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Abstract

In this paper we report the optimum pose estimation using a simplicial biaxial accelerome-
ter (SBA). The estimation of the SBA proof-mass pose based on potentiometer measurements
is discussed. Three different estimation algorithms are developed based on the kinematics
of the proof-mass, while considering the impact of sensor noise. Numerical simulations are
performed for the worst case scenario to demonstrate the effectiveness of the estimation algo-
rithms, and Monte Carlo simulations provide a comprehensive evaluation of the algorithms
under noise.
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1 Introduction

The Simplicial-Biaxial-Accelerometer1 [1] (SBA) is a novel realization of a biaxial accelerometer
design [2]. The SBA is mounted rigidly on a rigid moving body under probing, which produces a
motion of the proof-mass. The resulting relative displacement of the proof-mass with respect to the
SBA frame produces an electronic signal, which obeys a relationship with the acceleration of the
moving body [3]. Within the realm of Parallel-Kinematics Machines (PKM), the SBA proof-mass
is suspended by three limbs, to produce two acceleration components to be measured by the SBA.
Apparently, with one extra leg, the SBA provides redundancy in measurement, thereby increasing
the precision and reducing measurement errors [2].

MEMS (Microelectromechanical Systems) technology realizes micro-scaled and accurate fab-
rication of the SBA, thus extending its applications significantly. However, several inevitable
drawbacks accompany the MEMS fabrication, such as time-consumption and financially expen-
siveness [4]. Alternatively, the rapid prototype fabrication of the SBA is worth to be investigated,
within the explosive development of 3D printers. The rapid prototype fabrication has its inher-
ent advantages over other modeling approaches [5]. First of all, the overall fabrication process is
apparently simplified and the time cost is reduced significantly. Moreover, the financial cost of
rapid prototype is relatively much less expensive then the MEMS fabrication. In addition, rapid
prototype is dominant over MEMS fabrication in fabricating complicated 3D architectures.

In this paper, three potentiometers are designed to attach to the vertices of the SBA proof-
mass, to provide an electronic signal, for the purpose of rendering acceleration information of the
proof-mass. However, the signal provided by the potentiometers denotes the relative displacement
of its moving measurement shaft with respect to the housing, the displacement of the proof-mass
is still unknown. Therefore, a study of the relationship of the proof-mass displacement with the
displacement of each potentiometer becomes important. The relationship is investigated in details
and the estimation algorithm is provided. Afterwards, a simulation example is studied to validate
the algorithm, in order to obtain the range of estimation errors for the SBA. Finally, conclusions
are offered.

2 Estimation Algorithms

The SBA is isotropic and without out-of-plane displacement; therefore, the motion of the proof-
mass is considered as a coordinate transformation [6] in the frame plane with an origin shift u and
a rotation defined by the rotation matrixQ(θ) in terms of the angle θ, as shown in Fig. 2. Let a and
s be the side length of the proof-mass and the frame, respectively, di = ∥qi − ri∥ , i = 1, 2, 3, the
displacement measured by the ith potentiometer, and pi, qi, ri the position vectors of Pi, Qi, Ri,
respectively.

The pose to be estimated comprises the translation u and the angle θ, which is, by design, a
parasitic rotation of the order of 10−2 (rad) because of the stiffness of the Π-joints [7] that connect
proof-mass to the frame.

1The term derives from simplex, a polyhedron with the minimum number of vertices embedded in Rn.
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Figure 1: Physical prototype of the SBA
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Figure 2: Schematic diagram of the prototype with potentiometers
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In this paper, mainly three algorithms are devised and analyzed, which can be categorized
according to the assumption of small rotation and the assembling position of the potentiometers.

� Algorithm 1: under the assumption of pure translation, and with the potentiometers pinned
at the vertices of the proof-mass;

� Algorithm 2: under the assumption of pure translation, and with the potentiometers pinned
at the centre of the proof-mass;

� Algorithm 3: under the assumption of both translation and rotation, and with the poten-
tiometers pinned at the vertices of the proof-mass.

When evaluating the algorithms, the nonlinearity of the potentiometer η and the magnitude of
the angle of rotation θ need to be considered at the same time to optimize the estimation of the
translation of the proof-mass centre.

2.1 Algorithm 1

First, three equations can be obtained from the potentiometer readouts that constrain the
vertices of the proof-mass onto the circles centred at the vertices of the frame.

