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An optimization scheme for four-bar function generators under mobility constraints,
which can be applied to both planar and spherical four bar linkages, is presented
in this paper. The design error, defined as the residual in the input-output equation,

McGill University. is minimized over the vector of linkage parameters. The mobility constraints, given
Montreal, Quebec, Canada H3A2KE as a set of inequalities, are converted into equalities by introducing slack variables.
The problem is thus formulated as an equality-constrained minimization problem,
which is then solved using the orthogonal-decomposition algorithm, an iterative
numerical method introduced elsewhere. To reduce the dimensional unbalance,
which often occurs in solving a synthesis problem, a penalty function is combined
with the original objective function, whose minimization leads to dimensionally
balanced linkages. A numerical example is included.

1 Introduction

The synthesis of four-bar function-generating linkages is a
classical topic in kinematics. The problem consists of finding
all the relevant parameters of a four-bar linkage that can pro-
duce a prescribed set of m input-output pairs {¢;, ¢;}1’, where
Y and ¢ denote the input and output variables, respectively,
as shown in Figs. 1 and 2. Let n be the number of independent
parameters required to define the four-bar linkage. For planar
linkages we have n = 3, while for spherical linkages n = 4.
The synthesis problem can be termed exact or approximate,
depending on the relationship between m and n. This paper
focuses on the approximate-synthesis problem, the exact syn-
thesis being regarded as a particular case of the former. Thus,
the approximate error needs to be established first. In this
context, two types of error are usually defined, namely design
error and structural error (Tinubu and Gupta, 1984). The for-
mer is based on the error residual in the input-output equation,
which was first proposed for planar linkages by Freudenstein
(1955) and was later extended to the spherical and spatial cases
by Hartenberg and Denavait (1964). The latter is defined as
the difference between the actual and the desired output angles
corresponding to an input angle. The two types of error are
related to each other as shown by Tinubu and Gupta (1984)
and Angeles (1989).

As far as the approximate synthesis of four-bar function
generators is concerned, intensive research work has been done
in the past. Freudenstein (1955) first proposed an algebraic
formulation for the approximate synthesis equation, which was
later used and extended by other researchers (Suh and Rad-
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Fig. 1 Planar RRRR four-bar linkage

Fig.2 Spherical RRRR four-bar linkage
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cliffe, 1967; Suh, 1968; Mohan Rao et al., 1973; Luck, 1976).
Wilde (1982, 1983) applied error linearization techniques for
the synthesis problem, while Tinubu and Gupta (1984) solved
the problem with elimination of branch defect. However, very
few papers have dealt with the mobility condition directly in
the synthesis procedure. Although many criteria for mobility
analysis of different types of linkages have been developed,
including them in the optimization procedure remains a prob-
lem. The main difficulty here is the inequalities involved, which
increase the complexity of the synthesis procedure. In many
practical problems concerning the design of four-bar function
generators, mobility requirements are present, and in most of
the cases, using a set of inequalities to define the full-mobility
region of the input or output link of a four-bar linkage becomes
inevitable. The significance for devising a general method for
tackling these constraints is hence apparent.

The optimization scheme presented in this paper aims at
minimizing the design error in solving the problem of synthesis
of a four-bar function generator under mobility conditions.
The objective function is written in a quadratic form and the
whole problem is formulated as a constrained nonlinear least-
square minimization problem. By introducing slack variables,
the inequalities representing the mobility conditions are readily
transformed into equalities, which allows us to solve the prob-
lem in the context of equality-constrained nonlinear least-
squares, for whose solution very effective procedures are avail-
able. Thus, the arising problem is solved using the orthogonal-
decomposition algorithm, as introduced in Angeles, Anderson,
and Gosselin (1987). Additionally, penalty terms are added to
the objective function in order to eliminate the problems of
dimensional unbalance. The optimization procedure is illus-
trated with a numerical example.

The method presented here can be used for the synthesis of
planar and spherical four-bar function generators. Spatial four-
bar linkages, however, do not lead to simple equality mobility
constraints, and hence, are not considered in this paper. Dis-
cussed next is the input-output equation of these two types of
linkages, which play an important role in the synthesis pro-
cedure.

