
Proceedings of the ASME 2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2010
August 15-18, 2010, Montreal, Quebec, Canada

DETC2010-28189

A ROBUST SOLUTION OF THE SPHERICAL BURMESTER PROBLEM

Jorge Angeles
Department of Mechanical Engineering

McGill University, Montreal, Canada
e-mail: angeles@cim.mcgill.ca

Shaoping Bai∗
Department of Mechanical and Manufacturing Engineering

Aalborg University, Denmark
e-mail: shb@me.aau.dk

ABSTRACT
The problem of spherical four-bar linkage synthesis is re-

visited in this paper. The work is aimed at developing a robust
synthesis method by taking into account both the formulation
and the solution method. In addition, the synthesis of link-
ages with spherical prismatic joints is considered by treating
them as a special case of the linkages under study. A two-step
synthesis method is developed, which sequentially deals with
equation-solving by a semigraphical approach and branching-
detection. Examples are included to demonstrate the proposed
method.

1 Introduction
The synthesis of spherical four-bar linkages is a clas-

sic problem that has been extensively studied in the litera-
ture [1–4]. This paper focuses on the problem of motion syn-
thesis, a.k.a. synthesis for rigid-body guidance, whereby a dis-
crete set of orientations is to be visited by the coupler link of a
spherical four-bar linkage. This problem is also known as the
Spherical Burmester Problem.

Essentially, the synthesis of spherical four-bar linkages
leads to a system of trigonometric equations. Different solu-
tion methods have been reported in the literature on the sub-
ject. A method to robustly select intermediate orientations for
motion generators was proposed by Widyan and Angeles [5].
The kinematic mapping was applied to the synthesis problem,
as reported by Brunnthaler et al. [6].

To some extent, the spherical Burmester problem can be

∗Address all correspondence to this author.

considered as an extension of the classic planar Burmester
problem and hence, paraphrasing Burmester [7], stated as ‘Are
there any spherical four-bar mechanisms whose coupler link
can visit four or five prescribed orientations ?’ The solution of
the synthesis problem hinges on two issues: the formulation
of the problem and its solution. We emphasize robustness in
both the formulation and the solution. The formulation must
be general and include particular cases, i.e., cases with Ball
points.

In this paper, we aim to develop a comprehensive synthe-
sis method by addressing the robustness of both the formu-
lation and the solution method. A semigraphical approach is
adopted, which eases the detection of real solutions. In this
method, the synthesis equations are converted into a system
of bi-variate equations, and hence, can be readily visualized.
Upon identification of the real solutions, a numerical solver is
adopted for the accurate calculation of the solutions. This ap-
proach has been applied by the authors to the planar Burmester
problem. The work reported here is a natural extension of the
authors’ previous work [8].

2 Problem Formulation
The spherical four-bar linkage under study is depicted

in Fig. 1, with its four linkage dimensions
�

α j
	4

1. The two
grounded revolutes are labelled B and B∗, the points at which
their axes intersect the unit sphere, the two moving revolutes
A and A?, the points at which their axes intersect the same
sphere. Let the reference positions of the moving revolutes
be A0 and A?

0, the linkage then being fully defined by the two
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FIGURE 1. The spherical 4R linkage

dyads BA0 and B?A?
0. By analogy with the planar Burmester

problem, points B and B? are called centerpoints, while A0 and
A?

0 circlepoints. As the coupler link moves, while visiting the
m given attitudes of the coupler link, the circlepoint, which is
common to both the grounded link õBA and the coupler link, at-
tains positions A1, . . . , Am, the segments along the axis of the
moving revolute of the dyad thus becoming OA1, . . . , OAm, as
shown in Fig. 2. The axes of the revolutes of one dyad are thus
given by the segments OB and OA0; the position vectors of B
and A0 are b and a0, both of unit magnitude, i.e.,

‖b‖= 1, ‖a0‖= 1 (1)

Likewise, the position vectors of points B? and A?
0 are denoted

by the unit vectors b? and a?
0. With the foregoing model, the

spherical Burmester problem is stated as:

Find a spherical four-bar linkage that will conduct
its coupler link through a set S of m attitudes given
by the orthogonal matrices

�
Q j
	m

1 , defined with re-
spect to a reference attitude given by Q0 = 1, where
1 denotes the 3×3 identity matrix.