∥qi − ri∥ = di, i = 1, 2, 3 (1)

Since the proof-mass is a rigid body and its motion is assumed to be a pure translation, the
displacement of the vertices are identical with the displacement of the centre. Thus, the position
vector of the vertices is qi = u + pi, i = 1, 2, 3. Substituting these expressions into Eq. (1) and
denoting hi = pi − ri gives

∥u∥2 + 2hT
i u+ ∥hi∥2 − d2i = 0, i = 1, 2, 3 (2)

Upon subtracting the above equations pairwise in Eq. (2), one obtains

2(h1 − h2)
Tu = d21 − d22 (3a)

2(h2 − h3)
Tu = d22 − d23 (3b)

2(h3 − h1)
Tu = d23 − d21 (3c)

Note that due to the assumption of pure translation, the three measurements are not inde-
pendent; thus, two equations of the system determine the translation of the proof-mass. Upon
considering all the useful information of the three equations, we end up with an overdetermined
system of three equations with two unknowns, of the form

H1u = δ1 (4)

where H1 and δ1 are given by
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H1 =

 2(h1 − h2)
T

2(h2 − h3)
T

2(h3 − h1)
T

 , δ1 =

 d21 − d22
d22 − d23
d23 − d21

 .
whence an explicit expression of the displacement of the proof-mass is found using the Left

Moore-Penrose Generalized Inverse (LMPGI)

u = (HT
1 H1)

−1HT
1 δ1 (5)

Instead of computing the generalized inverse numerically, we will pursue a symbolic computa-
tion of the solution. The LMPGI is simplified with h1−h2 = (s−a)ι2, h2−h3 = (s−a)ι3, h3−h1 =
(s− a)ι1, which yields

(HT
1 H1)

−1HT
1 =

1

3(s− a)

[
ι2 ι3 ι1

]
Therefore Eq. (5) becomes

u =
1

3(s− a)

(
ι2(d

2
1 − d22) + ι3(d

2
2 − d23) + ι1(d

2
3 − d21)

)
=

√
3

6(s− a)

[ √
3(d21 − d22)

d21 + d22 − 2d23

] (6)

All the readouts of the potentiometer are reflected in Eq. (6) to provide a unique solution of
the pose. Essentially, this algorithm filters the sensor noise unpon subtraction.

2.2 Geometric Interpretation of Algorithm 1

Since the three measurements from the potentiometers are not independent under the assump-
tion of pure translation, only two measurements can determine the pose of the proof-mass, i.e.,
each pair of potentiometers and the corresponding side of the proof-mass can be regarded as a
four-bar linkage, which leads to two possible poses for each pair of measurements out of three. As
shown in Fig. 3, the dashed and solid segments symmetric about one side of the frame correspond
to the two possible poses, but by construction, the proof-mass cannot move outside the frame;
hence, one unique solution feasible for each pair of measurements is available.

If we characterise the pose estimated from a pair of measurements by a side of the proof-
mass, when the measurement is disturbed by the sensor noise, we will have three links distributed
asymmetrically, as shown in Fig. 3. Each intersection of the bisectors of a pair of segments yields
an estimation of the centre of the proof-mass; therefore, by averaging the three intersections, an
optimum estimation of the displacement of the proof-mass is obtained.

In Fig. 3, each end-point of the segments of the side-links is subscripted by first the original
vertex number and then the segment number, the midpoint Mi of each segment Si, i = 1, 2, 3, is
subscripted by the segment number, and a unit vector along each segment is defined by ιi, i =
1, 2, 3. The actual centre position of the proof-mass is C, while the estimated one is denoted as
Cm, the centroid of the intersections of the bisectors.
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Similar to Eq. (1), each pair of potentiometers constrains one side of the proof-mass, and the
end-points of segment Si have the relations with the measurements shown in Eq. (7). Henceforth,
index additions and subtractions are assumed to be mod (3). Without sensor noise, the three
sides form a triangle, with the actual pose of the proof-mass; otherwise, the three sides will be
distributed asymmetrically.

∥qi−1,i − ri−1∥ = di−1, ∥qi,i − ri∥ = di (7)

With the assumption of pure translation, the end-points of each segment can be expressed in
terms of its mid-point as

qi−1,i = mi −
a

2
ιi, qi,i = mi +

a

2
ιi (8)

Substituting Eq. (8) into Eq. (7) provides us with the expression of the midpoint for segment
Si.

