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Abstract

Based on the theory of Parallel-Kinematics Machines (PKM), a novel architecture for the
compliant realization of biaxial accelerometers is proposed. In this work, notched, termed
Π-joints in the PKM literature, with Lamé-notched hinges serving as flexible joints, are em-
ployed. Furthermore, through comparison among different sensing technologies, piezoresistive
sensing is found to be attractive and adopted in the sensor design. On the basis of piezore-
sistive principles, two types of electronic layouts are developed for the accelerometer, with
different locations for the resistors: on the top surface and on the vertical sidewall of the
notched hinge. Moreover, modal analysis results reveal that the proposed accelerometer ar-
chitecture provides good compliance along the sensitive axes and high off-axis stiffness. In
addition, through a piezoresistive analysis conducted using finite element software, the matrix
that maps voltage signals into applied force and moment is derived. The proposed biaxial
accelerometer model is proved to achieve in-plane calibration effectively.
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1 Introduction

The working principle of an accelerometer relies on the mass-spring-dashpot system. In uniaxial
accelerometers, the mass, which is referred to as the proof-mass, can translate along one direction,
termed the sensitive axis, with the help of a viscoelastic suspension. The accelerometer is rigidly
mounted on a moving body B whose acceleration is to be measured; then, the resulting displace-
ment of the proof-mass yields a signal which obeys a linear relation with the acceleration [1]. In
microaccelerometers, the viscoelastic suspension is commonly realized by the entrapped air or fluid
added to the damping, which is provided by the material. In the case of multiaxial accelerometers,
a pure translation of the proof-mass with respect to B is required [2].

With rapid progress in MEMS (Microelectromechanical Systems) technologies, microaccelerom-
eters have been the subject of intensive research. Actually, microacclerometers are distinguished
due to their compactness, robust sensing, relative low cost and extensive commercial use in au-
tomotive and industrial applications [3]. Acceleration measurement is one important application
of accelerometers; for example, accelerometers can be used as components in GPS-aided inertial
navigation systems. Furthermore, accelerometers for tilt measurements can also be integrated
into a multitude of products, such as 3D mice, cameras and personal navigation systems. In ad-
dition, twist—velocity and angular velocity—and its time-rate of change can also be estimated
with accelerometers, arrayed in what is known as accelerometer strapdowns [4]. The wide applica-
tion of accelerometer arrays include crashworthiness, gait analysis and vehicle navigation, among
others [5, 6, 7].

According to Maluf [8], all accelerometers share a basic structure, consisting of a proof-mass
mounted on a moving body by means of a viscoelastic suspension. However, they differ in the sens-
ing of the relative position of the proof-mass, as the mass translates relative to the accelerometer
frame under the effect of a rigid-body acceleration. Measurement techniques for the estimation
of proof-mass displacements have been reported, including measurement methods based on piezo-
electricity, metallo-resisitivity, capacitance, piezoresistivity, optical sensing mechanisms based on
diffraction-gratings, and optical microencoders [9]. Among them, the piezoelectricity and metallo-
resisitivity are widely used in high-frequency applications: the piezoelectricity is mainly employed
for vibration measurements, while the metallo-resisitivity is characterized by low temperature drift,
low noise and high precision. On the contrary, the capacitance and piezoresistivity are mainly used
physical principles for low-frequency applications. Commonly known as optical detection tech-
niques, the optical sensing mechanisms based on diffraction-gratings and optical microencoders
also have a wide range of applications. Actually, in comparison with capacitive and piezoresistive
technologies, the optical detection techniques are well acknowledged due to their high sensitiv-
ity [10]. A summary of characteristics of different sensing technologies is given in Table 1. Among
different sensing technologies, the piezoresistive sensing is attractive because it relies on a com-
pact mechanism that requires neither complex processing circuitry nor a bulky external apparatus,
besides exhibiting low susceptibility to electromagnetic interference.

