FUNDAMENTALS OF
 ROBOTIC MECHANICAL SYSTEMS
 Fourth Edition

Theory, Methods, and Algorithms

Errata

Jorge Angeles

Department of Mechanical Engineering \& Centre for Intelligent Machines (CIM) McGill University
Montreal, Quebec, Canada angeles@cim.mcgill.ca

2015
(C) Jorge Angeles

Introduction: In order to ease the finding of items in this document, we have kept the page format and the original fonts of the book; we have also typeset with typewriter font---the one used in this Introduction---text that does not belong to the book.
p. 93: The correct matrix $\left[\mathbf{R}_{2}\right]_{\mathcal{C}}$ is

$$
\left[\mathbf{R}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{ccc}
0.373 & -0.926 & 0.043 \\
0.902 & 0.352 & -0.249 \\
0.215 & 0.132 & 0.967
\end{array}\right]
$$

p. 129: Line below Eq. (3.133a) : in light of Eq. (2.39), should read: in light of Eq. (2.40)
p. 137: In Exercise 3.20, the expression for M_{A} is faulty. The correct expression is

$$
\mathbf{M}_{A}=\mathbf{M}_{C}+m \mathbf{P} \mathbf{P}^{T}
$$

p. 144: The last line of text, "One thus has, using subscripted brackets as introduced in Sect. 2.2,", should read:
"One thus has, using subscripted brackets as introduced in Sect. 2.3,"
p. 171: The third line of text below eq. (4.33), "From Definition 2.2.1, then $[u] 1=[e 7] 1=[e 6] 1 "$, should read:
"From Definition 2.2.1, then $[\mathbf{u}]_{1}=\left[\mathbf{e}_{7}\right]_{1}=\left[\mathbf{e}_{6}\right]_{1} "$
p. 176: In the last line, the value of θ_{3} is wrong. It should read:

$$
\theta_{3}=-\frac{\pi}{2}
$$

p. 178: The correct expression for \mathbf{Q}_{123} is

$$
\mathbf{Q}_{123}=\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\left[\mathbf{e}_{6}\right]_{4}$ should read:
$\left[\mathbf{e}_{6}\right]_{4}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3}\right)^{T}\left[\mathbf{e}_{6}\right]_{1}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 / 3 \\ -2 / 3 \\ -1 / 3\end{array}\right]=\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ -1 / 3\end{array}\right]$
$\theta_{4,2}$ should be

$$
\theta_{4,2}=-80.26438967^{\circ}
$$

p. 182: The caption of Fig. 4.26 is faulty. The correct caption is Motoman-EA1400N welding robot: (a) top view; (b) side view; (c) orthographic projection; (d) view A, as per side view; (e) view B, as per side view. All dimensions in mm
p. 200: Where it reads: (b) the moments of the three lines about any point on the intersecting line are all zero, the correct wording should read:
(b) the moments of the three lines with respect to the intersecting line are all zero.
p. 202: The expression for α is faulty. The correct expression is

$$
\alpha=\frac{\sqrt{a_{3}^{2}+b_{4}^{2}}}{\sqrt{a_{2}^{2}+d^{2}}+\sqrt{a_{3}^{2}+b_{4}^{2}}}
$$

Please refer to Appendix A for details.
p. 211: Where it reads: with $\boldsymbol{\tau}_{a}$ and $\boldsymbol{\tau}_{w}$ defined as the wrist and the arm torques, respectively, the correct wording should read:
with $\boldsymbol{\tau}_{a}$ and $\boldsymbol{\tau}_{w}$ defined as the arm and the wrist torques, respectively.
p. 219: Equation (5.67c) should read:

$$
\ddot{\theta}_{1}=\ddot{\phi}-\left(\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)
$$

p. 287: In eq.(7.19a) the correct expression for the right-hand side is

$$
=\phi_{n}--->\phi_{\bar{p}}
$$

p. 288: In eq. (7.20) the correct expression for the right-hand side is

$$
=\phi_{n}--->\phi_{\bar{p}}
$$

p. 291: The second line of the expression for ι_{2} should read:

$$
-\frac{1}{2} m_{3} a_{3}\left(a_{1} s_{23}+2 a_{2} s_{3}\right) \dot{\theta}_{1} \dot{\theta}_{3}-m_{3} a_{2} a_{3} s_{3} \dot{\theta}_{2} \dot{\theta}_{3}-\frac{1}{2} m_{3} a_{2} a_{3} s_{3} \dot{\theta}_{3}^{2}
$$

p. 312: In text below eq. (7.64), where it reads "defined in Sect.7.4.1" the correct phrase is "defined, in turn, in Subsection 7.4.1"