∥mi + ri−1,i∥2 − d2i−1 = 0, ∥mi + ri,i∥2 − d2i = 0 (9)

where

ri−1,i =
a

2
ιi − ri−1, ri,i = −a

2
ιi − ri.

Upon expansion of Eq. (9) and substraction of the equations for the same segments, notice that
ri−1,i − ri,i = (s− a)ιi, we obtain a projection relation of the midpoints,namely,

Si : ιTi mi =
d2i−1 − d2i − ∥ri−1,i∥2 + ∥ri,i∥2

2(s− a)
(10)

Now we search for the expression of the intersections of the bisectors of the three segments.
Let mi−1,i be the position vector of the intersection of the bisector of segment Si−1 and segment
Si, which has the perpendicular relation with the unit vectors of the segments as

ιTi−1(mi−1,i −mi−1) = 0, ιTi (mi−1,i −mi) = 0 (11)

Next, we rewrite Eq. (11) in a compact form and substitute Eq. (10) from it. Although there will
be two possible positions for each segment, their bisector are the same; hence, an explicit expression
of the intersections can be found. Substituting the simplification ∥ri,i∥2 − ∥ri−1,i∥2 = sa derived
from the geometric relation yields[

ιTi
ιTi−1

]
mi−1,i =

1

2(s− a)

[
d2i−1 − d2i + sa
d2i − d2i+1 + sa

]
(12)

whence,

mi−1,i =
1

2(s− a)∆i−1,i

E
[
−ιi−1 ιi

]
δi−1,i (13)

where
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E =

[
0 −1
1 0

]
, δi−1,i =

[
d2i−1 − d2i + sa
d2i − d2i+1 + sa

]
,

∆i−1,i = det

([
ιTi
ιTi−1

])
= ιTi−1Eιi = −cos30◦ = −

√
3/2

We choose the mean value of position vectors of the three intersections as the estimation of the
displacement um of the proof-mass, which yields

um =
m31 +m12 +m23

3

=
1

3

3∑
i=1

(
−

√
3

3(s− a)
E

[
−ιi−1 ιi

] [ d2i−1 − d2i + sa
d2i − d2i+1 + sa

])
=−

√
3

9(s− a)
E

([
−ι3 ι1

] [ d23 − d21
d22 − d23

]
+ (ι1 − ι3)sa

+
[
−ι1 ι2

] [ d21 − d22
d23 − d21

]
+ (ι2 − ι1)sa

+
[
−ι3 ι2

] [ d22 − d23
d21 − d22

]
+ (ι3 − ι2)sa

)
=−

√
3

9(s− a)
E

([
−ι3 ι1

] [ d23 − d21
d22 − d23

]
+
[
−ι1 ι2

] [ d21 − d22
d23 − d21

]
+
[
−ι2 ι3

] [ d22 − d23
d21 − d22

])

(14)

Upon realizing that the three components in the brackets in Eq. (14) are equivalent, we obtain
a brief expression of the displacement um as

um = −
√
3

6(s− a)

[ √
3(d22 − d21)

2d23 − d21 − d22

]
(15)

which is identical to Eq. (6) and, hence, verifies that the geometric interpretation of Algorithm 1
under noise is exactly as depicted in Fig. 3.

2.3 Algorithm 2

If the potentiometers are pinned at the centre of the proof-mass, the angle of rotation will not
affect the measurement of the potentiometers, i.e., the proof-mass with any angle of rotation has
the same displacement at the centre. Hence, Algorithm 1 is modified for the configuration of the
potentiometers pinned at the centre of the proof-mass, which is denoted as Algorithm 2.