In this paper, a novel design of the compliant realization of biaxial accelerometer structure is
carried out. Both the conceptional and structural design are presented, with the goal of increasing
off-axis stiffness. Piezoresistive sensing is combined with the accelerometer mechanical architecture
to implement in-plane calibration. In order to validate the electronics layout, a new approach
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Table 1: Comparison among characteristics of different sensing technologies
Specifications Piezoelectric Piezoresistive Capacitive
Output impedance High Low High

DC response No DC response

Can measure down to DC,
e.g. throughout long-duration
events such as those associated
with automobile braking

Can measure down to DC

Power consumption Self-generating Require an external power source
Require a standard voltage
supply or battery

Temperature range Large Small Very large
Sensitivity Medium Medium High
Offset drift Offset drift with impact Offset drift with temperature None
Complexity of circuitry Medium Low High

Application ranges
Vibration measurements,
i.e., higher frequency

low-frequency applications
Wide bandwidth,
low-frequency applications

Cross-axis sensitivity Mainly determined by accelerometer mechanical design

Advantages
Relatively small size, large
bandwidth, high resonant
frequency, good linearity

Simplicity of design, fabrication
process and processing circuitry;
compactness

High sensitivity, low power
consumption, broad bandwidth,
good linearity and stability

Disadvantages No DC-response, high leakage Temperature sensitivity
Relatively high cost,
electromagnetic interference

including the mapping matrix is investigated, which is also interesting for general sensing analysis
for accelerometers.

2 Conceptional Design

2.1 Simplicial Architectures for Multi-axial Accelerometers

Based on the concepts of Parallel-Kinematics Machines, novel simplicial1 architectures for
multi-axial accelerometers were proposed by Cardou [4], in which the proof-mass was suspended
by n + 1 legs (n = 1, 2, 3), where n is the number of acceleration components measurable by the
accelerometer. Hence, in n-dimensional space, for n = 1, 2, 3, the simplex is a line segment, a tri-
angle and a tetrahedron, respectively. Having one extra leg offers redundancy in the measurement,
thereby providing robustness against measurement error.

The Π-joint is a parallelogram four-bar linkage, which allows for pure translation between two
opposite links: all the points of one describe circles, of variable location and radius identical to
the length of the two other links, on the other. It is noted that the ΠΠ leg is a generator of T2, a
rigid-body-motion subgroup, characterized by pure translations along the directions of two distinct
unit vectors.

The simplicial uniaxial accelerometer (SUA) shown in Fig. 1(a) is intended to measure point-
acceleration along one direction, the horizontal in that figure; the accelerometer is realized by
means of two opposing ΠΠ legs lying in orthogonal planes to constrain the proof-mass to translate
in a direction parallel to the line of intersection of the two planes. Its biaxial counterpart (SBA),
a planar parallel mechanism, as shown in Fig. 1(b), is realized by laying out the three ΠΠ legs in a
common plane at 120◦ from one another. The SBA allows arbitrary translations parallel to the said
plane, while providing a high stiffness along the direction perpendicular to the plane. Finally, the

1The term derives from simplex, a polyhedron with the minimum number of vertices embedded in R
n [11].
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Figure 1: Layout of simplicial accelerometers: (a) SUA; (b) SBA; (c) STA

(a) (b) (c)

Figure 2: General realization of flexure hinges: (a) leaf type; (b) circular-notched; and (c) corner-
filleted

simplicail triaxial accelerometer (STA) is achieved by suspending a regular tetrahedral proof-mass
by means of four RΠΠR legs, as shown in Fig. 1(c). The STA has a parallel-robot architecture
which allows pure translations of the proof-mass with respect to the frame.

In this work, we focus on the compliant realization of the SBA, which can be done by means
of microfabrication technology due to its planar nature.

2.2 Compliant Mechanisms and Design of Flexure Hinges

Within the framework of Lobontiu [12], compliant mechanisms are flexure-based monolithic
structures, in which flexure hinges are commonly employed to produce a desired motion, rather
than conventional joints—those realizing lower and higher kinematic pairs [13]. Therefore, a com-
pliant mechanism comprises at least one component that is highly deformable (compliant) as com-
pared to the other links. In comparison with conventional rigid-body mechanisms, the compliant
mechanisms may have many desirable features: no assembly needed; no backlash; compactness;
low cost; and wear-resistance, since they are jointless [14]. This jointless intrinsic factor distin-
guishes the compliant mechanisms from the rigid-body mechanisms, which employ lower pairs such
as pins and sliders. On the other hand, due to the complexity and nonlinearity of flexure hinges,
the design and fabrication of compliant mechanisms is always extremely difficult [15]. Moreover,
a few challenges companion due to the jointless feature, first and foremost, a limited range of
motion [16]. In addition, the precision of rotation of flexure hinges is affected due to the complex
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deformation of the flexure.
The application of flexure-based compliant mechanisms has drawn a lot of attentions during

the past years, especially in microscale devices [17, 18]. A few examples include micro-positioning
systems, microsensors, tilt mirrors, and microfluidic devices. Among them, the two-dimensional
application of flexure hinges is employed in a wide range of different fields, for example, the MEMS
devices. With reference to Lobontiu [12], this kind of hinge is supposed to be compliant only about
one axis (the sensitive axis), and stiff (as much as possible) about all other directions of possible
motion.