3 Synthesis with m Prescribed Poses
For dyad BA0, by virtue of the link rigidity, the angle be-

tween OA j and OB remains constant. The synthesis equation
is thus obtained upon imposing this geometric constraint, i.e.,

aT
j b = aT

0 b or (a j−a0)T b = 0, j = 1, . . . , m (2)

where, apparently,

a j = Q ja0 (3)

whence conditions (2) become

aT
0 (QT

j −1)b = 0, j = 1, . . . , m (4)
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FIGURE 2. A spherical dyad and the conic surface formed by the
moving axis OA

In order to ease the ensuing discussion, let

c j ≡ (Q j−1)a0 (5)

Equation (4) then taking the form

cT
j b = 0, j = 1, . . . , m (6)

Geometrically, Eq. (6) states that vector b is perpendicu-
lar to any vector c j. Referring to Fig. 2, this means that seg-
ment OB is perpendicular to segments A0A j, j = 1, . . . ,m.

Note that the rotation matrices Q j admit various param-
eterizations, the one adopted here is in terms of the natural
invariants of the rotation [9]. An expression for the rotation
matrix Q j takes the form

Q j = 1+ s jE j +(1− c j)E2
j , c j ≡ cosφ j, s j ≡ sinφ j (7)

where E j denotes the cross-product matrix (CPM) of e j, the
unit vector that defines the direction of the axis of rotation of
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Q j, and φ j the corresponding angle. That is,

E j = CPM(e j)≡ ∂ (e j×v)
∂v

(8)

for any v ∈ R3. Hence,

Q j−1 = [s j1+(1− c j)E j]E j (9)

Therefore, Eq.(4) becomes

aT
0 E j[s j1− (1− c j)E j]b = 0, j = 1, . . . ,m (10)

which is the synthesis equation of the problem at hand. Its
solution for various values of m is discussed below.

3.1 Three Poses
In this case, m = 2, i.e., two constraint equations occur:

cT
1 b = 0, and cT

2 b = 0 (11)

Hence, one of the two vectors a0 and b can be prescribed ar-
bitrarily. If, for example, the former is prescribed, then c1 and
c2 are known. The conditions of Eq. (11) are thus verified for
b defined as the unit vector derived from the cross product of
the two other vectors in the above equations, i.e.,

b =
c1× c2

‖c1× c2‖ (12)

A similar reasoning, with obvious modifications, follows
if b is prescribed.

3.2 Four Poses
Now we have m = 3, the constraints being

cT
1 b = 0, cT

2 b = 0 and cT
3 b = 0 (13)

In order to be able to find a vector b simultaneously per-
pendicular to all three vectors c j in the above equation, these
three vectors must be coplanar, and hence,

F(a0)≡ c1× c2 · c3 = 0 (14)

which is a product of three factors that are linearly homoge-
neous in a0, as per Eq. (5), and hence, it is cubic and homoge-
neous in a0. Equation (14) together with the first of equations

(1) constitutes the synthesis equations, which yield a spheri-
cal cubic curve on the unit sphere centered at the origin. Any
point on the curve represents a solution of a0. In light of this,
we call the curve the circlepoint curve. This curve is, in fact,
the generatrix of a cubic conical surface K of apex O.

By a similar reasoning, the centerpoint conical surface
M and the centerpoint curve are obtained likewise. Any point
of the circlepoint curve gives one solution of the centerpoint
b.