Since the potentiometers are directly connected to the centre of the proof-mass, pi = 0, i =
1, 2, 3 and Eq. (1) becomes

∥uc − ri∥ = di, i = 1, 2, 3 (16)

7



about the displacement of the centre of the proof-mass uc for the centre-pinned configuration.
Whence

∥uc∥2 − 2rT
i uc + ∥ri∥2 − d2i = 0, i = 1, 2, 3 (17)

Upon subtracting the above equations pairwise in Eq. (17), one obtains

2(r2 − r1)
Tuc = d21 − d22 (18a)

2(r3 − r2)
Tuc = d22 − d23 (18b)

2(r1 − r3)
Tuc = d23 − d21 (18c)

Similarly to Algorithm 1,

uc = (HT
2 H2)

−1HT
2 δ2 (19)

where

H2 =

 2(r2 − r1)
T

2(r3 − r2)
T

2(r1 − r3)
T

 , δ2 = δ1 =

 d21 − d22
d22 − d23
d23 − d21

 .
the LMPGI in Eq. (19) is simplified with r2 − r1 = sι2, r3 − r2 = sι3, r1 − r3 = sι1

(HT
2 H2)

−1HT
2 =

1

3s

[
ι2 ι3 ι1

]
which results in a simple expression for the estimation of the centre of the proof-mass

uc =

√
3

6s

[ √
3(d21 − d22)

d21 + d22 − 2d23

]
(20)

It can be seen that the only difference between Eq. (20) and Eq. (6) is the denominator, but
the readouts di, i = 1, 2, 3 in Eq. (20) are not affected by the angle of rotation and, therefore, help
to produce better estimation result.

2.4 Algorithm 3

Algorithm 3 aims at the estimation of the proof-mass pose, i.e., the translation and the angle of
rotation of the proof-mass, simultaneously, with three unknowns in three equations derived from the
constraints that the vertices of the proof-mass stay onto the circles defined by the potentiometers.
In fact, the SBA with the three potentiometers, making abstraction of the ΠΠ limbs, has the
architecture of a parallel robot with three RPR limbs and, hence, admits six forward kinematics
solutions [8, 9]. However, considering the small-angle assumption of the rotation of the proof-mass
and the range of the displacement constrained by the frame, we will have less than six feasible
solutions for the pose of the proof-mass.
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Upon augmenting Eq. (1), the corresponding expression in terms of the displacement ur and
the angle of rotation θ of the proof-mass becomes

∥Q(ur + pi)− ri∥ = di, i = 1, 2, 3 (21)

where

Q =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, θ ∈

(
−π
2
,
π

2

)
Upon expansion, Eq. (21) leads to

∥ur∥2 + 2pT
i Q

Tur − 2rT
i ur + ∥pi∥2 − 2pT

i Q
Tri + ∥ri∥2 − d2i = 0, i = 1, 2, 3 (22)

As a result of the isotropy of the SBA, ∥pi∥ and ∥ri∥ can be denoted as p and r respectively,

and
3∑

i=1

pi = 0,
3∑

i=1

ri = 0, pT
i Q

Tri = prcosθ. Then adding the equations for i = 1, 2, 3 in Eq. (22)

yields

∥ur∥2 = 2prcosθ − p2 − r2 +
d21 + d22 + d23

3
(23)

Meanwhile, upon subtracting Eq. (22) pairwise, and expressing ri = npi, i = 1, 2, 3, and
Q = cosθI + sinθE, where I denotes the 2× 2 identity matrix, one obtains

2
((

(cosθ − n)I − sinθE
)(
p1 − p2

))T

ur = d21 − d22 (24a)

2
((

(cosθ − n)I − sinθE
)(
p2 − p3

))T

ur = d22 − d23 (24b)

2
((

(cosθ − n)I − sinθE
)(
p3 − p1

))T

ur = d23 − d21 (24c)

among which, only two equations are independent; thus, we choose arbitrary two, say Eq. (24a)
and Eq. (24b), which gives the expression of the displacement ur of the proof-mass with respect
to the angle of rotation θ as follows

ur =
1

2∆3

E
[
−h23 h12

]
δ3 (25)

where

h12 =
(
(cosθ − n)I − sinθE

)(
p1 − p2

)
= −a

(
(cosθ − n)I − sinθE

)
ι2,

h23 =
(
(cosθ − n)I − sinθE

)(
p2 − p3

)
− a

(
(cosθ − n)I − sinθE

)
ι3,

∆3 = det

([
hT

12

hT
23

])
= hT

23Eh12 =

√
3a2

2

(
sin2θ + (n− cosθ)2

)2
,

δ3 =

[
d21 − d22
d22 − d23

]
9



Hence, the simplified form of Eq. (25) is

ur =

(
sinθI + (n− cosθ)E

) [
−ι3 ι2

]
δ3√

3a
(
sin2θ + (n− cosθ)2

) (26)

We denote Q′ = sinθI + (n − cosθ)E, which is not a rotation matrix, and L =
[
−ι3 ι2

]
.

