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Abstract

We propose a computational-kinematics approach based on elimination procedures to syn
thesize a steering four-bar linkage. In this regard, we aim at minimizing the root-mean square
error of the synthesized linkage in meeting the steering condition over a number of linkage con
figurations within the linkage range of motion. A minimization problem is thus formulated,
whose normality conditions lead to two polynomial equations in two unknown design variables.
Upon eliminating one of these two variables, a monovariate polynomial equation is obtained,
whose roots yield all locally-optimum linkages. From these roots, the global optimum, as well
as unfeasible local optima, are readily identified. The global optimum, however, turns out to be
impractical because of the large differences in its link lengths, which we refer to as dimensional
unbalance. To cope with this drawback, we use a kinematically-equivalent focal mechanism, i.e.,
a six-bar linkage with an input-output function identical to that of the four-bar linkage. Given
that the synthesized linkage requires a rotational input, as opposed to most existing steering
linkages, which require a translational input, we propose a spherical four-bar linkage to drive
the steering linkage. The spherical linkage is synthesized so as to yield a speed reduction as
close as possible to 2 : 1 and to have a maximum transmission quality.

La synthèse cinématique des mécanismes de direction

Résumé

Nous proposons ici une approche de cinématique algorithmique basée sur une méthode
d’élimination de variables, qui permet de synthétiser un mécanisme de direction a quatre barres
articulées. Dans cette optique, nous nous efforçons de minimiser l’erreur quadratique moyenne
dii mécanisme obtenu, en vérifiant la condition de direction dans urn grand nombre de configura
tions possibles pour le mécanisme, ce qui mène a un probléme de minimisation. Les conditions



de ‘normalité (IC cc dernier donnent lieu a deux equations polynCmiales a deux variables de con
ception inconnues. L’élimination de l’une de ces variables permet dobtenir une seule equation
polynômiale a une seule variable, dont les racines rCelles donnent tons les minimums beaux,
Ii est done possible d’en tirer Ic minimum global et de distinguer les minimums inadmissibles,
(‘ependant. Ic minimum global comporte des longueurs de maillons très diverses, cc qui Ic rend
pen utile. NCanmoins, le concept de rnécanisme focal equivalent, a savoir un mCcanisme a
six barres articulCcs ayant la mCme relation entrée-sortie que le mCcanisme a quatre barres,
permet de remplacer cc dernier par un mécanisme de proportions plus acceptables. Puisque
Ic mCcanisme ainsi synthCtisC exige un cut rainement par couple rotoIde. contrairement aux
mCcanismes de direction existants qui exigent un entraInement par couple glissant, nous pro
posons un mCcanisme sphérique pour coupler le mouvement de l’arbre de direction au maillon
entrainant du mCcanisme de direction. Le mCcanisme sphCrique en question est synthétisC afin
de donner une relation entré-sortie Cquivalente a une transmission par engrenages a reduction
2:1 et une qualitC de transmission optimale.



1 Introduction

The determination of the type and optimum dimensions of steering mechanisms for road vehicles has
remained a challenging problem [1 12]. The complexity of the proposed designs varies from a planar
four-bar linkage to a very sophisticated spatial mechanism. A planar four-bar linkage seems to have
been used as a steering mechanism very early [13]. Since its inception, this simple structure has been
extensively applied in different types of road vehicles. In this paper. we focus on the synthesis of a
four-bar steering linkage. Wolfe [14] used the input-output function of the linkage and the steering
condition to set up an error equation, then expanded it in series and chose coefficients optimally so
as to minimize the underlying structural error. Dudiä and Alexandru [9] expanded the steering-
condition equation, took its first three terms and substituted them into the loop equation of the
linkage; then, they chose the proper dimensions of the mechanism to verify the steering condition
as closely as possible. Both methods are based on a series expansion, wInch yields linkages with a
small error within a rather limited range of motion. Dijksman [1] used exact synthesis to obtain the
four-bar linkage, which nevertheless does not reduce the error of the linkage in the whole range of
motion, Fahey and Huston [2] used a numerical method to minimize the root-mean square value of
the structural error in the whole steering motion range. While these authors reported only one local
minimum, we aim in this paper at finding all local minima, and hence, the global minimum. To
this end, the root-mean square value of the design error of the steering four-bar linkage is minimized
over a rich set of points within the mobility range of interest. As shown in [15], a large cardinality
of the set of prescribed input-output values in function-generation problems leads to a minimum
structural error when minimizing the design error. We exploit this result here because finding the
least-square design error can be done directly. On the contrary, finding the least-square structural
error is a nonlinear problem, and hence, calls for an iterative procedure.