3.3 Five Poses
For m = 4, the synthesis equations lead to a system of

four homogeneous bilinear equations in the unknown vectors
a0 and b. As these are three-dimensional vectors, the total
number of unknowns at hand is six, but then again, two addi-
tional equations are available, namely, Eqs. (1), and the prob-
lem is fully determined. The four homogeneous equations can
then be cast in the form2664 aT

0 E1[s11− (1− c1)E1]
aT

0 E2[s21− (1− c2)E2]
aT

0 E3[s31− (1− c3)E3]
aT

0 E4[s41− (1− c4)E4]

3775| {z }
≡C

b = 04 (15)

in which C is a 4×3 matrix. In light of the second of equations
(1), moreover, the trivial solution of eqs.(15) is not acceptable,
and hence, C must be rank-deficient, i.e., its three columns
must be linearly dependent. This happens if and only if the
four independent 3×3 determinants obtained by taking three
rows of C at a time vanish. Let

∆ j(a0)≡ det(C j) = 0, j = 1, . . . , 4 (16)

with C j denoting the 3×3 matrix obtained from C upon delet-
ing its jth row. From Section 3.2 it is known that each of the
four determinants defines a conical cubic surface whose apex
is the origin. The common intersections of all four surfaces
are common elements of these surfaces; they are the multiple
moving-revolute axes that are capable of guiding the coupler
link through the five prescribed poses.

Likewise, surface equations for b can be formulated with

Da0 = 04 (17)

in which the 4×3 matrix D = [d1, . . . ,d4]T with d j = (QT
j −

1)b, j = 1, . . . ,4. Rank-deficiency of matrix D yields

∆ j(b)≡ det(D j) = 0, j = 1, . . . , 4 (18)

3 Copyright c© 2010 by ASME



with D j denoting the 3×3 matrix obtained from D upon delet-
ing its jth row.

The Bezout number of the four cubic equations (16) is
34 = 81. Ditto that of the four cubic equations (18). This
number is an overestimate of the actual number of possible
solutions, which is known to be six [3, 4].

As a consequence, the problem admits six, four, two
or zero circlepoint solutions. The same reasoning leads to
the conclusion that the problem also admits six, four, two
or zero centerpoint solutions. Therefore, the number of
possible dyads that solve the problem is six, four, two or
zero. Correspondingly, the number of spherical four-bar
linkages that can guide their coupler link through the five
given attitudes is the number of combinations of six, four, two
or none objects taking two at a time, i.e., 15, 6, 1 or 0.

4 Synthesis Method for Five Prescribed Attitudes
A synthesis method is developed based on the foregoing

principles underlying the spherical Burmester problem. To
this end, a semigraphical method is proposed, that filters out
the complex solutions.

4.1 A Semigraphical Approach to Equation Solving
We shall use spherical coordinates on the unit sphere,

namely, longitude and latitude. Let, then, ϑA and ϕA be the
longitude and the latitude of A0, ϑB and ϕB those of B. Hence,

a0 =

24 cosϕA cosϑA
cosϕA sinϑA

sinϕA

35 , b =

24 cosϕB cosϑB
cosϕB sinϑB

sinϕB

35 (19)

As the synthesis equation (4) is homogenous in a0, both
a0 and −a0 are solutions to the equation. On the other hand,
a0 and −a0 define the same axis of rotation from the point of
view of a mechanism. Due to this consideration, the ranges of
all spherical coordinates are specified as {ϕA,ϑA,ϕB,ϑB} ∈
[−π/2,π/2].

Now the four determinant equations (16) in a0 become
equations in the harmonic functions of ϕA and ϑA. To solve
all four equations robustly, the method used here to compute
all real solutions is based on a semigraphical approach: the
jth determinant equation (16) defines a contour C j in the ϕA-
ϑA plane. If the four contours are plotted in the rectangle
−π/2≤ ϕA ≤ π/2, −π/2≤ ϑA ≤ π/2, then the intersections
of the four contours yield all the real solutions sought. As
discussed in Section 3.3, there may exist six, four, two or zero
real solutions. In the case of zero solutions, no common inter-
section of the contours appears in the superimposed plots.

