
puted as the minimum-norm solution of an underdeter-
mined system, namely,

Hk∆vk = −hk (11)

whereHk is the Jacobian ofh at thekth iteration andhk

is the constraint vector at this same iteration. With the
minimum-norm solution∆vk of eq. (11), the optimization
problem is then rewritten in terms of the design vector∆uk.
Upon approximating the objective function up to second or-
der terms, a solution for∆uk is found as

∆uk = −(LT
k (∇∇f)kLk)

−1LT
k

((∇∇f)k∆vk + (∇f)k)
(12)
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or, by using approximationBk of the Hessian:

∆uk = −(LT
k BkLk)

−1LT
k (Bk∆vk + (∇f)k) (13)

Different approximations to the Hessian have been pro-
posed in the literature [12, 26]. In this work the Broydon-
Fletcher-Goldfarb-Shanno (BFGS) approximation of the
Hessian is used [26]. Accordingly, for a given approxima-
tion Bk, an updateBk+1 is computed as

Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+

ykyTk
sTk yk

(14)

whereB0 is defined as then× n identity matrix, while

yk = ∇f(xk+1)−∇f(xk) (15)

and
sk = xk+1 − xk (16)

B. SQP Functional Redundancy-resolution

The five-dof constrained problem can be formulated, as
suggested by Angeles [27], by means of two points sepa-
rated by a distanced. Choosing this approach, a rotation
about the axis that passes trough these two points does not
change the location of these two points, this rotation being
the functional redundancy. The constraint of the five-dof
problem is then defined as

[

p1 − a1

p2 − a2

]

= 0 (17)

wherep1 andp2 are the current position vectors of points
1 and 2, respectively, whilea1 anda2 are their desired po-
sition vectors. When the unit vectoreact is parallel to the
axis on which pointsp1 andp2 lie, p2 can be found as

p2 = p1 + deact (18)

A similar relation is found for the desired points withedes
denoting the vector parallel to the desired direction of the
axis. Using the absolute position of point 1 and the relative
position of point 2 with respect to point 1 leads to a second
form of the constraints, namely,

h =

[

deact − dedes
p1 − a1

]

= 0 (19)

the first three components representing the error in the rel-
ative position. The Jacobian of the constraint of eq. (19)
is

H =
dh
dx

=

[

B2 − B1

B1

]

(20)

whereB1 andB2 are the lower blocks of the robot Jacobian,
as defined in eq. (7). To gain insight into the first three rows

of H, a second form of the result is given here

d(p2 − p1)

dt
= (B2 − B1)θ̇

= d
deact
dt

= ω × deact

= −dCPM(eact)Aθ̇

(21)

where CPM(·) is the cross product matrix of (·) [28], ω the
angular velocity andA the upper block of the robot Jaco-
bian. This leads to an alternative form of the Jacobian:

H =

[

−CPM(eact) 03×3

03×3 13×3

] [

dA
B1

]

(22)

whose first factor is singular, given that its upper-left block
is a3× 3 skew-symmetric matrix, and hence, of rank equal
to 2. The significance of the distanced, separating the two
points, discussed below, cannot be neglected. Too small or
too big a length will render the constraint Jacobian poorly
scaled. In fact, the problem of choosing the proper length is
very similar to the one of choosing the characteristic length,
as the condition number of the constraint Jacobian depends
on it in the same way. For this reason, it is recommended
to use the characteristic length as the distance between the
two points. The Jacobian expressed as a function of the
robot normalized Jacobian matrix is

H =

[

−CPM(eact) 03×3

03×3 13×3

]

Jn (23)

From eq. (23), the orthogonal complementL of H, whose
columns span the null space of the latter, is found as

L = J−1
n

[

edes
0

]

(24)

The other possible directions of the null space would arise
from the null space of the robot Jacobian itself, for robots
with more than six joints. This is, however, not the focus
of this work, as we have assumed that the robot in question
has as many joints as its operational-space dimension (only
functional redundancy is considered).