Instead of a numerical method, however, we resort to symbolic elimination in order to reduce the
two normal equations of the optimization problem at hand to one monovariate polynomial equation
whose roots yield all local minima. Nevertheless, it turns out that all minima entail a high dimensional
unbalance, i.e., a large ratio of the largest to the smallest link-lengths. In order to cope with this
unbalance, we resort to the concept of focal mechanism of the four-bar linkage [1,16,17]. Indeed, the
focal six-bar equivalent of the original four-bar linkage produces the same input-output relation, but
has links of similar lengths.

Finally, the issue of how the steering linkage is to be driven is worth discussing. Indeed, most
steering linkages are driven by means of a sliding joint, which is actuated by means of a worm-gear
transmission [18]. In our case, however, the most appropriate mode of driving is via a revolute joint.
If we assume that the steering linkage lies in a horizontal plane, then the input revolute has a vertical
axis, to be driven by the steering wheel, whose axis is inclined with respect to the vertical. Here, a
bevel-gear transmission would be the obvious means of driving; however, bevel gears, like any other
gears, entail friction losses, backlash and a low load-carrying capacity. For this reason we propose as
a viable alternative a spherical four-bar linkage that produces, within the desired range of motion,
a speed reduction as uniform as possible, of N : 1, for an integer N. The remaining question to
answer here is what value to assign to this integer. If we tlnnk of the bevel-gear transmission, then
a reasonable value of N would he 2, which is what we use in this paper. Tests have to be conducted
to validate this choice. Should a larger value of N he needed, this can he accommodated with
a spherical four-bar linkage, hut it would be extremely difficult to do so with a simple bevel-gear
train. We propose in the paper a method to determine the suitable input-output pairs needed to



synthesize the spherical four—bar linkage, whose geometry (angles between neighbouring axes) is then

determined via a least-square procedure as well.

2 Kinematic Synthesis of the Steering Four-Bar Linkage

Within the kinematic synthesis of a steering four-bar linkage, there is not really an input and an
output link, but the two links must move in a coordinated fashion so as to comply with the steer?Tig
condthon. 1nder this condition. the two wheel—carrying links are required to move in such a way that

the two axes of the wheels. £ and M. of Fig. 1. intersect the rear axis Al of the vehicle. Therefore.
these two links, although remaining close to parallel upon steering, rotate about their vertical axes
by differing angles. While this difference is relatively small, it is large enough to warrant careful
consideration when designing the mechanism. Moreover, a steering four-bar linkage is required to be
symmetric since it turns the vehicle both right and left.

Figure 1: The wheel-steering condition

Figure 1, based on one given in [6], depicts the configuration of the wheels under a left turn.
According with the steering condition, the axes of the two wheels must intersect the rear axis at a
common point I. From that figure, the steering condition is readily obtained. Indeed, from triangles
ME and DIE, we have
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which is the steering condition sought.



2.1 The Set of Equations for Steering-Linkage Synthesis

The steering condition of eq. 2) is numerically unsuitable because it includes variables that can attain

unbounded values. A numerically more convenient form of tins condition will be derived. To this

end, we redraw Fig. 1 in a more convenient form, in Fig. 2. with the purpose of deriving later the

input-output equation of the steering four—bar linkage in a more familiar layout.
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Figure 2: Notation on the steering condition

Now we write the steering condition in terms of angles cii and ci2, illustrated in Figs. I and 2,

thus obtaining
sin(ci2

—

— psin sin ci2 = 0 (3a)

with parameter p defined as

p (3b)

Equation (3a) is numerically better behaved than eq.(2), for it is expressed in terms of quantities

that vary between —1 and +1. Moreover, the input-output equation of the four-bar linkage at hand

is written in the standard form of the Freudenstein equation [19], in terms of angles o and o,

indicated in Fig. 3. This equation is

k1 +k9cosa2 —k3cosa1 = cos(ai — a2) (4)

where k1, k2, and k3 are dimensionless parameters defined as

2 2 2 2
— a1 + a2 — a3 + a4 — a1 — a1

k2=—, k3=— (a)
2a2a4 a2 a4

Note that we have a2 = 04, and hence, when the vehicle travels along a straight course, the mid

planes of the two front wheels remain parallel. This leads to = 0 when 2 = 0, while eq.(4) leads

to
= — 202 sin ,3 (6)