Then an alternative expression of ∥ur∥2 is derived by manipulating Eq. (26), namely

∥ur∥2 = uT
r ur =

δT
3 L

TQ
′TQ′Lδ3

3a2
(
sin2θ + (n− cosθ)2

)2
=

δT
3 L

T
(
sinθI − (n− cosθ)E

)(
sinθI + (n− cosθ)E

)
Lδ3

3a2
(
sin2θ + (n− cosθ)2

)2
=

δT
3 L

T
(
sin2θ + (n− cosθ)2

)
ILδ3

3a2
(
sin2θ + (n− cosθ)2

)2
=

δT
3 L

TLδ3

3a2
(
sin2θ + (n− cosθ)2

)
=

1

3a2(1 + n2 − 2ncosθ)
δT
3

[
∥ι3∥2 −ιT3 ι2
−ιT3 ι2 ∥ι2∥2

]
δ3

=
1

3a2(1 + n2 − 2ncosθ)
δT
3

[
1 1/2
1/2 1

]
δ3

=
d41 + d42 + d43 − d21d

2
2 − d22d

2
3 − d21d

2
3

3a2(1 + n2 − 2ncosθ)

(27)

From Eqs. (23) and (27), a quadratic equation in cosθ is obtained with only the configuration
parameters and the measurement of the potentiometers

4n2a4cos2θ − 2na2
(
2a2(1 + n2)− d′

)
cosθ − a2(1 + n2)d′ + a4(1 + n2)2 + d′′ = 0 (28)

where

d′ = d21 + d32 + d23; d′′ = d41 + d42 + d43 − d21d
2
2 − d22d

2
3 − d23d

2
1

Upon substitution of the tan-half-angle identities

cosθ =
1− τ 2

1 + τ 2
, where τ ≡ tan2

(
θ

2

)
and the configuration parameters n = 4, a = 0.05 (m) into Eq. (28), a quartic equation in τ is
obtained, whose roots are

10



τ1,2 = ±
√
2

10

√
−50− 32

8(d21 + d22 + d23) + 8
√
3
√

2d21d
2
2 + 2d21d

2
3 + 2d22d

2
3 − d41 − d42 − d43 − 1

τ3,4 = ±1

5

√
−25− 16

8(d21 + d22 + d23)− 8
√
3
√

2d21d
2
2 + 2d21d

2
3 + 2d22d

2
3 − d41 − d42 − d43 − 1

(29)

among which, τ1,2 are real and feasible, while τ3,4 complex and can be discarded. Therefore, a pair
of solutions with opposite signs is obtained for the angle of rotation θ, but only the actual value of
the angle of rotation produces a proper estimation of the displacement of the proof-mass ur from
Eq. (26).

Since the displacements calculated from the two feasible angles of rotation are not symmetric,
a method for identifying the two solutions is needed, such as comparing with the estimation result
from Algorithm 1 to eliminate one solution. In addition, when the system is disturbed by the
sensor noise, τ1,2 sometimes becomes complex and gives no real solution. Yet, the valid results of
the angle of rotation provide a rough estimation of the parasitic rotation occuring during the test.

3 Numerical Simulations

To obtain the range of the estimation errors, the worst case scenario of estimating the displace-
ment of centre of the proof-mass during the prototype test is simulated in Matlab with Algorithm 1,
2 and 3 aforementioned. The comprehensive influence of the parasitic rotation and the nonlinearity
of the potentiometers is shown for Algorithm 1 to estimate of the translation of the proof-mass.
In addition, a set of 10000 trial runs of Monte Carlo simulation [10] is done to approximate the
real test, which provides a comprehensive evaluation of the Algorithms.

3.1 Simulation Parameters

The designed trajectory of the proof-mass is: 50 positions of the centre of the proof-mass with
its x, y coordinates both moving from −3

√
2×10−3 (m) to 3

√
2×10−3 (m), resulting in a 45-degree

segment of 12 (mm). In this case, the largest stretch of the potentiometers is 5.86 (mm), which is
smaller than the limit of half the stroke 6 (mm) and covers the measurement range at best.