The intersections are estimated by inspection on the four
contours. These estimates can then further be used as initial
guesses in an iterative procedure to yield accurate solutions.
The method proposed here to compute the real solutions with
an accuracy much higher than their estimates relies on nonlin-
ear least-squares: the four equations (16) in the two unknowns
ϕA and ϑA can be regarded as an overdetermined system of
nonlinear equations. Its least-square approximation which, in
our case, is their solution, can be most robustly and efficiently
obtained with the Newton-Gauss method, as proposed in [10].

Following the same procedure for the computation of
a0, the solutions of b are found based on the contour equa-
tions (18), rather than on the linear homogenous equa-
tions (15), in order to avoid roundoff-error propagation.

4.2 Branching-detection
Spherical four-bar linkages, like their planar counterparts,

are known to be bimodal, which means that, for each value
of their input angle, they admit two assembly modes. Each
mode defines one solution branch of their input-output equa-
tion. The coupler link can thus visit attitudes that lie in one of
the two branches. If poses of the other branch are to be visited,
then the linkage must be disassembled and reassembled in the
alternative mode. Branching-defect in the realm of the spher-
ical Burmester problem occurs when the prescribed attitudes
lie in different branches of the synthesized linkage. In the
presence of four prescribed attitudes, linkages free of branch-
defect may be found because of the infinitely many solutions
available. In the case of five prescribed attitudes, a discrete set
of solutions is available, and hence, each must be verified for
branch-defect. If this occurs, then the only alternative to cope
with it is by means of a reformulation of the practical problem
at hand. If the problem allows for it, then one of the five poses
is to be varied, so as to yield a linkage free of branch-defect.

Branch-defect, or branching for brevity, can be detected
in planar four-bar linkages by means of the sign of the sine
of the transmission angle [11]. Given the analogy of the prop-
erties of the planar linkages with their spherical counterparts,
the same criterion applies to the latter. Branching-detection
then amounts to sign-detection in the case at hand.

The cosine of the transmission angle of spherical four-bar
linkages is known to be given by [4]

cos µ =
cosα3 cosα4− cosα1 cosα2− sinα1 sinα2 cosψ

sinα3 sinα4
(20)

Correspondingly, the sine of the transmission angle can be
found from unit vectors a,a? and b?, introduced in Fig. 1,
namely,

sin µ =‖ a×b ‖ /(‖ a ‖‖ b ‖) (21)
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where a = a− (a · a?)a? and b = b− (b · a?)a? with a =
Qa0, a? = Qa?

0. The sign of the sine of the transmission
angle is identical to the following expression

f (µ) = sign
�
(a×b) ·a?

�
(22)

5 Spherical Linkages with a P-joint
A spherical linkage may contain a slider moving on a

circular guide, similar to the planar crank-slider mechanism.
Hence, a spherical linkage may end up with a P-joint1, where
a slider can move along a guiding slot or a guide ring, as il-
lustrated in Example 3. If the guiding slot is fixed, it can be
uniquely determined by a unit vector. In turn, the circle is
formed by rotating a great arc of 90◦ about an axis parallel to
the unit vector. This axis passes through the origin and a point
called Ball center [3]. All points on the great circle are called
Ball points.

A spherical linkage with a P-joint is a special case of
the four-bar spherical linkage with α4 = 90◦. The foregoing
method of synthesis still applies, if with some modifications.
If the prescribed attitude leads to a linkage that admits a P-
joint, then the circle traced by the centerpoint A, or A? for that
matter, becomes a major circle. In this case, Eq. (2) becomes

bT Q ja0 = 0, j = 0, . . . , m (23)

which can be rewritten as

Ha0 = 0n (24)

where H is a n×3 matrix with n = m+1. Again, matrix H has
to be rank-deficient. This implies, for the four-pose synthesis
problem, that

det(Hi) = 0, i = 1, . . . ,4 (25)

the 3× 3 matrix Hi obtained by removing the ith row from
matrix H. In the case of five poses, Hi is obtained by deleting
the ith and (i+1)st rows from matrix H.

Following the semigraphical method described in Sec-
tion 4, we can find b, which is the unit vector defining the
P-joint. A similar procedure is applied if the P-joint is the one
associated with B(B?).