Further. we use the relation between a1 and a2 with Q: and Q2. which is apparent from Fig. 3b:

a1 =n/2—(3+Qi). a2 /2+(3—ó2) (7)
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Figure 3: Four-bar linkage with the standard Freudenstein notation in (a) a straight-course configu
ration; (b) an arbitrary configuration

Now, let x and y be the nondimensional coordinates of point B of Fig. 3b, i.e.,

x = sin/3 -sin/3 (8a)

y = cos /3 E -- cos /3 (8b)
a1

It is apparent from Fig. 3 that neither x = 0 nor y = 0 can be accepted as viable solutions. Indeed, if
y = 0, then /3 = 900, which, in the presence of a symmetric linkage, produces a parallelogram, whose
input and output links sweep identical angles, and cannot, therefore, generate the steering condition.
If, in turn, x = 0, then the linkage becomes a structure, with all its joint centres aligned.

In light of definitions (8a) and (8b), the Freudenstein equation becomes

f(& 2, Y) Ax2 — Ay2 + Bx + Cy + Dxy = 0 (9a)

where

A 1 — cos(cbi
—

B 2 — cos(g11)— cos(52)

C sin(q12)— sin(i), D E 2sin(q1 — q52) (9b)

Thus, the new Freudenstein equation includes only two geometric parameters, /3 and k2 or,
correspondingly, x and y, which are to be determined so as to produce the relation between angles

& and 112 given by the steering condition. By virtue of the number of linkage parameters, however,
the symmetric four-bar linkage at hand cannot meet exactly the steering condition (3a) at more than
two pairs of (&, t/2) values. This linkage, however, can approximate more than two pairs of those
values with a minimum error if /3 and k2 or, equivalently x and y, are chosen appropriately. We then
formulate the synthesis task under discussion as an optimization problem:

in
zf2 - mm (lOa)

where f denotes function f(1, 2; x. y). defined in eq.(9a), when evaluated at the ith pair of (, 2)

values, and n is the number of such pairs. i.e.,

i=1,2,...,n (lOb)



with A, B, and C, defined as the values attained by .4. B, and C. respectively, at the ith pair of

(Qi. 2) values.
In order to minimize . we obtain the normality conditions of the unconstrained minimization

problem of eq.(lOa). i.e..

=f1(24i’ - B, ± Dy) = 0 (ha)

= (—2Ay + + D’x) = 0 (hlb)

It should be noted that the normality conditions are notorious for their ill—conditioned behaviour

[20], and hence, unsuitable for a purely numerical approach; however, we will not pursue here such

an approach. Instead, we will resort to elimination procedures, whereby the normality conditions

offer the advantage of providing all possible solutions. By the same token, a numerical solution of

Problem (lOa) yields only one local minimum at a time, the global minimum never being guaranteed.

Also note that, f, is quadratic in x and y, the two foregoing conditions thus being cubic in x and y,

and hence, can be expressed as

p1X3 +pX2 P3’+P4 = 0 (12)

q1x3 + q2i2 + q3x + q4 = 0 (13)

where p1 and q1 are constant, all other coefficients being polynomials in y, with P2 and q2 linear, p

and q3 quadratic, and p4 and q4 cubic.

2.2 Monovariate Polynomial

In order to solve eqs.(12) and (13) for x and y we eliminate one unknown from the above two

equations, thus deriving a single monovariate polynomial in y whose roots yield all solutions. We

aim here at eliminating .x. To this end. we multiply the two normality conditions first by x and then

by x2, thereby producing four additional polynomial equations, which, together with eqs.(12) and

(13), yield six linear homogeneous equations in [xm, x4, x3 z2, , 11T, i.e.,

P1 P2 P3 P4 0 0 .x5 0

q1 q2 q3 q4 0 0 x4 0
0 Pm P2 P3 P4 0 x3 — 0
0 q1 q2 q3 q1 0 2

— 0
(14)

0 0 Pm P2 P3 P4 I 0
0 0 qi q2 q3 q4 1 0

Obviously, the solution sought cannot be trivial, for the last component of the unknown vector

is unity. The condition for a nontrivial solution to exist is that the determinant of tile coefficient

matrix he zero. Upon expansion. the determinant turns out to he nomc in y. namely.