The general realization of flexure hinges depends on the cross-section profile; some of the
common configurations are illustrated in Fig. 2. In this design, flexure hinges for two-dimensional
applications are used.

The realization of compliant Π-joints is shown in Fig. 3. One possibility is by means of one
pair of long beams with constant cross-section, another being by means of four notched hinges, as
illustrated in Fig. 3 (a) and (b), respectively. As mentioned above, the notched Π-joint has the
desirable feature of high stiffness ratios between the sensitive direction and the other directions.
However, this type of realization exhibits the inherent demerit of a limited range of motion.

(a) (b)

Figure 3: Compliant realization of the Π-joint with: (a) a pair of long beams; (b) four notched
hinges

3 Structural Design

Instead of using the Π-joint with a pair of constant cross-section beams, as shown in Fig. 3(a),
notched Π-joints, as depicted in Fig. 3(b), are employed in our realization of the SBA. A static
analysis in ANSYS revealed that the SBA architecture with three Π-joints of the type shown in
Fig. 3(a) entails a problem of interference between the proof-mass and the fixed frame, due to the
high compliance of the structure. In order to overcome this deficiency, an improved 3ΠΠ layout
is proposed, as illustrated in Fig. 4. For accelerometers, the Lamé-notched flexure hinge is a good
choice for the construction of notched Π-joint [19]. In this design, the notched Π-joint is realized
by means of Lamé-notched flexure hinge, with minimum thickness tm = 20 µm, length l = 210 µm,
along with the two design parameters of a 4th-order Lamé curve: ax = 105 µm and ay = 70 µm.
The geometry of the Lamé-notched flexure hinge is depicted in Fig. 5.
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Figure 4: SBA design with its dimensions

Silicon is widely used for fabrication of semiconductor devices. Here, the material used for
this model is single-crystal silicon. The values of the model parameters and material properties of
silicon are listed in Tables 2 and 3, respectively.

Table 2: Dimensions of the SBA
a (µm) b (µm) c (µm) d (µm) e (µm) l (µm) L (µm) tm (µm) α w (µm)
3333 1400 200 210 700 210 3466 20 π/4 300

4 Electronics Layout

4.1 Piezoresistive Principle

The piezoresistive effect is a phenomenon that changes the resistance of a material under applied
stresses. This effect results from both geometric changes and the change in resistivity, which is
given by Richter et al. [20]:

∆R

R
= (1 + 2ν)ǫ+

∆ρ

ρ
(1)
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Figure 5: Geometry of a Lamé-notched flexure hinge

Table 3: Mechanical properties of silicon
Density Stiffness Coefficients (103 MPa) Young Modulus (103 MPa) Poission Ratio
(kg/µm3) C11 C12 C13 [100] [110] [111]

2.33× 10−15 165.7 63.9 79.6 129.5 168.0 186.5 0.222

where ν is the Poisson ratio, ǫ is the strain along the piezoresistor, while R and ρ are resistance and
resistivity, the former in the unstressed material. For semiconductor gauges, such as silicon and
germanium, the changes in resistivity ∆ρ/ρ are dominant when compared with the dimensional
changes in eq. (1). Hence, we can write ∆R/R = ∆ρ/ρ.

The piezoresistive effect is described by a fourth-rank tensor that relates the change in resistivity
to the stress [21]. For crystals with cubic symmetry, such as silicon, the piezoresistance tensor is
given, in matrix form, by

1

ρ

















∆ρ1
∆ρ2
∆ρ3
∆ρ4
∆ρ5
∆ρ6

















=

















π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

































σ1

σ2

σ3

σ4

σ5

σ6

















(2)

Note that the piezoresistance coefficients depend on crystal orientation, impurity concentration
and temperature [22].

