PLACE ADDITIONAL BOOKS INSIDE FIRST BOOK

CLASSROOM BOOK

\qquad

McGILL UNIVERSITY

DO YOU EXPECT TO GRADUATE AT THE NEXT CONVOCATION?

\square

> (Prinf other Names in full)

Student Number
(Prinf other Names in full)
Course and Year (จ.g. B.A. U1)
Subject

\qquad
MECH572
INTRO (Include course number)
\qquad Class Section

INSTRUCTIONS

Fill in the above carefully.

Write your answers on the RULED SIDE ONLY - Use the unruled side for rough work or calculations.

Do not write in the margin - If a page is accidentally left blank write "P.T.O." on it.

Do not tear pages from this book; all your writing must be handed in.
Put addifional books inside first book when handing in.

This book must not be taken from the Examination Room.

$$
\begin{aligned}
& \text { 1. } Q: \mathcal{F} \rightarrow \mathcal{F}^{\prime} \\
& \vec{\imath} \xrightarrow{0.7071(-\vec{\imath}+\vec{\jmath})} ; \vec{k} \rightarrow \underbrace{0.5774(\vec{\imath}+\vec{\jmath}+\vec{k})}_{\vec{u}} \\
& \begin{aligned}
\vec{\jmath}^{\prime} & =\vec{k}^{\prime} \times \vec{l}^{\prime}=0.7071 \times 0.5774\left|\begin{array}{ccc}
\vec{i} & \vec{\jmath} & \vec{k} \\
1 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right| \\
& =0.4082(-\vec{\imath}-\vec{\jmath}+2 \vec{k})
\end{aligned} \\
& \Rightarrow Q=\left[\right] \\
& \Rightarrow \vec{e} \sin \phi=\operatorname{vect}(Q)=\frac{1}{2}\left[\begin{array}{c}
0.8165-0.5774 \\
0.5774 \\
0.7071+0.4082
\end{array}\right]=\left[\begin{array}{c}
0.1196 \\
0.2887 \\
0.5577
\end{array}\right] \\
& \Rightarrow \sin \phi=\|\operatorname{vect}(\underset{\sim}{Q})\|=0.6392 \Rightarrow \phi=39.73^{\circ} \text { or } 140.27^{\circ} \\
& 1+2 \cos \phi=\operatorname{tr}(\underset{\sim}{Q})=-0.5379 \Rightarrow \cos \phi=-\frac{1.5379}{2}=-0.7690 \\
& \Rightarrow \phi=140.26^{\circ} \text { or } 219.74^{\circ} \\
& \Rightarrow \phi=140.26^{\circ} \quad \text { Ans. } \\
& \vec{e}=\frac{\operatorname{vect}(Q)}{\sin \phi}=\left[\begin{array}{l}
0.1871 \\
0.4517 \\
0.8725
\end{array}\right] \quad \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. (a) } \vec{f}_{1}=\left[\begin{array}{c}
0 \\
10 \\
0
\end{array}\right], \vec{f}_{2}=\left[\begin{array}{c}
0 \\
0 \\
10
\end{array}\right] \\
& \vec{n}_{M}=(\vec{e}-\vec{m}) \times \vec{f}_{1}+(\vec{c}-\vec{m}) \times \vec{f}_{2} \\
& \vec{e}-\vec{m}=\left[\begin{array}{l}
0 \\
0 \\
a
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
a \\
a \\
a
\end{array}\right]=\frac{a}{2}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \\
& \vec{c}-\vec{m}=\left[\begin{array}{l}
a \\
a \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
a \\
a \\
a
\end{array}\right]=\frac{a}{2}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \\
& (\vec{e}-\vec{m}) \times \overrightarrow{f_{1}}=\frac{10 a}{2}\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right|=5 a(-\vec{\imath}+\vec{k}) \\
& (\vec{c}-\vec{m}) \times \overrightarrow{f_{2}}=\frac{10 a}{2}\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right|=5 a(\vec{\imath}-\vec{\jmath}) \\
& \Rightarrow \vec{n}_{M}=5 a(-\vec{\imath}+\vec{k}+\vec{\imath}-\vec{\jmath}) \Rightarrow \vec{n}_{M}=5 a\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] \\
& \vec{f}=\vec{f}_{1}+\vec{f}_{2}=\left[\begin{array}{c}
0 \\
10 \\
10
\end{array}\right] \Rightarrow \vec{w}=5\left[\begin{array}{cccc}
0 & -a & a & 0 \\
2 & 2
\end{array}\right]^{\top}
\end{aligned}
$$ $\frac{\text { Ans. }}{5}$