g(y8 +r7g’ + r6y6 +r5g ± r4y4 +r3y3 + r2y2 + rij + ro) = 0 (15)

where coefficients {Tk} are constant. Moreover, notice that the solution ,y = 0 was already found

unacceptable, and hence, the above nonic equation reduces to an octic equation, i.e.,

y8 + r7y7 +r6y +r5g5 +r4y4 +r3y3 +r2y2 + r1y + ro = 0 (16)



2.3 Solution Procedure

After solving for y from the foregoing equation and substituting it into eq.(14). we obtain a linear
system of equations in the powers of x, which thus ields one unique value of this variable for each
of the roots of eq(i6). With x and y known, we obtain k2 and d:

k) =

_____.

= arctan (17)
- xJ

Moreover, once a has been decided on, based on the space available. 2 03 and o. are determined

= 04 = a3 = a — 2a.2cos(3) (18)

thereby completing the synthesis procedure.

2.4 Numerical Examples

We illustrate the foregoing procedure with two examples taken from the literature, for comparison
purposes.

2.4.1 Dudià’s Linkage [9]

Let vary from —40.0° to 30.89°, qS2 varying correspondingly from —30.89° to 40.0°, with n = 40,
and all 40 points uniformly spaced along the axis. Moreover, we set p = 0.46, as in [9], and set
a1 = 1 rn. Equations (12) and (13) become now, with six decimals displayed,

O.153878x3+ (8.964945 + 7.44537y)x2± (—2O9.385578y + 86.606y2+ 123.884916)x

—2.48179y3+ 44.78l54y— 34.551135y2= 0
2.48179x3+ (—104.691 + 81.60599y)x2+ (—69.l0227y— 7.44537y2+ 44.78154)x

+0.153878y3+l6.2788567y+ 3.177492y2 0

In pursuing the monovariate polynomial approach, eq.(16) becomes, with only four decimals dis
played,

—0.0008y8+ 0.0084y7— + 0.1069y5— 0.1858y4

+0.2130y3— 0.159y2+ 0.O7l6y — 0.0149 = 0

Upon solving the foregoing equation for y, we obtain four real roots:

= 1.9117, Th = 1.5131. ?J3 = 1.2568, y = 1.166

which are all nondimensional. Now, we substitute the foregoing values of y into eq.(14), thereby
obtaining, correspondingly, four real solutions for x:

= 1.2373, x2 = 1.9272, x3 = 3.5746, z = 0.4992



Table 1: Geometrical Parameters of the Linkages

linkage i (m) 2, a4 (rn) 03 (in) 3 erms(degree)

1 1.0 2.2771 ].4745 32.91° 0.17

2 1.0 2.4502 2.8543 51.86° 0.08

3 1.0 3.7891 6.1491 70.63° 0.01

1 1.0 1.2681 0.0016 23.767° *

We thus find four possible linkages producing the steering condition with locally—minimum er

ror. Shown in Table 1 are the geometric parameters of these linkages, using a 1 in. with the

corresponding root-mean square error rms

However, only the first three of the above solutions are acceptable, the fourth solution giving an

extremely short coupler link, which yields virtually a triangle, rather than a quadrilateral. For this

reason, the corresponding root-mean square error has not been computed, the associated entry in

Table 1 being filled with an asterisk. Shown in Fig. 4 are the plots of the error distributions of the

corresponding linkages. These have better error distributions and smaller maximum errors over the

whole steering motion than the linkage obtained by Dudiä et al., as shown in Fig. 5. It should be

noted that a3 has negative length in this example. From the definition of eq.(6), this means that the

two links AB and CD are crossed when the four-bar linkage is in its first position. A discussion on

how to deal with negative values of a2 or 04 in the context of linkage synthesis for function generation

is available in [19].

2.4.2 Fahey and Houston’s Linkage [2]

The second example is that studied by Fahey and Huston [2], in which p = 0.6 and the full motion

range is [—61°, 4 1°]. Following the procedure proposed here, we obtain four real solutions as well. The

error plot of the globally-optimum solution is shown in Fig. 6. The result shows that the maximum

structural error is 0.7° over the range [—60°, 0], which is much smaller than that obtained by Fahey

and Huston. of 2.93°.