2 Input-Output Analysis of Planar and Spherical Four-
Bar Linkages

Let y and ¢ represent the input and output angles of a planar
or spherical RRRR four-bar linkage, as shown in Figs. 1 and
2. An equation, called the input-output equation, exists that
defines the relation between the input and output angles. It is
written as

f(¥,0,k)=0 (1)
where k is known as the vector of linkage parameters. For the
planar RRRR linkage, k is a 3-dimensional vector whose com-
ponents are defined as

G+E-a+d; a a
P S L TR A 2)
2(22&‘4 as as
where a;, for i = 1, 2, 3, 4, denotes the length of the ith link
(Fig. 1). For spherical RRRR four-bar linkages, k is a 4-di-
mensional vector, whose components are given as

ky

COS;COS,C0804 — COS03

ki : :
sina,sinoy
sinc;Cosoy
S
Sinoy
(3)
k3 =cosa;
sine;cosc;
sines
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where o, for i = 1, 2, 3, 4, is the angle between each two
adjacent joint axes, as shown in Fig. 2. From the known value
of k, the link lengths in terms of its components are obtained
by simply inverting the above equations. In the planar case,
the inversion yields

1

Qo=

&'1=1, k
2

N K5+ k5 + k3K — 2kikaks
5 | kakes

)

as

1
(14=k_3

while in the spherical case, we have the following:

sine; =4/ 1 —i2, cosa;=k;

k.'r‘.

. i~
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3 k4
o, SOSmE————
. V1+k-K

dinoy= 1o tksks—k (1 =K1 3)
e (—RB+i)(1+B-K)

[kaksks— Ky (1 - K3)]

coso = s
NU-B+ B+ B-)
sina lﬁk% cosa ks
4= T e 4= —
1+k2-12 ’l+k§—k%

where all the angles are assumed to lie within the range from
0 to 7, and kﬁ < 1.

Given the set of the input-output pairs (v ¢;}7, we can
obtain a system of m equations from Eq. (1), namely,

f(¢i7¢i1k)=09 1=l) 2,---3 m (6)

which is linear in k, and hence, Eq. (6) can be written in the
form of

Ak=b (@)
For planar linkages, A and b are given as
1 cosg; —cosy;

o 1 cosg, —cosy;

, (8a)

1 cos¢, —cosYm

Table1 Mobility conditions of planar and spherical RRRR four-bar link-
ages
Conditions for Full-Mobolity
Linkage t:
o “Input link Output link
ool (kg + k3)? < (14 &) (ke + k) < (1 + &5)?

four-bar linkage (kg - ks)? < (1 - ka)? (k- k)2 < (1 -ks)?

Spherical RRRR (kg - kg)? < (kp + k3)?

(ky + kq)? < (kz — ky)?

(k + k1)? < (k3 = ky)?

fourbarlinkage | - (k — k1)? < (ks + ko)
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cos(y; — 1)
cos(yy—
jie (Kb? &2) (8b)
Cos(’l’m—‘bm)
and, in the spherical case, we have
1 cosy; cosycosdp; —COSQ,
it 1 CO?\&; cos;bgf:osqbz —C(.)qug : )
1 cosy, COsY,CcO8¢, —COSP,
Siﬂ¢15in¢]
siny,sin
P 3»”2- b2 95)
siny,,sing,,

Clearly, A and b are functions of the given input-output pairs
and the ith row of A and the ith component of b are functions
of J; and ¢; only. Equation (7) is the basic equation in forming
the objective function in the optimization procedure.

3 Treatment of Mobility Conditions

In this section, the constraint relations suitable for our prob-
lem are derived. The mobility conditions of four-bar planar
and spherical linkages have been extensively studied in the past
(Grashof, 1883; Bricard, 1927; Duditza and Dittrich, 1969;
Gupta and Radcliffe, 1971; Angeles and Bernier, 1987). For

‘our problem, the mobility criterion for planar four-bar linkages

presented in Gosselin and Angeles (1988) and the one for spher-
ical four-bar linkages given in Liu (1988) are employed. They
are stated in Table 1.

The conditions of Table 1 are the basic inequalities for de-
riving our constraint equations. Notice that these constraints
are given in terms of quadratic positive functions on both sides
of the inequalities listed in Table 1. We can make both sides
equal by simply adding a third positive term on the smaller
side, thereby replacing the inequalities by equality constraints.
This additional term is chosen as the square of an additional
variable, which will be taken into account in the optimization
procedure. For example, to obtain the expression for the full-
mobility condition of the input link of a spherical four-bar
linkage, we introduce two slack variables, ks and kg, which
leads to the following:

gi1=(ka+k) = (ks—kq)*+K=0 (10a)
8= (ka— k1)’ = (ks +ky) >+ k2=0 (105)

and ks and kg will be included as additional design parameters
in the optimization procedure. This also applies to other in-
equalities in Table 1. This will ease the problem formulation,
and, eventually, its solution.