Since the parasitic rotation of the proof-mass is of the order of 10−2 (rad), it is assumed that
the range of the angle of rotation is [−10−2, 10−2]. Meanwhile, according to the data sheet of
the potentiometer LCP8T-12-10K, the independent nonlinearity of the sensor is ±2%. In order
to interpret this information, we referred to Celesco’s miniature MLP series linear potentiometers
and take the nonlinearity for the full stroke, which is illustrated in Fig. 4(a) for an arbitrary angle
of inclination ψ.

The LCP8T-12-10K potentiometer is electronically tested to be most reliable around the middle
of the stroke, as shown in Fig. 4(b), where l represents the displacement of the core from its
retracted position and V the output voltage of the potentiometer; therefore, we locate the home
stretch of the potentiometers at 6 (mm), which also allows the proof-mass to move in both directions
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along the potentiometers. In Fig. 4(a) at the full stroke 12 (mm) and 0 (mm), the measurement
with its maximum nonlinearity is (1± 2%)yp in the linear function yp = tan(ψ)xp.

(1 2%)y
p

y
p

X

Y

x
p

12 mm

6 mm

0 mm

O

(1+2%)y
p

(a) Nonlinearity of the potentiometer in full stroke
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4
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6

0 2 4 6 8 10 12

l (mm)

V
(V
)

(b) Test of the nonlinearity of LCP8T-12-10K

Figure 4: Interpretation of the nonlinearity of the potentiometer

3.2 Analysis and Comparison of Simulation Results

For the worst case scenario of estimating the displacement of the centre of the proof-mass, four
combinations of the sensor noise and the angle of rotation are simulated for the designed trajectory.
Table 1 is a brief summary of the estimation errors with Algorithm 1, 2 and 3, where η = ±2%
represents η1 = −2%, η2 = 2%, η3 = −2% for the three potentiometers to avoid identical values
of the nonlinearity. Besides, Fig. 5, corresponding to Table 1, shows the estimation error ϵ of the
position vectors of the centre of the proof-mass along the designed trajectory.

Simplified Eq. (6) and Eq. (20) are used for Algorithm 1 and Algorithm 2 respectively, while the
estimation with Algorithm 3 is obtained from Eq. (26) and Eq. (29). Sometimes, the sensor noise
causes the estimation of the angle of rotation to be complex, which is compromised by taking the
asbolute value of the angle, and then producing the estimation of the translation of the proof-mass.

Table 1: Estimation errors of the centre of the proof-mass (m)

Conditions Value type Algorithm 1 Algorithm 2 Algorithm 3

a) η = 0 mean 8.1730× 10−18 1.0380× 10−17 9.4082× 10−12

θ = 0 (rad) max. 2.1290× 10−17 2.7706× 10−17 5.2684× 10−11

b) η = 0 mean 1.0204× 10−5 1.0380× 10−17 1.2939× 10−17

θ = 1× 10−2 (rad) max. 2.0000× 10−5 2.7706× 10−17 3.9474× 10−17

c) η = ±2% mean 2.9732× 10−5 2.9712× 10−5 2.9308× 10−5

θ = 0 (rad) max. 5.8537× 10−5 5.8418× 10−5 6.0971× 10−5

d) η = ±2% mean 3.4646× 10−5 2.9712× 10−5 2.8237× 10−5

θ = 1× 10−2 (rad) max. 6.8892× 10−5 5.8418× 10−5 5.6560× 10−5
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Without disturbance of the sensor noise and the parasitic rotation, it can be seen from Table 1
that every devised algorithm has accurate estimation of the position of the centre of the proof-
mass; while under the disturbance of the sensor noise and the parasitic rotation, the magnitude of
the estimation errors are all suppressed to the order lower than 10−5, i.e. 2 orders lower than the
magnitude of the displacement of the proof-mass, even in the worst case scenario at the bottom
line.

Generally speaking, Algorithm 2 for the centre-pinned configuration is the most accurate in all
cases, however, this algorithm loses the chance to get the estimation of the angle of rotation, while
Algorithm 3 has comparable results with Algorithm 2 and provides us a glimpse of the magnitude
of the angle of rotation as shown in Table 2.