3 Replacement of the Four-Bar Linkage with Its Focal Six-

Bar Equivalent

Although the four-bar steering linkage obtained above satisfies the steering condition with high

accuracy, its large dimensional unbalance (its largest link is more than six times longer than its

shortest link) makes it unsuitable for practical applications. As an alternative, a kinematically

equivalent six-bar linkage is derived below from the four-bar linkage, with a better dimensional

balance.

3.1 A Four-Bar Linkage and Its Focal Six-Bar Equivalent

Shown in Fig. 7 are a four-bar linkage ABCD and its focal six-bar equivalent, APFSDQF, in which

a1 and a2 stand for the angular displacements of links AB and CD. In order to let links AP and
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Figure 4: The error plots for linkages 1, 2 and 3 of Table I

DQ of the six-bar linkage undergo the same angular displacements as AB and CD, respectively, the
conditions shown below must be observed [17]:

ab a b a2+b2—c2+d2
(19a)

mn + pq m n m2 + n2
—

p2 — q2 + d2

and
S mp

(19b)
(d—s) nq

When the dimensions a, b, c, and d of the four-bar linkage are given and a point S is chosen along
line AD, a distance s from point A, we can reduce eqs.(19a) and (19b) to a quadratic equation in A.
With A known, we can calculate ni, n, p, and q by means of eq.(19a) and

2 — m2n2(p2+ q2) + (m2 +n2)p2q2+ mnpq(m2+ n2 +p2 + q2 — d2)
20T

— (mp+nq)2 ( )
For the first example, a = b = 2.4502, c = 2.8543, and d = 1, with all lengths given in meter;

taking s = 0.5 m, we have, for A = 15.2971, m n = 0.1602 m, p = q = 0.6056 m and r = 0.3774 m
for the focal six-bar linkage, as shown in Fig. 8, whereby it is apparent that the focal six-bar linkage
is dimensionally better balanced than the original four-bar linkage.

3.2 General Form of the Focal Six-Bar Linkage

With reference to Fig. 9, it is possible to change the position of the fixed joint S of link SF to 5’ by
a combination of stretching and rotation of segment AS. This transformation can be obtained, e.g.,
as

[AS’ j{=LjjASj (21)

s’=#R(s—a)+a (22)



6

5[

4.-

0 JO

i9j (degree)

Figure 5: The error plot of the linkage obtained by Dudiça et al. [9]

where R is a rotation matrix through an angle and p is a stretching factor. Then, the original

six-bar linkage APFSDQF can be transformed into the general AP’F’F”Q’BS’ linkage. To this

end, the condition below must be satisfied [1,16]:

APFS AP’F’S’ and BQFS BQ’F”S’ (23)

so that the input-output relation between (AP. DQ) and (AP’, DQ’) remains unchanged. When p

and p are given, the general six-bar linkage can be obtained from the position vectors s’, p’, f’, q’
and f”, of points S’, P’, F’, Q’ and F”, respectively, which are given below:

s’ = jtR(s — a) + a (24)

p’=pR(p—a)+a (25)

f’=pR(f—a)+a (26)

II S’D H
11= (27)

H SD

q’=nS(q—d)+d (28)

= vS(f — d) + d (29)

where S is a rotation matrix through an angle When requiring point 5” to he located on the

perpendicular bisector of A’D and S’F’ = S’F” = F’F”, we can choose pi = 30° to do so.

3.3 Transmission Quality

In Subsection 3.1. when a different s is chosen, different focal six-bar linkages are obtained, with

different transmission indices, and SF as driving link. The transmission index was introduced by
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Figure 6: The error curve for the global optimum of the second example

Figure 7: Four-bar linkage and its focal six-bar equivalent

Sutherland and Roth [21] as a generalization of the concept of transmission angle. In the case of

planar four-bar linkages, the transmission index reduces to the sine of the transmission angle. Just

like the transmission angle, which varies with the configuration of the linkage, the transmission index

is also configuration-dependent. A global performance index measuring the goodness of the force-

and-motion transmission of the linkage, is the transmission quality [22]. which is defined in terms of

Sutherland and Roths transmission index.
In Fig. 10. we distinguish two four-bar linkages with a common input link. SF. of output links

AP and DQ. In that figure, link SF is shown in its two extreme positions sweeping the whole range
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Figure 8: (a) Steering linkage and (b) its focal equivalent
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of motion. SF1 and SF-. Links .4P and DQ are displayed ni their corresponding extreme positions.