1A slider that moves on a circular guide was called a circular prismatic
joint in [12]. We call it simply a P-joint for brevity

TABLE 1. Five poses for Example 1

φ j[rad] eT [β1,β2,β3][deg]

0 [0,0,1] [0,0,0]

0.2034 [−0.0449,−0.5133,−0.8569] [−10.0,−6.0,0]

1.1957 [0.1827,0.7709,−0.6101] [−51.0,−52.0,−12.0]

1.1932 [0.5212,0.8414,−0.1422] [15.0,−56.0,47.0]

1.0512 [0.5384,0.8114,0.2271] [33.0,−40.0,47.0]

6 Examples
We include three examples to demonstrate the appli-

cation of the method proposed here. All example prob-
lems were solved with Maple. Maple’s least-square solver
LSSolve was used for the implementation of the Newton-
Gauss method.

6.1 Example 1: Five-Pose Synthesis
In this example, the design task is described by five poses

of the coupler link that are to be visited. As listed in Table 1,
the orientations are expressed in terms of natural invariants.
The corresponding attitude in terms of longitude, latitude and
roll angles, β1, β2 and β3, respectively, are also given in the
same table, with the purpose of helping the reader visualize
the prescribed attitudes.

Figure 3 shows the four contour plots derived from
Eq. (16). Four common intersections can be identified for both
a0 and b from the plots, which imply four sets of real solutions
for each vector. Based on the intersections, solutions of a0 and
b were obtained using Maple’s least-square solver LSSolve.
To match each solution for a0 and its corresponding solution
for b, the linear equations derived from a value of a0 are used:
for example, each solution of a0 is substituted into the synthe-
sis equation (4), which yields a system of m linear equations
in b. The values of b that verify the linear equations is the one
corresponding to the given value of a0. The matched solutions
are recorded in Table 2. Note that the results are also the solu-
tions of vectors a?

0 and b?. Six linkages, shown in Fig. 4, can
thus be generated from the four dyads.

Branching-detection on the six mechanism was con-
ducted with Eq. (22). Sign change of the sine of the transmis-
sion angle was found with mechanisms M3 and M4, which
indicates the presence of branch-defect in these two mecha-
nisms. The remaining mechanisms were found free of branch-
defect. Our mechanism animations further confirmed this
point. It was also found from animations that mechanisms
M1, M2 and M5 are of the crank-rocker type, while mecha-
nism M6 is of the double-rocker type.
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(a)

(b)

FIGURE 3. The four contours for Example 1 leading to four pos-
sible solutions: (a) for the moving axis, (b) for the fixed axis

TABLE 2. Solutions of Example 1

a0(or a?
0) b(or b?)

# 1 [0.7085,−.6418,−.2932] [0.2640,−.6636,−.6998]

# 2 [0.0385,0.3163,0.9478] [0.1143,0.7263,−.6777]

# 3 [0.1642,0.6977,0.6972] [0.5218,0.8413,−.1403]

# 4 [0.8077,0.1493,0.5702] [0.9524,−.2535,0.1686]

6.2 Example 2: Synthesis with Four Poses

In the case of four-pose synthesis, there are infinitively
many solutions available, represented by the circlepoint and
centerpoint curves. Taking the first four poses of Example 1,
the circlepoint conical surface K was obtained for unit vector

(a) M1: 1+2 (b) M2: 1+3

(c) M3: 1+4 (d) M4: 2+3

(e) M5: 2+4 (f) M6: 3+4

FIGURE 4. Six synthesized mechanisms shown together with all
task orientations in yellow. The frames in red show the orientations
of the coupler, while solid dots show some traces of the origin of this
frame. Index 1+2 stands for a mechanism generated from the #1 and
#2 solutions, and so on.

a0 = [x,y,z]T as

F(a0)=−0.01766x3 +0.03116x2y+0.04156x2z+0.02939xy2

+0.08747xyz−0.06021xz2−0.01747y3−0.02155y2z

+0.02673yz2−0.00482z3 (26)
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Likewise, the centerpoint conical surface M was obtained for
unit vector b = [u,v,w]T as