Writting eq. (11) for this particular case, the linear sys-
tem to be solved for∆v is

H∆v =

[

−CPM(eact) 03×3

03×3 13×3

]

Jn∆v = h (25)

Note thath does not necessarily lie in the range ofH; how-
ever, the directions that lie outside of the range are known
and well defined in operational-space. In fact, they are the
redundant directions of the robot. One way to make sure
that the right-hand side of eq. (25) lies in the range ofH
consists in multiplying both sides of the equation by a sin-
gular matrix to yield a projection matrixP on the left, with
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its singular directions in the same directions of those ofH.
This eliminates the components ofh that do not lie in the
range ofH:

PJn∆v =

[

CPM(eact) 03×3

03×3 13×3

]

h (26)

whereP is the matrix that projects a vector onto the range
of Jp, namely

P =

[

−CPM2(eact) 03×3

03×3 13×3

]

(27)

A solution∆v can now be found as

∆v = J−1
n te (28)

where

te =
[

−CPM(eact) 03×3

03×3 13×3

]

h (29)

the projection matrixP having no effect on the solution of
the system, since the right-hand side of eq. (26) lies en-
tirely in the range ofP. If matrix P has no effect in solving
eq. (26) and eq. (28) can be used, thente can be expressed
in the form of a normalized twist. This is shown by expand-
ing h and computing the product.

te =
[

−CPM(eact) 03×3

03×3 13×3

] [

deact − dedes
p1 − a1

]

=

[

d(eact × edes)
p1 − a1

] (30)

which bears the form of a normalized twist, the first three
components ofte providing a measure of the error in the ori-
entation of the end-effector. The producteact × edes gives
the direction of the axis about which the end-effector should
rotate, its magnitude being the sine of the angle that sepa-
rates the two axes.

A potential pitfall in using the sine of the angle is its in-
ability to distinguish angles in the first quadrant from angles
in the second quadrant. A more intuitive way of choosing
the magnitude is via the angle between the two axes di-
rectly. In fact, when the angle is small, both methods should
perform equally well, sincesin(θ) ∼ θ in this case. The
angle itself is chosen here, instead of its sine, as the angle
gives the constraint error a more direct physical meaning.

In the unlikely case that both axes are collinear but in op-
posite directions, the algorithm would also fail to recognize
that the orientation error is at its maximum since the cross
product would vanish. A simple means to avoid this prob-
lem is by introducing additionally the cosine of the angle.
When this situation occurs, any axis normal toedes can be
used to define the error.

Having solved for the constraint, the performance index
can then be minimised using eq. (13). Finally, the step∆x
at each iteration is given by eq. (10).

III. Condition Number Normality Conditions

The normality conditions are of the utmost importance
in the problem of finding the minimum condition number
using a gradient method. The square of the Frobenius-norm
condition number is recalled here as it is easer to work with
than the condition number itself.

κ(Jn)2F =
1

n2
tr(JTnJn)tr(J

−1
n J−T

n ) (31)

Differentiating the square of the condition number with re-
spect to an arbitrary variable, the following expression is
found:

∂κ2

∂xi
=

1

n2

∂tr(JT
nJn)

∂xi
tr(J−1

n J−T
n )

+ tr(JT
nJn)

∂tr(J−1
n J−T

n )

∂xi

=
1

n2

[

tr

(

∂JTn
∂xi

Jn

)

+tr

(

JTn
∂Jn
∂xi

)]

tr(J−1
n J−T

n )

− tr(JT
nJn)

[

tr

(

J−1
n

∂Jn
∂xi

J−1
n J−T

n

)

+tr

(

J−1
n J−T

n

∂JTn
∂xi

J−T
n

)]

=
2

n2
tr

(

∂JTn
∂xi

Jn

)

tr(J−T
n J−1

n )

− 2tr(JT
nJn)tr

(

J−1
n J−T

n J−1
n

∂Jn
∂xi

)