AP1 and lP2 for the former. DQ1 arid DQ2 for the latter. The input angle is indicated likewise,

for its two extreme values. “
and 2’ The transmission angle i’ of the left four—bar linkage of Fig. 10

is known to be FP.-1. while its right counterpart. Pr = — p. is _FQD. Let Qi and Qr stand for

the transmission quality of the left and right linkages, respectively, i.e.,

= 2 .i:’ sin2jt1d. T =
1

/‘ sin2j1d

The plot of the transmission quality of any of the two linkages is shown in Fig. 11 vs. parameter

s. defined in Fig. ‘7. It is apparent from tins plot that a maximum value of the transmission quality.

of Q = Qr = 0.83, occurs at $ = 0.5, a result that should be expected by symmetry. Hence, in order

to achieve a maximum transmission quality, link SF should he anchored onto the vehicle chassis

halfway between the anchor points of the two output links AP and DQ.

Because of condition (23), the general focal six-bar linkage and its original counterpart have both

the same transmission quality.

4 The Synthesis of a Spherical Four-Bar Linkage Coupling

the Steering Wheel with the Steering Mechanism

Steering linkages are driven by the rotation of the steering wheel using a mechanical transmission

that is based, in most cases, on a worm gear [18]. This transmission is suitable to the current design

of steering linkages, but would not be suitable to our proposed design. Since the driving link of our

design. henceforth referred to as the driving link for brevity, is coupled to the vehicle chassis via a

revolute joint, the most suitable transmission in this case is one that transmits force and motion from

the steering wheel, whose axis is inclined with respect to the vertical by an angle directly, to the

(30)

Y

p

p
2 S

A(O)

\

D X

\ /

F F
1 2

Figure 10: The limit positions of link AP of the focal six-bar linkage
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Figure 11: Transmission quality of the steering linkage as a function of parameter s of Fig. 7

driving link of the steering linkage, whose axis can be assumed to be vertical. Furthermore, the axis

of the steering wheel is offset from the vehicle midplane. while the axis of the driving link is located

in this plane. The offset can be compensated for by means of a double universal joint, and hence,

we can safely assume that the input motion to the steering linkage is provided via a shaft of axis

intersecting that of the driving link at the above-mentioned angle . The obvious transmission, then,

is apparently a spherical four-bar linkage. The balance of this section is devoted to the synthesis of

this linkage.

4.1 Description of the Vehicle Rotation

The spherical linkage of interest will be synthesized as a function generator [19], which requires a set

of input-output pairs of values that the linkage is to meet. In order to define the input-output pairs.

it will prove convenient to derive a relation between the curvature of the vehicle trajectory and the

steering angle &.
The radius R of the circular trajectory traced by the vehicle upon turning is often used to indicate

the extent of the vehicle rotation. From Fig. 2, R can be found to be

R=
a

—
(31)

tan1 2

with being positive when the vehicle turns to the right and negative otherwise. the same holding

for R. When o tends to 0, R tends to infinity and, hence R(o1) becomes discontinuous. For this

reason, we prefer to use the curvature i of the above trajectory, which is the reciprocal of R, i.e.,

2a — btan

2tanth1
(32)

a function of 1i that remains continuous in the interval [h1, K2], where

K1
—

K(1). K2 = K(Q)



with t and o defined as the two extreme values of o: in our case. = —40 and O =3l.l9i8.

Shown in Fig. 12 is a plot of vs. i. which was obtained using ecj. (32).

Q,4

..Z.

-03-02 1 0 01

Figure 12: Angle & vs. curvature i, in in

4.2 Input-Output Function of the Spherical Four-Bar Linkage

A spherical four-har linkage is shown in Fig. 13, in which TW is the fixed link; TU the input link,
whose motion is identical to that of the steering wheel; and VW the output link, connected rigidly
to FS of the steering six-bar linkage. The positions for the input and output links are defined by

o + t9 and 70 + y, respectively. For proper steering, the curvature must be proportional to the input
angle, i.e.,

k = k9 (33)

where k is a scaling factor. Therefore, when k and k are given, the input displacement t9 can be
obtained from eq.(33). The output displacement ‘y, in turn, is obtained by imposing an input-output
relation. We would like to provide a uniform transmission ratio throughout the given motion range.
Additionally, a torque amplification is required, which we obtain by requiring that the transmission
ratio be of 2:1, but other transmission ratios can be accommodated, as needed. For a value of
k = 0.4313, the plot of vs. 9 is shown in Fig. 14.