$$
\begin{aligned}
& \text { (b) Recall eq- }(3.111): \vec{p}_{0}^{\prime \prime}=\frac{1}{1 \vec{f} \mathbb{1}^{2}} \vec{f} \times\left(\vec{n} \vec{M}_{M} \vec{f} \times \vec{m}\right)^{5} \\
& \vec{f} \times \vec{m}=10 \times \frac{a}{2}\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|=5 a(\vec{\jmath}-\vec{k})=5 a\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \\
& \vec{n}_{M}-\vec{f} \times \vec{m}=5 a\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]-5 a\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=5 a\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right]=10 a\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \\
& \vec{f} \times\left(\vec{n}_{M}-\vec{f} \times \vec{m}\right)=10 \times 10 a\left|\begin{array}{ccc}
\vec{u} & \vec{k} & \vec{k} \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right|=100 a(2 \vec{u})=200 a\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \|\vec{f}\|^{2}=100+100=200 \\
& \Rightarrow \vec{p}_{0}^{\|}=\frac{200 a}{200}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Unit vector $\|$ wrench $a x i s \vec{e}^{\prime \prime}=\frac{\vec{f}}{\|\vec{f}\|}=\frac{\sqrt{2}}{2}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \vec{n}^{\prime \prime}=\vec{p}_{0}^{\prime \prime} \times \vec{e}=a \frac{\sqrt{2}}{2}\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=\frac{\sqrt{2}}{2} a(\vec{\jmath}+\vec{k})= \\
&=\frac{\sqrt{2}}{2} a\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \\
& \Rightarrow \vec{k}^{\prime \prime}=\frac{\sqrt{2}}{2}\left[\begin{array}{llllll}
0 & 1 & 1 & -a & -a
\end{array}\right]^{\top}=\text { Plucker words. } \\
& \text { Ans. }
\end{aligned}
$$

3. (a) $\vec{w}=\left[\begin{array}{l}\vec{n} \\ \vec{f}\end{array}\right]$

Conditions $=$ 1) $\left\|[\vec{n}]_{1}\right\|=\left\|[\vec{n}]_{6}\right\|$

$$
\text { 2) }\left\|[\vec{f}]_{1}^{1},\right\|=\left\|[\vec{f}]_{6}\right\|
$$

Ans.

$$
\text { 3) }[\vec{n} \cdot \vec{f}]_{1}=[\vec{n} \cdot \vec{f}]_{6}
$$

$\left\|[\vec{n}]_{1}\right\|=1,\left\|[\vec{n}]_{6}\right\|=1 \Rightarrow$ i) ok

$$
\begin{aligned}
& \left.\left\|[\vec{f}]_{1}\right\|=1,\left\|[\vec{f}]_{6}\right\|=1 \Rightarrow 2\right) \circ K \\
& (\vec{n} \cdot \vec{f}]_{1}=0,[\vec{n} \cdot \vec{f}]_{6}=0 \Rightarrow \text { 3) ok }
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
{[\vec{n} \times \vec{f}]_{1} } & =[\vec{\imath} \times \vec{k}]_{1}=[-\vec{\jmath}]_{1}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right] \\
{[\vec{n} \times \vec{f}]_{6} } & =[\vec{k} \times \vec{\imath}]_{6}=[\vec{\jmath}]_{6}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
Q=f_{1} \rightarrow f_{16} \Rightarrow Q:[\vec{v}]_{6} \rightarrow[\vec{v}]_{1} \text { or }[\vec{v}]_{1}=Q[\vec{v}]_{6}
$$

$$
\Rightarrow \underbrace{[\vec{n} \vec{f} \vec{n} \times \vec{f}]_{1}}_{\widetilde{U}_{\|}^{A}}=\underset{\sim}{\underset{\sim}{B}} \underset{\sim}{[\vec{n} \vec{f} \vec{n} \times \vec{f}]_{6}} \Rightarrow \underbrace{Q}_{\sim}=\underset{\sim}{A} \underset{\sim}{B}
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
\vec{k} & \vec{\imath} & \vec{\jmath}
\end{array}\right]_{6}
$$

$$
\begin{aligned}
& \Delta=\operatorname{det}(\underset{B}{ })=\vec{k} \times \vec{\imath} \cdot \vec{\jmath}=\vec{\jmath} \cdot \vec{\jmath}=1 \\
& {\underset{B}{B}}^{-1}=\frac{1}{1}\left[\begin{array}{ccc}
(\vec{\imath} \times \vec{\jmath})^{T} \\
(\vec{\jmath} \times \vec{k}
\end{array}\right)^{T}=\left[\begin{array}{l}
\vec{k}^{T} \\
\vec{\imath} \times \vec{\imath})^{\top}
\end{array}\right]_{6}\left[\begin{array}{lll}
\vec{J}^{T}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \Rightarrow \underset{\sim}{Q}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \frac{\text { Ans. }}{J}
\end{aligned}
$$

4. Kinematic Cha in:

i	$a_{i}(\mathrm{~mm})$	$b_{i}(\mathrm{~mm})$	$\alpha_{i}\left({ }^{\circ}\right)$
1	100	900	-90°
2	700	0	180°
3	162	0	-90°
4	0	800	90°
5	0	140	90°
6	0	160	0°
DH parameters of the Fanve 5700			