Table 2: Estimation errors of the angle of rotation with Algorithm 3 (rad)

Conditions a) η = 0 b) η = 0 c) η = ±2% d) η = ±2%
θ = 0 (rad) θ = 1× 10−2 (rad) θ = 0 (rad) θ = 1× 10−2 (rad)

mean 1.0457× 10−8 9.3089× 10−15 1.5572× 10−2 6.9685× 10−3

max. 2.6342× 10−8 3.6138× 10−14 2.5435× 10−2 1.3246× 10−2

Comparing the estimation errors in Condition b) and c), we can conclude that the impact of
the nonlinearity of the potentiometer is larger than the parasitic rotation of the proof-mass, which
is further proved in Fig. 6 for the extreme position (3

√
2 × 10−3, 3

√
2 × 10−3) (m) of the centre

of the proof-mass. The magnitude of the estimation error ϵ depends on the integrative impact of
disturbances, and is larger along the direction of the nonlinearity η than along the direction of the
parasitic angle θ in Fig. 6. Even if the sensor noise has the same range as the angle of rotation,
e.g. [−0.01, 0.01], the projection of the ϵ-surface onto the θ-η plane shows that the extreme values
±0.01 of θ coincide with the tangent to the curve of cooler colour than η, indicating that the sensor
noise is the major source of the estimation error.

Comparing the performance of Algorithm 1 and Algorithm 3 in Condition b), c) and d), it is
shown that Algorithm 3 has slightly better estimation results of the translation of the proof-mass;
although it is shown in Table 2 that Algorithm 3 does not have a high accuracy of the angle of
rotation, the superiority of Algorithm 3 is basically the distraction of the sensor noise to partially
upon the rotation of the proof-mass, thus resulting in a better estimation of the translation. This
is also why Algorithm 3 has even higher accuracy than Algorithm 2 under Condition c) and d).

It should be noticed that the worst case scenario for estimating the angle of rotation is not the
same with estimating the displacement of the proof-mass. The former is under maximum sensor
noise and small rotation, which can be seen from comparing condition c) and d) in Table 2. This
implies that the comprehensive performance of the algorithms under random sensor noise and
angle of rotation is not obvious for Algorithm 3 and needs to be further evaluated. To this end, a
set of 10000× 50 random combinations of the sensor noise and the angle of rotation is simulated
for the 50 sample points of the centre of the proof-mass, in which the ranges of the sensor noise
and the angle of rotation are [−2× 10−2, 2× 10−2] and [−1× 10−2, 1× 10−2] (rad), respectively.

Table 3 lists the mean value of the 10000 trial runs for the estimation of the displacement
of the centre of the proof-mass, where the mean values and the maximum values refer to the
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estimation errors of the 50 sample points. It is shown that Algorithm 2 has the best performance
comprehensively, while Algorithm 3 loses its superiority; Algorithm 1 has a comparable accuracy
to Algorithm 2 and applies to the configuartion of the prototype for test, therefore sufficing the
need of estimating the displacement of the centre of the proof-mass.

Table 3: Comprehensive estimation errors of the centre of the proof-mass (m)

Algorithm Algorithm 1 Algorithm 2 Algorithm 3

mean value 1.5145× 10−5 1.3113× 10−5 2.0396× 10−5

maximum value 4.8874× 10−5 3.8857× 10−5 6.8525× 10−5

Moreover, the maximum value of the estimation error with Algorithm 3 is larger than any of
the values with this algorithm under the typical conditions in Table 1, which evidence the intricate
impact of the sensor noise and the angle of rotation to the estimation accuracy. On the other
hand, the estimation of the angle of rotation with Algorithm 3 is found to be in the same order of
magnitude as the nonlinearity of the potentiometer, since the angle of rotation is small and prone
to sensor noise.

4 Conclusions

Simulation results validated the devised estimation algorithms. The impact of the nonlinearity
of the potentiometers was suppressed to two orders of magnitude lower then the dimension of the
translation of the proof-mass. Although numerically the potentiometer and the parastic angle of
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rotation had the same order of uncertainty, the sensor noise was the main error source and needs
to be considered during purchase of the potentiometers. The simulation results show that it is
optimum to adopt Algorithm 1 under the assumption of pure translation. If better performance is
desired or the angle of rotation is necessary, more potentiomters could be installed for Least-Square
filtering.
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[9] Merlet, J.P. Parallel Robots. Springer, Dordrecht, The Netherlands, 2006.

[10] Crassidis, J.L. and Junkins, J.L. Optimal Estimation of Dynamic Systems. Second ed.. CRC
Press, Taylor and Francis Group, Boca Raton, FL, 2012.

15