In eq. (7.66b), where it reads $i=1, \ldots, n$ the correct range is $i=2, \ldots, n$
p. 321: Caption of Fig. 7.7 should read:

Mass-center location of the robot of Fig. 4.17
p. 324: The second line of the expression for $\dot{\mathbf{t}}_{11}$ should read:

$$
=\left[\begin{array}{c}
\dot{\mathbf{e}}_{1} \\
\dot{\mathbf{e}}_{1} \times \boldsymbol{\rho}_{1}+\mathbf{e}_{1} \times \dot{\boldsymbol{\rho}}_{1}
\end{array}\right]
$$

The second line of the expression for $\dot{\mathbf{t}}_{21}$ should read:

$$
=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{e}_{1} \times\left(\boldsymbol{\omega}_{1} \times \mathbf{a}_{1}+\boldsymbol{\omega}_{2} \times \boldsymbol{\rho}_{2}\right)
\end{array}\right]=p\left[\begin{array}{c}
\mathbf{0} \\
(a / 2)(\mathbf{i}-3 \mathbf{j})
\end{array}\right]
$$

The fourth line of the expression for $\dot{\mathbf{t}}_{31}$ should read:

$$
=p\left[\begin{array}{c}
\mathbf{0} \\
(a / 2)(\mathbf{i}-3 \mathbf{j})
\end{array}\right]
$$

The second line of the expression for $\dot{\mathbf{t}}_{32}$ should read:

$$
=\left[\begin{array}{c}
p \mathbf{e}_{1} \times \mathbf{e}_{2} \\
\left(p \mathbf{e}_{1} \times \mathbf{e}_{2}\right) \times\left(\mathbf{a}_{2}+\boldsymbol{\rho}_{3}\right)+\mathbf{e}_{2} \times\left[p\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right) \times \mathbf{a}_{2}+p\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right) \times \boldsymbol{\rho}_{3}\right]
\end{array}\right]
$$

p. 325: Entry $(3,1)$ of matrix $\mathbf{T}^{T} \mathbf{M} \dot{\mathbf{T}}$ is flawed. The correct expression for this matrix is:

$$
\mathbf{T}^{T} \mathbf{M} \dot{\mathbf{T}}=p\left[\begin{array}{ccc}
-(1 / 4) a^{2} m & (7 / 4) a^{2} m & -(1 / 2) a^{2} m-I \\
(1 / 4) a^{2} m & 0 & (1 / 4) a^{2} m+I \\
(3 / 4) a^{2} m & (1 / 4) a^{2} m-I & 0
\end{array}\right] \equiv \overline{\mathbf{P}}
$$

p. 326: Entries $(1,3),(2,3)$ and $(3,1)$ of matrix $\dot{\mathbf{I}}$ are faulty. The correct expression of the matrix is

$$
\dot{\mathbf{I}}=p\left[\begin{array}{ccc}
-(1 / 2) a^{2} m & (5 / 4) a^{2} m & -I+(1 / 4) a^{2} m \\
(5 / 4) a^{2} m & 0 & (1 / 2) a^{2} m \\
-I+(1 / 4) a^{2} m & (1 / 2) a^{2} m & 0
\end{array}\right]
$$

p. 327: The second-to-last line of text, "Now we have", should read:
"Now, the matrix \mathbf{C} of Coriolis and centrifugal forces is obtained as shown below:"

The last equation displayed should read:

$$
\mathbf{C}=\mathbf{T}^{T} \mathbf{M} \dot{\mathbf{T}}+\mathbf{T}^{T} \mathbf{W M T}=p \mathbf{A}
$$

p. 328 Entry (1,1) of matrix \mathbf{A} is flawed. The correct expression is

$$
\mathbf{A} \equiv\left[\begin{array}{ccc}
-(1 / 4) a^{2} m & (7 / 4) a^{2} m+I & -(1 / 2) a^{2} m-2 I \\
-(1 / 2) a^{2} m-I & 0 & (1 / 4) a^{2} m+2 I \\
(3 / 4) a^{2} m+I & (1 / 4) a^{2} m-2 I & 0
\end{array}\right]
$$