The relation between the electric field and the current density is




ε1
ε2
ε3



 =





ρ+∆ρ1 ∆ρ6 ∆ρ5
∆ρ6 ρ+∆ρ2 ∆ρ4
∆ρ5 ∆ρ4 ρ+∆ρ3









j1
j2
j3



 (3)

where εi and ji, (i = 1, 2, 3) are the electric field and current density components along three
mutually orthogonal directions, respectively.
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For the piezoresistive analysis, it is necessary to transform the piezoresistive equations from
one coordinate frame to another. The general expression for the longitudinal and transverse
piezoresistance coefficients for a gauge in an arbitrary crystal direction is given by Mason and
Thurston [23]:

πl = π11 − 2(π11 − π12 − π44)(l
2
1m

2
1 + l21n

2
1 +m2

1n
2
1)

πt = π12 + (π11 − π12 − π44)(l
2
1l

2
2 +m2

1m
2
2 + n2

1n
2
2)

(4)

where (l1, m1, n1) is the set of direction cosines between the longitudinal orientation and the crystal
axis; (l2, m2, n2) is its transverse counterpart. The resistance change is described by

∆R

R
= πlσl + πtσt (5)

where σl and σt are the longitudinal and transverse stress components.

4.2 Measurement Circuit

It is assumed that the piezoresistors are located on the SBA surface with submicrometric
thickness. These resistors are p-type silicon pieces with resistivity and piezoresistance coefficients
listed in Table 4, assuming a doping concentration under 1017 cm−3.

Table 4: Piezoresistance coefficients for p-type silicon (Room temperature)
Resistivity (Ω-cm) Piezoresistance (10−11Pa−1)

π11 π12 π44

7.8 6.6 −1.1 138.1

Two approaches to locate the resistors are considered: a) on the top surface of the notched
hinge, near the edge, and b) on the vertical sidewall of the hinge, covering the top 1/3 area. For
case a), the resistor has a 120-µm length and 4-µm width; for case b), the resistor is designed so
as to have dimensions of 120× 100 µm, since more space is available in this layout.

As shown in Fig. 6(a), three measurement circuits are employed to provide voltage signals to
detect the loading in an arbitrary direction in the Oxy plane. Each of the three circuits consists
of four resistors connected via a half-Wheatstone bridge, as shown in Fig. 6(b). Taking bridge I as
an example, resistors R1 and R2 are employed as two active Wheatstone bridge elements, which
are subject to opposite stress conditions. Furthermore, the two extra notched hinges formed on
the accelerometer frame have the same structure as the two other hinges, which helps shape the
two fixed bridge elements R3 and R4. Figure. 6(a) illustrates the circuit connection for bridge I
for the top-surface implantation case, with the bridge drive voltage Vs = 5V . The connections for
the other two bridges and for the vertical sidewall layout are equivalent to bridge I. It is noted
that the four resistors forming a Wheatstone bridge have the same geometry, in order to provide
zero-offset output voltage. At the same time, primary temperature compensation is also achieved.

Assuming that all four resistors have equivalent resistance R when no loading is applied, then,
we can write

R1 = (1 + α1)R, R2 = (1− α2)R, R3 = R4 = R (6)
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Figure 6: SBA design and sensing system: (a) measurement circuit; (b) half-Wheatstone bridge

where α1 and α2 are change rates of R1 and R2.
Hence, the resulting relation between the input and output voltages becomes

Vo

Vs

=
R1

R1 +R2

− R4

R3 +R4

=
R1 −R2

2(R1 +R2)
=

α1 + α2

2(2 + α1 − α2)
(7)

As known in the art of [24], α1 and α2 are typically small, and differ from each other by only
10%, the input-output ratio of the half-bridge being one-half of that for the full bridge, without
a large nonlinearity. Under the assumption that R1 and R2 are subject to the same strain value
with opposite signs, the voltage ratio becomes Vo/Vs = ∆R/2R.

The SBA structure starts from the n-type (100) single crystal silicon wafer. For bridge I, the
resistors are oriented along the < 11̄0 > direction, which gives the maximum value for πl. The x′-
and y′-axes shown in Fig. 6(a) denote the crystal axes of symmetry of the wafer. The resistors in
the other two bridges are aligned along the length direction of their corresponding hinges. Then,
according to eq. (4), the piezoresistance coefficients for resistors of the three Wheatstone bridges
are calculated, as listed in Table 5, considering the two distinct layouts of resistor location.
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Table 5: Piezoresistance coefficients for top and sidewall located resistors
Resistor location Category Bridge I Bridge II Bridge III

Top surface

(l1,m1, n1) (−
√
2/2,

√
2/2, 0) (cos 15◦, cos 75◦, 0) (cos 105◦, cos 195◦, 0)

