MECH 573 Mechanics of Robotic Systems Exercises in Linear Algebra June, 2005

Note: The use of both components and computer algebra is strongly recommended against.

- 1. Let **a** be an arbitrary three-dimensional vector and **A** its cross-product matrix.
 - (a) Let $\mathbf{B} \equiv \mathbf{1} + \mathbf{A}$, with $\mathbf{1}$ defined as the 3×3 identity matrix. Then, prove that

$$\det(\mathbf{B}) = 1 + \|\mathbf{a}\|^2 > 1$$

and hence, \mathbf{B} is nonsingular.

- (b) Find \mathbf{B}^{-1} in terms of \mathbf{A} or, equivalently, of \mathbf{a} .
- 2. For given three-dimensional, non-zero \mathbf{a} and \mathbf{b} , find \mathbf{v} that verifies

 $\mathbf{v} + \mathbf{a} \times \mathbf{v} = \mathbf{b}$

When finding an expression for \mathbf{v} in terms of \mathbf{a} and \mathbf{b} , answer the questions below:

- (a) Is it possible to find \mathbf{v} for arbitrary \mathbf{a} and \mathbf{b} ?
- (b) Can \mathbf{v} be orthogonal to \mathbf{a} ? If so, under which conditions?
- (c) Can \mathbf{v} be orthogonal to \mathbf{b} ? If so, under which conditions?