The first entry of the vector array in the second equation display has a '($1 / 2$)' too much. The correct display is

$$
\left(\mathbf{T}^{T} \mathbf{M} \dot{\mathbf{T}}+\mathbf{T}^{T} \mathbf{W M T}\right) \dot{\boldsymbol{\theta}}=p^{2}\left[\begin{array}{c}
a^{2} m-I \\
-(1 / 4) a^{2} m+I \\
a^{2} m-I
\end{array}\right]
$$

p. 329: The second line of the expression for $\ddot{\mathbf{c}}_{3}$ has an " $=$ " too much. It should read:

$$
+\boldsymbol{\omega}_{3} \times\left(\boldsymbol{\omega}_{3} \times \boldsymbol{\rho}_{3}\right)=\frac{1}{2} a p^{2}(-4 \mathbf{j}+\mathbf{k})-\frac{1}{2} a p^{2} \mathbf{j}+\frac{1}{2} a p^{2}(2 \mathbf{i}-\mathbf{j}+\mathbf{k})
$$

The expressions for $\mathbf{f}_{2}^{P}, \mathbf{n}_{2}^{P}$ and \mathbf{f}_{1}^{P} are faulty. They should read:

$$
\begin{aligned}
\mathbf{f}_{2}^{P}= & m_{2} \ddot{\mathbf{c}}_{2}+\mathbf{f}_{3}^{P}=\frac{1}{2} a m p^{2}(-4 \mathbf{j}+\mathbf{k})-2 a m p^{2} \mathbf{j}=\frac{1}{2} a m p^{2}(-8 \mathbf{j}+\mathbf{k}) \\
\mathbf{n}_{2}^{P}= & \underbrace{\mathbf{I}_{2} \dot{\boldsymbol{\omega}}_{2}}_{I p^{2}(-\mathbf{i})}+\underbrace{\boldsymbol{\omega}_{2} \times \mathbf{I}_{2} \boldsymbol{\omega}_{2}}_{\mathbf{0}}+\underbrace{\mathbf{n}_{3}^{P}}_{I p^{2}(-\mathbf{i}+\mathbf{j}-\mathbf{k})+a^{2} m p^{2}(\mathbf{i}-2 \mathbf{k})}+\underbrace{\left(\mathbf{a}_{2}-\boldsymbol{\rho}_{2}\right) \times \mathbf{f}_{3}^{P}}_{a^{2} m p^{2}(-\mathbf{i}+\mathbf{k})} \\
& +\underbrace{\boldsymbol{\rho}_{2} \times \mathbf{f}_{2}^{P}}_{\frac{1}{4} a^{2} m p^{2}(-6 \mathbf{i}-\mathbf{j}-8 \mathbf{k})} \\
= & I p^{2}(-2 \mathbf{i}+\mathbf{j}-\mathbf{k})+\frac{1}{4} a^{2} m p^{2}(-6 \mathbf{i}-\mathbf{j}-12 \mathbf{k}) \\
\mathbf{f}_{1}^{P}= & m_{1} \ddot{\mathbf{c}}_{1}+\mathbf{f}_{2}^{P}=\frac{1}{2} a m p^{2}(\mathbf{i}-\mathbf{j})+\frac{1}{2} a m p^{2}(-8 \mathbf{j}+\mathbf{k}) \\
= & \frac{1}{2} a m p^{2}(\mathbf{i}-9 \mathbf{j}+\mathbf{k})
\end{aligned}
$$

p. 330: The second equation display, that of τ_{1}, is faulty. The correct expression reads:

$$
\tau_{1}=\mathbf{n}_{1}^{P} \cdot \mathbf{e}_{1}=-I p^{2}+a^{2} m p^{2}
$$

The first component of vector $\mathbf{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \dot{\boldsymbol{\theta}}$ is faulty. The correct expression is

$$
\mathbf{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \dot{\boldsymbol{\theta}}=\left[\begin{array}{c}
-I p^{2}+a^{2} m p^{2} \\
I p^{2}-(1 / 4) a^{2} m p^{2} \\
-I p^{2}+a^{2} m p^{2}
\end{array}\right]
$$

Appendix A

FIGURE 1. Elbow singularity of the Puma robot
With reference to the figure above, the relations below can be derived:

$$
\begin{gathered}
\alpha=\frac{\overline{I C}}{\overline{O_{2} C}} \\
\overline{I C}=\sqrt{a_{3}^{2}+b_{4}^{2}} \\
\overline{O_{2} C}=\overline{O_{2} I}+\overline{I C} \\
\overline{O_{2} I}=\sqrt{a_{2}^{2}+d^{2}}
\end{gathered}
$$