(32)

where, depending on the chosen variable,xi, ∂Jn/∂xi will
change. For existing industrial robots, the variables of in-
terest are generaly the joint angles and the characteristic
length. It should be noted that the joint variableθ1 does not
influence the condition number1; therefore, the derivative
of the condition number with respect toθ1 is null. This is
so because the Frobenius norm, and, by consequence, the
Frobenius-norm condition number, is invariant to a change
of frame. For the other joint angles, the normalized Jaco-
bian matrix partial derivatives can be found as

∂Jn(j)
∂θk

=























[

Lek × ei
ek × (ei × ri)

]

if i > k

[

0
ei × (ek × rk)

]

if i ≤ k

(33)

wherej denotes theith column of the Jacobian,ej the vec-
tor parallel to thejth axis, andrj the vector from a point

1A change inθ1 amounts to a rotation of the whole robot about its first
axis, which amounts in turn to changing the viewpoint.
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on thejth axis to theOP . The partial derivative of the nor-
malized Jacobian with respect to the characteristic length
is

∂Jn

∂L
=

[

e1 . . . e6
0 . . . 0

]

(34)

Using eqs.(32), (33) and (34), the condition number nor-
mality conditions are found.

IV. Implementation and results

To better understand how SQP can be used to minimize
the condition number, an example is shown here. In this
example, the FANUC 710ic-50 is to perform a milling task
on a cylinder. The helicoidal trajectory on the cylinder, dis-
played in Fig. 1, is described by the parametrisation below:

Fig. 1. Desired trajectory





x
y
z



 =





R cos(∆φ − φ)
pφ

R sin(∆φ− φ)



 (35)

where the coordinates(x, y, z), which represent the desired
position of the tool, are given in a frame attached to the
cylinder, and

en =





− cos(∆φ − φ)
0

− sin(∆φ− φ)



 (36)

is a vector in the cylinder frame, normal to the cylinder wall,
playing the role of the desired direction of the tool axis.
Describing the pose of the cylinder in the robot-base frame
by mean of a rotation matrixRcyl and a position vectorpcyl,
the position vector of the operation point and the direction
of the tool axis for the trajectory in robot-base frame are

p = pcyl + Rcyl





x
y
z



 (37)

edes = Rcylen (38)

For this example, the data in Table I were used to describe
the trajectory.

radius of cylinderR (mm) 250
start/end angleφ (◦) 0/90
offset angle∆φ (◦) 180

Velocity φ̇ (◦/s) 9

pitch of helixp (mm/rad)
500

π
pcyl (mm)

[

1300 10000
]T

Rcyl 1

TABLE I. Helicoidal trajectory data

The Denavit-Hartenberg parameters [29] of the FANUC
710ic-50 robot with the milling tool are shown in Table II.
The operation point is considered to be at the tip of the
milling tool for this particular robot.

joint i ai(mm) bi(mm) αi(
◦)

1 150 0 −90
2 870 0 180
3 170 0 −90
4 0 −1016 90
5 0 0 −90
6 −287.692 −607.777 120

TABLE II. Denavit-Hartenberg parameters of of the FANUC 710ic-50
with milling tool

The process of minimizing the condition number of the
Jacobian matrix must be performed in two parts. In a first
part, the characteristic length of the robot should be found
by solving the unconstrained optimum posture problem for
the robot in question. In a second part, the characteristic
length is used to calculate de condition number and its gra-
dient in solving the the trajectory constrained problem. Itis
in this second part that SQP can be utilized to resolve the
redundancy.