4 Optimization Scheme

Now the method for the optimum synthesis of four-bar
function generators with mobility considerations on the input
or output link is outlined. As mentioned before, the optimi-
zation scheme focuses on minimizing the design error, which
is defined as the error residuals in the input-output equation.
If we use e to represent this error, we have

e=b—Ak 1n

where e and b are m-dimensional vectors, m being the number
of prescribed input-output pairs: A is an m x n matrix and
k is an n-dimensional vector, where n = 3 for planar linkages
and n = 4 for spherical ones. If m > n, Eq. (7) is an over-
determined system of equations and the Euclidean norm of e
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can be minimized directly with the value of k given as (Golub
and Van Loan, 1983):

k=(ATA)"'ATp (12)
However, this direct scheme will not guarantee the optimal
linkage to meet any mobility conditions. Here, we propose a
least-square optimization scheme subject to equality con-

straints that will satisfy the mobility conditions. We will use
x as the design vector and express the design error as

e=b-—Ax (13)
The objective function is written as follows:

z(x)=% e"We (14)

where W is a positive-definite constant weight matrix which
accounts for the necessary normalization and scaling.

Now that the inequality constraints have been properly
treated and converted into equality form as shown in Egs. (10a
and b), we can use them directly in the formulation. To this
end, they are grouped in a vector function in the form of

g(x)=0 (15)
where 0 is the zero vector, whose dimension, identical to that

of g, depends on the number of scalar equations imposed by
the mobility conditions. The design vector x is defined as:

Xkl e il (16)
where k; fori = 1, ..., nare the linkage parameters as defined
in Section 2, while k; fori = n + 1, ..., n + [ are the slack

variables, which are constraint-condition dependent; for ex-
ample, if the full mobility condition is imposed only on the
input or output link, then / = 2; if these conditions are imposed
on both the input and output links, then / = 4. Due to the
extra variables, matrix A in Eq. (13) will have extra zero col-
umns comparing with those given in Egs. (8a and 9a). There-
fore, the problem is formulated as minimizing the Euclidean
norm of e subject to the equality constraint gix) = 0,ie.,

min z(x) (17a)

subject to
g(x)=0 (17B)

It is now an easy task to verify that both e(x) and g(x) are
continuous and differentiable functions of x, thereby meeting
the basic requirements for using a gradient method of solution,
such as the orthogonal-decomposition algorithm. As intro-
duced by Angeles, Anderson, and Gosselin (1987), the said
algorithm is an iterative scheme and has attractive convergence
properties. It has been used by Liu (1988) to solve the problem
of synthesis of spherical four-bar path generators and proved
to be efficient for equality-constrained least-square optimi-
zation problems. Additionally, the continuity of both the ob-
jective and constraint functions allow us to apply continuation
techniques (Wasserstrom, 1973; Richter and DeCarlo, 1983)
in the optimization procedure, in case an initial guess reason-
ably close to the solution is difficult to locate. In using this
algorithm, the Jacobian matrices of both the error function
e(x) and the constraint function g(x) are needed. These are
computed as explained below.
From Eq. (13), the Jacobian matrix of the error function
can be readily obtained as
de d
o (b— Ax) A (18)
while the Jacobian matrix of the constraint function does not
have a general form and is dealt with on a case-by-case basis.
One problem that may arise in the optimization procedure
is dimensional unbalance, which sometimes leads to very large
link length ratios. A means to cope with this relies on the
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Fig. 3 The optimum linkage

introduction of penalty terms in the objective function, which
are defined in such a way that their value increases with di-
mensional unbalance and decreases when the link lengths be-
come proportionate. To suit the formulation adopted at the
outset, based on least-squares, we write the penalty term in a
quadratic form. For example, if we introduce a p-dimensional
penalty function p(x), we can write it in the following form

1
=3 pRp (19)

where R is a diagonal matrix containing penalty factors, i.e.,
R=diag(ry, 2, ..., ) (20)

while p is suitably defined as explained in the example. More-
over, the penalty factors r;, fori = 1, ..., p, will be adjusted
in the optimization procedure. Now a new objective function
Z(x) can be written as

Z(x)=2z(x)+{(x)

1 r l o
=5 e We+2 P Rp
=L ys 1)
=)
where
W 0
f= [e] S= [ mxp} 22)
P 055 m R

0,xn and 0., being the p x m and m X p zero matrices,
respectively. The Jacobian matrix of the new function f(x) is

computed as

T

a_| & o 23)
dx |dx dx

where de/dx has already computed in Eq. (18) and dp/dx is

problem dependent.

5 Example

A design problem is solved here to show the application of
the optimization method presented in this paper.

It is required to design a planar RRRR four-bar linkage to
meet the input-output relations shown in Table 2. Moreover,
the input link should be a crank.