We discuss below the synthesis of the spherical linkage using an optimization approach.

4.3 Linkage Optimization

The input-output function of a spherical four-bar linkage is known to he [23]

F(9. ‘y) k1 + k2 cos(9o + ?9) + k3 cos(i90 + i9) cos(70 + 7)
—k4 cos(70 + 7) + sin(70 +7) sin(o + ) = 0 (34)
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Figure 13: The spherical four-bar linkage

where
cos a1 cos cos (4 — COS a3

sin a2 Sill ()4

Sill a1 cos a4
—

Sill a4
k3 = cos a1

sin cos a2
sin a2

In synthesizing the spherical linkage, we assume that the steering six-bar linkage lies in a horizontal

plane and that the axis of the steering-wheel axle makes 45° with the vertical. Hence a1 = 45°, the

optimization procedure thus consisting of determining a2, a3 and a4 that produce a linkage meeting

a set of input-output pairs with a minimum error. We aim at the minimization of the Euclidean

norm of the design error over a rich set of input-output pans, namely

in
Z E F2 111111 (3s)

2

where
= F(t9,7) (36)

and {(i9, j)} is a set of n points along the input-output function F(’z9, ‘) of eq.(34) and displayed

in Fig. 14. When r90 and are known, the foregoing minimization reduces to solving a linear least-

square problem. For example, with r90 = 50° and 7o = —80°, we specify 40 pairs of equally-spaced

input-output values {(i9. ‘j)}0. The results of the optinuzation are shown in Table 2.

In the optimization procedure we impose the condition that the input link be a crank. This can

he readily done upon recalling the mobility criteria derived by Zheng and Angeles [231:

(k2 + k1)2 — (k — k <0. (k2 — k1)2 — (k3 + Ic4)2 <0

The transmission quality of the synthesized linkage is 0.9642, which is quite acceptable. the error

7des — 7gen being plotted in Fig. 15.
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Figure 14: The input-output function of the spherical four-bar linkage

Table 2: Optimum linkage with io = 500 and yo = —80°

k2 k3 k4 ü U2 U3 U4

0.1334 2.0196 0.7071 4.4809 45° 8.9675° 49.2807° 19.2961°

Now. we regard LI0 and Yo as additional design variables to minimize the sum of the squares of the
structural error at the given input values. The optimum results are LI0 = —1.4825°, Yo = —92.554°,
the other parameters being shown in Table 3. The output link of the second linkage turns out to be
a crank as well, with a transmission quality of 0.7689, which is still acceptable, while the error plot is

shown in Fig. 16. Note that the second linkage offers an error which is one order of magnitude smaller

Table 3: Spherical linkage with optimum values of t90 and ‘y

k k2 Ic3 Ic4 U1 U2 U3 U4

L-0.0991 0.0037 0.7071 2.2652 45° 17.3366° 88.1041° 89.6981°

than that of the first one. However, this is done at the expense of a lower transmission quality. In
practice. such a small error is futile, for the tight tolerances required to implement it increases the
production costs. However, the transmission quality impacts 011 the life span of the mechanism. and
hence. becomes a more relevant performance index. In summary. the first linkage is preferred over
the second one.
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Figure 15: Error plot of the linkage of Table 3

5 Conclusions

A computational-kinematics approach was introduced to synthesize a steering four-bar linkage. The
objective of this approach is to minimize the root-mean square value of the design error in the
steering condition. ‘We acknowledge that the minimization of the design error is not equivalent to
that of the structural error. Nevertheless, we invoke a recent result indicating that the two errors
become closer to each other as the cardinalitv of the data set of prescribed input-output pairs in
the synthesis of function generators increases. By means of an elimination procedure. a polynomial
equation in one unknown is derived from the associated normality condition, from which all local
optima are computed and, hence, the global optimum can he readily found. Moreover, we synthesize
a kinematically-equivalent six-bar focal mechanism, to replace the steering four-bar linkage, which
turns out to show an unacceptable dimensional unbalance. The six-bar equivalent linkage shows
much better-balanced dimensions. Finally, we propose an optimum spherical four-bar linkage to
couple the steering-wheel axle with the steering mechanism. In fact, two candidate mechanisms are
obtained, with slightly different performances. Based on practical considerations, the mechanism
with the higher transmission quality, if with a lower accuracy, is preferred.
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