MECH 573 Mechanics of Robotic Systems

1. Shown in Fig. 1 is a planar, two-link serial manipulator with equal link-lengths.
(a) (20%) Find an expression for its condition number based on the Frobenius norm. Hint: the product $\mathbf{J}^{T} \mathbf{J}$ leads to a simpler expression than $\mathbf{J} \mathbf{J}^{T}$.
(b) (40%) Find the posture at which the above condition number attains its minimum value. What is this value?

Figure 1: A planar two-link manipulator

Figure 2: A triangular plate
2. (20%) The same manipulator of Fig. 1 is to execute a PPO that requires its joints to sweep angles of $\Delta \theta_{1}=\pi / 3$ and $\Delta \theta_{2}=4 \pi / 3$. If the maximum speeds that the motors can deliver are $\left(\dot{\theta}_{1}\right)_{\max }=2 \pi / 3 \mathrm{~s}^{-1}$ and $\left(\dot{\theta}_{2}\right)_{\max }=4 \pi / 3 \mathrm{~s}^{-1}$, compute the minimum time in which the robot can execute the operation with a 4-5-6-7 polynomial.
3. 20%) The rigid triangular plate of Fig. 8.2 is reproduced in Fig. 2 for quick reference. Matrix D, defined as

$$
\mathbf{D}=\frac{1}{2}[\operatorname{tr}(\mathbf{P}) \mathbf{1}-\mathbf{P}]
$$

was found in Example 8.3.1 to be nonsingular when all vectors are represented in the given coordinate frame. Under a change of frame, obtained upon rotating $\{O, X, Y, Z\}$ through an angle θ about the Z-axis, it is possible to render \mathbf{D} singular. The rotation is represented by matrix \mathbf{Q}, given by

$$
\mathbf{Q}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Notice that, under this change of frame, \mathbf{P}, defined as

$$
\mathbf{P}=\left[\begin{array}{lll}
\mathbf{p}_{1}-\mathbf{c} & \mathbf{p}_{2}-\mathbf{c} & \mathbf{p}_{3}-\mathbf{c}
\end{array}\right]
$$

in which \mathbf{c} is the position vector of the centroid of triangle $P_{1} P_{2} P_{3}$, changes to

$$
\mathbf{P}^{\prime}=\mathbf{Q P}
$$

Find the angle of rotation θ that renders \mathbf{D} singular.