(l2,m2, n2) (
√
2/2,

√
2/2, 0) (cos 75◦, cos 165◦, 0) (cos 15◦, cos 105◦, 0)

πl (10
−11Pa−1) 71.8 22.9 22.9

πt (10
−11Pa−1) −66.3 −17.4 −17.4

Vertical sidewall surface

(l1,m1, n1) (−
√
2/2,

√
2/2, 0) (cos 15◦, cos 75◦, 0) (cos 105◦, cos 195◦, 0)

(l2,m2, n2) (0, 0, 1) (0, 0, 1) (0, 0, 1)
πl (10

−11Pa−1) 71.8 22.9 22.9

πt (10
−11Pa−1) −1.1 −1.1 −1.1

5 Model Validation

5.1 Procedure for Obtaining the Mapping Matrix

For simple rectangular cantilevers, closed-form expressions for the stress occurring at the point
of interest in terms of structure parameters are readily derived, from which the resistance changes
can be obtained, as described in [24, 25]. However, for more complex architectures, finite element
modelling has been found to be an effective tool. Hence, for the SBA model, two types of analysis
are conducted in ANSYS, modal and static. Moreover, the piezoresistive analysis, which belongs
to coupled-field analysis, is implemented by static analysis, using the element type SOLID73 (3D,
8-node brick element) to simulate the SBA structure, while PLANE223 (2D, 8-node coupled-field
element) is adopted to simulate the piezoresistors. In each static analysis, the four piezoresistors
are connected via a half-Wheatstone bridge, as illustrated in Fig. 6(b).

Compared with conventional piezoresistive accelerometers, the SBA model provides redundancy
on signal detection, i.e., three voltage measurements are generated from an arbitrary in-plane
acceleration signal, which can be decomposed into the x- and y-directions. Furthermore, in order
to discern the magnitude and direction of the applied loading from the three voltage measurements
directly, a corresponding mapping matrix is derived. The procedure for obtaining this matrix is
explained below:� Apply three different in-plane loading conditions: Fx = 1N; Fy = 1N; and Mz = 1Nmm,

with the force acting at the centre of mass of the proof-mass.� Conduct a finite element analysis for each loading case and obtain the three output voltages
from the Wheatstone bridges. Let

vx =
[

vx1
vx2

vx3

]T
, vy =

[

vy1 vy2 vy3
]T

, vz =
[

vz1 vz2 vz3
]T

(8)

where vxi
, vyi, and vzi (i = 1, 2, 3) denote ith readout of the measurement circuit under Fx,

Fy and Mz, individually.� For a general load,

w =
[

Fx Fy Mz

]T
, s =

[

ux uy θz
]T

, w = Ks (9)
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where s is a “small”-amplitude displacement, with ux and uy denoting the “small” transla-
tional displacements along the x and y directions, θz the “small” angular displacement about
the z axis; K denotes the 3× 3 in-plane system stiffness matrix obtained from ANSYS.

Let s = Tv, where T is the 3 × 3 matrix that maps the voltage readouts shown in eq. (8)
onto s. Then, substituting this equation into eq. (9) yields

K−1w = Tv (10)

The nine entries of T are obtained from the equations derived upon substituting eq. (8) into
eq. (10). Then, R = T−1 is obtained, which satisfies v = Rs.� According to eq. (10),

w = Qv, Q = KT, v = Q−1w = Pw, P =
[

vx vy vz

]

(11)

where matrix P relates the applied loading w with the readout v.

5.2 Modal Analysis

Modal analysis was conducted to obtain the first six natural frequencies and mode shapes of
the structure, with the results listed in Table 6.

Table 6: Modal analysis of the SBA model

i 1 2 3 4 5 6
fi(kHz) 3.3149 3.3311 5.4356 11.558 11.570 11.682

Mode shape1 Ty Tx Tz Ry Rx Rz

1 Ti (i = x, y, z) denotes translation along the i-axis; Ri (i = x, y, z)
is rotation about the i-axis.

Table 6 indicates that the natural frequencies f1 and f2, which correspond to translations in
the plane, along the y- and x-axis, respectively. In addition, it is noticeable that the natural
frequencies of out-of-plane translation and rotational motions are higher than those of in-plane
translations; in particular, the rotational modes show frequency values three times as high as their
in-plane counterparts.

