MECH 573 Mechanics of Robotic Systems
 Exercises in Linear Algebra
 June, 2005

Note: The use of both components and computer algebra is strongly recommended against.

1. Let a be an arbitrary three-dimensional vector and \mathbf{A} its cross-product matrix.
(a) Let $\mathbf{B} \equiv \mathbf{1}+\mathbf{A}$, with $\mathbf{1}$ defined as the 3×3 identity matrix. Then, prove that

$$
\operatorname{det}(\mathbf{B})=1+\|\mathbf{a}\|^{2}>1
$$

and hence, \mathbf{B} is nonsingular.
(b) Find \mathbf{B}^{-1} in terms of \mathbf{A} or, equivalently, of \mathbf{a}.
2. For given three-dimensional, non-zero \mathbf{a} and \mathbf{b}, find \mathbf{v} that verifies

$$
\mathbf{v}+\mathbf{a} \times \mathbf{v}=\mathbf{b}
$$

When finding an expression for \mathbf{v} in terms of \mathbf{a} and \mathbf{b}, answer the questions below:
(a) Is it possible to find \mathbf{v} for arbitrary \mathbf{a} and \mathbf{b} ?
(b) Can \mathbf{v} be orthogonal to \mathbf{a} ? If so, under which conditions?
(c) Can \mathbf{v} be orthogonal to \mathbf{b} ? If so, under which conditions?