The problem consists of seven given pairs of input-output
angles, i.e., m = 7. For a planar linkage, n = 3, and hence
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Table 2 Input-output relations

P(deg.) 70 80 90 100 110 130 140
$(deg) 40 45 50 58 64 T4 80

we have an overdetermined linear system of equations, which
will be solved together with the constraint conditions by using
our optimization method.

For comparison purposes, the problem is first solved by
using Eq. (12). To this end, we minimize the design error
directly, without considering any constraints on the mobility
conditions. This leads to the following results:

k1 =1.3311, k= -0.7730, k3= —0.4421

and it is easy to verify, using Table 1, that the input link is a
rocker, which does not meet the mobility condition imposed,
although the Euclidean norm of the design error is very small.
Now, our optimization scheme is applied to include the mo-
bility constraint. From Table 1 we can readily obtain the con-
straint equations, namely,

o= 5 +ks) - (1-k)* + 45| _
S e
where 0 is the 2-dimensional zero vector and k4 and ks are the
slack variables. We then have the design vector written as
x=[ky, ky, ks, ks, k5"

The Jacobian matrix of the constraint function is readily com-
puted as

dg(x) [k1+k3 =1~k kg b o}

TR M P, S R R

dx
Since x has included two extra components, namely, k; and
ks, matrix A, given in Eq. (8a), has to be modified; that is,
two additional zero vectors will appear as its 4th and 5th
columns. The ith row of matrix A then becomes

A;=[1, cosg;, —cosy;, 0, 0],

Now we can use the optimization method presented in this
paper. From the initial guess x’ = [0.28, 0.74, 0.12, 1.69,
0.2)7, we end up with the following solution:

k1=0.3248, k,=0.5875, k3= —0.009725,
ky=1.556, ks=0.2415

the Euclidean norm of the error function being 5 x 1072
which is larger than the one obtained for the unconstrained
least-square problem. The corresponding link lengths are

a=1.702, a;=103.4, a,=102.8

Although the mobility conditions are satisfied now, this is,
unfortunately, still not a good result since the dimensional
unbalance is very serious. As we can see, @z and a; are more
than 100 times larger than a;. To solve this problem, we resort
to the penalty-function method to penalize this unbalance.
From Eq. (2), it is apparent that, when all the link lengths are
identical, we have k; = k; = k3 = ks = 1; when variations
in the link lengths occur, the values of k’s turn to be either
greater or smaller than 1. This gives us the basic idea to form
the penalty function. Indeed, we define the following

i=1,2,...,m

al.:l,

1 1 8 i
= —_— - k i
p(x) [kl 7 k; ks k;l

Clearly, when all the link lengths are identical, p(x) vanishes;
otherwise, its norm becomes large as the dimensional unbal-
ance grows. Computing now the penalty function {(x) defined
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in Eq. (19) and adding it to the objective function, the problem
of dimensional unbalance can be controlled. Therefore, we
now can write the objective function in the form of Eq. (21)
and compute the subjacobian matrix dp(x)/dx as follows

g 1+ 1/ 0 0 00
WO 0 AuE 60

dx
0 0 1+1/K2 0 0

Now we repeat the optimization procedure with the new
objective function and a value of r; = 0.002, for/ = 1, 2, 3.
The following results are obtained

k1 =0.215, k;=0.7533, k;=0.2015,
ky=1.7031, ks=0.2463

with the linkage dimensions calculated as:
ay=1, a,=1.327, a;=4.955, a,=4.962

The Euclidean norm in the error function for this solution is
9 x 1072, As we can see, with the penalty function formed,
the link lengths of @; and a4 decrease about 20 times. The
problem of dimensional unbalance is therefore eliminated. Ob-
viously, this solution has a larger design error than the one
without the penalty terms, as expected. The optimum linkage
is shown in Fig. 3.

6 Conclusions

A method for the optimization of four-bar function gen-
erators under mobility constraints was presented, which is ap-
plicable to both planar and spherical four-bar linkages. The
method aims at solving approximate synthesis problems in
which the residual in the input-output equation, termed the
design error, is minimized over the linkage parameters. The
mobility condition, originally expressed in inequality form,
was properly treated and converted into equality form by in-
troducing slack variables. Hence, the synthesis problem is for-
mulated as an equality-constrained nonlinear least-square
optimization problem. The orthogonal-decomposition algo-
rithm, an iterative numerical scheme, is employed in solving
our problem. The dimensional unbalance that often occurs in
solving the synthesis problem is discussed and a penalty-func-
tion-based method is proposed in dealing with this problem.
While the optimization scheme works fine for planar and
spherical linkages, as discussed in this paper, it can possibly
be extended to other types of linkages, as long as an input-

output equation, along with a set of inequalities defining its-

mobility region, can be found, that bears a form similar to
that in the planar or spherical cases.
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