F(b)=0.01678u3 +0.05157u2v+0.01743u2w−0.04005uv2

+0.02803uvw−0.05074uw2−0.00259v3−0.05317v2w

−0.00933vw2 +0.02762w3 (27)

The corresponding circlepoint and centerpoint curves are
shown in Fig. 5. One of the two curves can be used to select
two points. For example, we can select two centerpoints from
the centerpoint curve. The corresponding circlepoints are then
found form the intersection of the circlepoint curve with the
three planes derived from linear equations (13). Apparently,
infinitely many dyads are capable of visiting the prescribed
orientations.
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FIGURE 5. Four-pose synthesis curves on the unit sphere, (a) the
circlepoint curve and (b) the centerpoint curve

6.3 Example 3: Synthesis with a P-joint
In this example, the five prescribed attitudes are listed in

Table 3. These attitudes, involve displacement, c1, . . . ,c4 that
are coplanar, and hence, admit one fixed P-joint. We deter-
mine first the dyad comprising one P-joint. By using Eq. (25),
contours of four determinant equations are plotted in Fig. 6.
It is seen that there is only one solution {ϑa,ϕa}. The corre-
sponding unit vector b? is thus obtained, followed by the unit
vector a0. For the remaining dyad consisting of two R-joints,
four solutions are found with a procedure similar to that of
Example 1. Of the four solutions of a0 and b, one is identical
to the solution of a?

0 and b?. In other words, solutions of the
dyad containing one P-joint are a special case of the general
spherical R-R dyad. All results are listed in Table 4.

Altogether, there are three possible mechanisms contain-
ing one P-joint for the given solutions. One synthesized mech-
anism is shown in Fig. 7, which is a branching-free mecha-
nism, as made apparent by animations.

TABLE 3. Five poses for Example 3

φ j[rad] eT [β1,β2,β3][deg]

0 [0,0,1] [0,0,0]

0.2563 [−0.2280,−0.4553,−0.8606] [−12.5,7.0,−2.6]

1.1307 [−0.0578,0.2370,−0.9697] [−64.2,−10.5,−10.8]

1.1938 [0.5049,0.8505,−0.1468] [14.3,−56.9,45.6]

1.3665 [0.7119,0.6601,0.2393] [45.1,−30.7,73.2]

TABLE 4. Solutions of Example 3

a0 b

# 1 [0.2845,0.3863,0.8773] [0.1219,−.7089,−.6946]

# 2 [0.7226,0.5295,0.4442] [0.2309,0.4566,0.8591]

# 3 [0.9573,−.2433,0.1555] [0.8134,0.1643,0.5579]

a?
0 b?

# 4 [0.5221,0.8442,−.1208] [0.0655,0.1015,0.9926]

FIGURE 6. Contour plot to find position vectors for the unit vector
of the P-joint.

7 Discussion and Conclusions
In this paper, the spherical Burmester problem was re-

visited with the intent of formulating not only a robust set of
synthesis equations but also a robust solution of the equations
thus resulting. Both are considered essential for mechanism
synthesis.

The synthesis equations were formulated in the space of
two independent angles, longitude and latitude, which led, for
five prescribed poses, to a system of four overdetermined non-
linear equations in two unknowns. A semigraphical approach
led to a visual estimation of the real solutions, which were then
used as initial guesses to a Newton-Gauss procedure. The for-
mulation is robust in that it is general enough, to account for
the existence of spherical prismatic joints. Robustness in the
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FIGURE 7. One synthesized mechanism with a P-joint, showing
three link positions.

solution lies in the overdeterminency of the synthesis equa-
tions and the avoidance of roundoff-error propagation.

Branch-defect is detected by means of a sign-change in
the sine of the transmission angle. All tasks are incorporated
into one working platform developed on Maple, with the sem-
igraphical approach, which aids in the visualization of the syn-
thesis problem.
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