A. Finding the Characteristic Length

To find the characteristic length of the FANUC 710ic-50,
an unconstrained optimization problem must be solved:

min
x

κ(Jn) (39)

where the design vectorx is

x =
[

L θ2 . . . θ6
]T

(40)

Note thatθ1 is not included inx, as it has no affect on the
condition number. Using the quasi-Newton method with
BFGS update of the Hessian matrix a solution can then be
found. As a stopping criterion, the normalized-step size
was used. The normalization was done by dividing the cur-
rent estimate of the characteristic length by the root-mean-
square value of the distances from each axis to the operation
point. Table III summarizes the results of the optimization.
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initial guessx0

















20◦

−20◦

0
−90◦

0
298.5933 mm

















optimumx

















0.4424◦

−35.7223◦

0
−118.5801◦

0
485.5933 mm

















number of iterations 31
condition number 6.5046

stopping criteria (step size) 10−6

TABLE III. Minimum condition number posture optimization results

B. Optimizing a Trajectory

The characteristic length now known, the optimal trajec-
tory can be found, with initial guess

x0 =

















20.6
22.6
−12.8
−33.8
−79.8
263.0

















(41)

which places the robot on the first trajectory point. The
minimum condition number posture for the first point of
the trajectory is found via SQP; for comparison the same is
found via TWA. The redundancy-resolution for TWA yields

∆x = J−1(1 − T)te + J−1TJc∇κ (42)

whereT, described below for this particular example, is a
matrix that projects a twist onto a space orthogonal to the
task space:

T =

[

edeseTdes 0
0 0

]

(43)

The constantc in eq. (43) must be carefully chosen; for this
examplec was selected to be5 × 10−2. The results of the
optimization using both SQP and TWA are shown below.
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Fig. 2. Joint values progression for TWA
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Fig. 3. Joint values progression for SQP

From Figs. 2 and 3 it is clear that both the proposed SQP
algorithm and TWA converge to the same solution, however
SQP does this in less iterations. Table IV summarizes the
results of the two optimization procedures.

SQP TWA

joint solution

















21.89
39.81
7.22

−36.79
−81.43
−43.21

































21.90
39.90
7.31

−36.91
−81.43
−42.84

















total iterations 670 794

TABLE IV. Summary of results for the optimal first point

By comparing the results of the iterations, as shown in
Fig. 4, it is apparent that SQP converges faster than TWA
to the minimum. This was expected, since the SQP algo-
rithm uses a second-order approximation of the condition
number, whereas TWA uses only a first-order approxima-
tion. While the convergence of the latter is linear, that of
the former is superlinear.
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Fig. 4. Condition number progression for SQP and TWA

To confirm that the joint solution found by SQP and TWA
is truly the minimum condition number posture of the robot,
the inverse condition number is plotted below.
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Fig. 5. Condition number as a function of the angle of rotation about the
redundant axis

In Fig. 5, the abscissae represent the angle of rotation
of the end-effector about the tool axis from the optimum
posture. An angle of0◦ or 360◦ thus corresponds to the so-
lution found by SQP. The ordinates represent the inverse of
the Frobenius-norm condition number. For this particular
trajectory point, the end-effector can undergo a full rotation
of 360◦ without passing trough a singularity and the condi-
tion number isπ-periodic with respect to a rotation about
the tool axis. From this figure, the solution found by SQP
is apparently the one that maximizes the inverse condition
number, and therefore, minimizes the condition number.

After having found the optimal first point of the joint tra-
jectory, the remainder of the trajectory follows in a similar
way using the previous trajectory point as an initial guess.
The optimal joint trajectory along with the corresponding
condition number are displayed in Figs. 6 and 7, respec-
tively. A total of 100 trajectory points were used to describe
the joint path.
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Fig. 7. Condition number of trajectory

The trajectory was then verified using RobotMaster in
order to check for potential problems such as interferences
and joint limits.

V. Conclusions

This work has demonstrated how SQP can be used as
a redundancy-resolution algorithm for functionally redun-
dant manipulators. By restating the constraints of the prob-
lem as a five-dimensional task, a null space of the constraint
Jacobian could be found, which then allowed the use of
SQP to resolve the redundancy. In an example, the method
was compared to TWA and showed an improvement on the
total number of iterations. In solving the example, it was
also demonstrated how SQP could be utilized for offline
trajectory planning of functionally redundant robots.
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