5.3 Piezoresistive Analysis

First, a set of simulations is conducted to obtain the output voltage of bridge I in the vertical
sidewall case, considering the values of the applied forces Fx and Fy continuously increasing. The
relation between the applied loading and the output voltage are plotted in Fig. 7, where the
scattered points are simulation results obtained from ANSYS, while the straight line is generated
by a linear fit.

From Fig. 7 it is apparent that the output voltage obeys a linear relation with the applied
loading. The least-square errors for these two linear fits are 0.0672% and 0.0223%, respectively.
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Figure 7: The relationship between the applied loading and the generated voltage: (a) Fx; (b) Fy

Furthermore, simulations are implemented to find the mapping matrices that relate the three
output measurements with the displacement, and the voltage measurements with the applied
loading.

With reference to Fig. 4, the in-plane stiffness matrix for the whole system, as reported by
ANSYS, is:

K =





45.7198 3.8745× 10−3 4.0021× 10−3

3.8745× 10−3 45.8711 9.1863× 10−3

4.0021× 10−3 9.1863× 10−3 0.7650



 (12)

whose 2 × 2 upper-left block has units of N/mm, its 2 × 1 and 1 × 2 off-diagonal blocks units of
N/rad, and its (3, 3) entry units of Nmm/rad.

For the piezoresistors located on the top surface,

R = T−1 =





195.3071 282.6073 0.0227
−342.9768 28.2190 −0.0295
146.5107 −311.9325 0.0065



 , P = Q−1 =





4.2713 6.1605 −1.0367× 10−4

−7.5018 0.6158 −1.0367× 10−4

3.2051 −6.8005 −1.0367× 10−4





(13)

The 3× 2 left-hand block of R has units of mV/mm, its third column units of mV/rad, while the
3× 2 left-hand block of P has units of mV/N, its third column units of mV/(Nmm).

For piezoresistors located on the vertical sidewall surface,

R = T−1 =





241.8080 358.2517 0.0283
−408.7624 31.1230 −0.0352
185.0979 −370.4622 0.00875



 , P = Q−1 =





5.2883 7.8096 −4.0716× 10−5

−8.9407 0.6792 −4.0716× 10−5

4.0492 −8.0765 −4.0716× 10−5





(14)

The above matrices have the same units as their counterparts in eq. (13). The foregoing results
demonstrate that, for in-plane calibration, the Wheatstone bridge with vertical sidewall piezoresis-
tors provide larger sensitivity than the sensing elements placed on the top surface. Furthermore,
vertical sidewall piezoresistors are commonly employed for in-plane sensors [26, 27, 28].
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Table 7: Validation of mapping matrices

v
′ (mv) v (mv) MAPE

Top
(

−2.366720786 15.53745777 −13.28043391
)T (

−2.382075813 15.61936948 −13.21070759
)T

0.0057

Sidewall
(

−2.757804278 18.391174 −15.98428694
)T (

−2.766997431 18.56065200 −16.17500793
)T

0.0082

In order to verify the above mapping matrices, the output voltage v under both top and sidewall

cases is evaluated according to v = Pw, where w =
[

−2 1 0
]T

is one applied in-plane loading.
In addition, the voltage readout v′ from FEA, which is considered as the exact value here, is also
recorded in Table 7 for comparison purposes. Furthermore, the mean absolute percentage error
(MAPE) is used to compare v and v′, which is given by

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

v′i − vi
v′i

∣

∣

∣

∣

(15)

where n = 3, while vi and v′i denote the ith entry of v and v′, respectively.

6 Conclusions

On the basis of knowledge on both both Parallel-Kinematics Machines and compliant mech-
anism, a novel architecture of biaxial accelerometer was devised. Modal analysis was conducted,
and the accelerometer model was detected to provide good compliance in the sensitive axes as
well as low cross-axis sensitivity. In addition, the electronic layout was also designed, with two
approaches in locating the piezoresistors: on the top surface and on the vertical sidewall of the
flexure hinge. Piezoresistive analysis was adopted using FEA software to investigate these two
approaches, and results reveal that both of them are effective to detect the output voltage from
the measurement circuits under applied loading. Furthermore, the mapping matrices relating the
applied loading to the voltage measurements are derived for the two electronic layouts. The second
approach performs superior over the first one through a FE analysis.

A prototype of the SBA model will be fabricated in the near future. Also, a set of experiments
will be conducted to further validate the simulation results reported here.
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