
Zheng Liu

J. Angeles

IVem, ASME
Mccill Research Centre for

lntellig€nt Machines,
Department of Mechanical Engineering,

Mccill Universily,
Montreal, ouebec, Canada H3A2K6

1 Introduction
The sylthesis of fou-bar function-g€nerating linkages is a

classical topic in kinematics. The problem consists of finding
all the relevant paramete$ of a four-bar liikage that can pro-
duce a presc bed set of ,n input-output pairs { r,lr, Ci } fl, where
l, and 6 denote the input and output variables, respectively,
as shown in Figs. I and 2. Let z be the number of indep€ndent
parameters required to define the four-bar linkage. For planat
linkagcs we have z = 3, while for spherical linkages rt = 4.
The synthesis problem can be termed exsct or spproximate,
depending on th€ relationship between tn and n. This paper
focuses on the approximate-synthesis problem, the exact syn-
thesis being regarded as a particular case of the forme!. Thus,
the approximate enor needs to be established first. In this
context, two t'?es of error are usually defined, namely desigz
error and structural error (Tinubu and Gupta, 1984). The for-
mer is based on the error residual in the i[put-output equation,
which was first proposed for planar linkages by Freudenstein
(1955) ard was later extended to the spherical alld spatial cases
by Hartenberg and Denavait (1964). The latter is defined as
the difference between the actual and the desired output angles
coresponding to an itrput angle. The two tj?es of error are
related to each other as shown by Tinubu ad Gupta (1984)
and Angeles (1989).

As far as the approximate synthesis of four-bar function
generators is conc€med, intensive research work has been done
in the past. Freudenstein (1955) first proposed an algebraic
formulatiou for the approximate synthesis equation, which was
later used and exteqded by other researchers (Suh and Rad-
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Least-Square Optimization of
Planar and SphericalFour-Bar
Function Generator Under Mobility
Constraints
An optimizstion scheme for lour-bar Junction generators under mobility constraints,
which can be applied to both planor and spherical four bar linkqges, b prcsented
in thb poper. The desigj'l. efior, deJined as the rcsidual in the input-output equation,
is minimized ouer the uector of linkage parqmeters. The mobility constraints, given
as a set of inequslities, arc conerted into equalities by introducing slsck oa sbles-
The problem b thus lormulated as an equality-constrained minimization problem,
uthich b then solued using the orthogonal-decomposition algorithm, an iteratiw
numerical method intrcduced ebewhere- To reduce the dimensional unbalance,
which often occars in soluing a synthesis problem, a penalty function is combined
with the ortginal objectiue function, whose minimization leads to dimensionslly
bslonced linkoges. A numericsl example is included.

Fig. 1 Planar FnBB lour.bar linkege
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where aj, for i = 1,2,3,4, denotes the length of the ,th l ink
(Fig. l). For spherical RRRR four-bar linkages, k is a 4di- Tablet trtobitity conditions ot ptanar and sphedc.l BBRn four.bar link'
mensional vector, whose components are glven as ages

k2
cosoa=--

! r+ t6 -4

where all the angles are assumed to lie within the range flom
0 to r', and k: < l.

Given the set of the input-output pairs {ry'i' dili, we en
obtain a system of m equations from Eq. (l), namely,

. f ( { i , d r , k ) = 0 ,  i = r , 2 ' . . . ,  m  ( 6 )

which is linear in k, and hence, Eq. (6) can be written in the
form of

A k = b

For planar linkages, A and b are given as
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cliffe, 1967; Suh, 1968; Mohan Rao et al., 1973; Luck, 1976).
wilde (1982, 1983) applied elror lineadzation techniques for
the synthesis problern, while Tinubu and Gupta (1984) solved
the problem with elimination of branch defect. However, very
few papers have dealt with the mobility condition dilectly in
the synthesis procedule, Although many qiteria for mobility
analysis of different t]?es of linkages have been developed,
including them in the optimization procedure remains a prob-
lem. The main difficulty here is the inequalities involved, which
increase the complexity of the synthesis procedure. In rnany
practical problems concerning the design of four-bar function
gellerators, mobility requirements are present, and in most of
the cases, using a set of inequalities to define the full-mobility
region ofthe input or output link of a four-bar linkage becomes
inevitable. The significance for devising a general method for
tackling these constraints is hence apparent.

The optimization scheme preseuted in this paper aims at
midmizing the design €Iror in solving the problem of synthesis
of a four-bar function gen€rator under mobility conditions.
The objective functioD is wdtten in a quadratic form aIId the
whole problem is formulated as a constrained nollinear least-
square minimization problem. By introducing slack variables,
the inequalitics representing the mobility conditions are readily
tnnsformed into equalities, which allows us to solve the prob-
lem in the context of equality-constraitred nonlinear least-
squares, for whose solution very effective procedues are avail-
able. Thus, the adsing problem is solved using the orthogonal-
decomposition algorithm, as iutroduced in Angeles, Ande$on,
and Gosselin (1987). Additionally, penalty terms are added to
the objective function in order to eliminate the problems of
dimensional unbalance. The optimization procedure is illus-
trared with a numerical example.

The method presented here can be used for the synthesis of
planar and spherical four-bar function generators. Spatial four-
bar linkages, howeve!, do not lead to simple equality mobility
constraints. and hence. are not considered in this paper. Dis-
cussed next is the input-output equation of these two types of
[nkages, which play an important role in the synthesis pro-
cedure.

2 Input-Output Analysis of Planar and Spherical Four-

Bar Linkages
Let ly' alld d represent theinput and output angl€s ofa planar

or spherical RRRR four-bar linkage, as shown in Figs. I and
2. An equation, called the input-output equation, exists that
defines the relation between the input and output angles' lt is
written as

fd,,o,k)=o (r)
where k is known as the vector of linkage parameters. For the
planar RRRR li*age, k is a 3-dimensional vector whose com-
ponents are defined as

where er, for i = 1,2, 3,4, is the angle between each two
adjacent joint axes, as shown in Fig. 2. From the klown value
of k, the link lengths in terms of its components are obtained
by simply inverting the above equations, ln the planar case,
the inversion yields

. l
a t =  I '  g 2 = ; '

^2
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I

^3

while in the spherical case, we have the following:

k4
cos.r2=---:,

" , l r+A-H

(5)

v

ft cosdr -cos'r'r'l

I I cos42 - cosry', I^=1, : : l'
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(7)
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can be minimized directly with the value of k given as (Golub
and Van Loan, 1983):

(80) p- 6rA;-rArb 02)
However, this direct scheme will not guarantee the optimal
linkage to meet any mobility conditions. Here, we propose a
least-square optimization scheme subject to equality con-
straints that will satisfy the mobility conditions. We will use
x as the design vector alrd express the design elror as

(13)

(14)

where W is a positive-definite constant weight mafix which
accounts for the necessary normalization and scaling.

Now that the inequality constraints have been properly
treated and conveted into equality form as show! in Eqs. (l0a
and r), we can use them directly in the formulation. To this
end, they are glouped in a vector function in the form of

8(x)=0 (15)

whsre 0 is the zero vector, whose dimension, identical to that
of g, depends on the number of scalar equations imposed by
the mobility conditions. The design vector x is defined as:

x = l k r . . . , k , . k , ' r , . . . . k , _ l r  ( 1 6 )
where & for i = 1,.,., r are the l inkage parametets as defined
in  Sec t ion  2 ,  wh i le  k ;  fo r  i :  n  +  1 , . . . , ' r  +  /a re the  s lack
variables, which are constraint-condition dependent; for ex-
ample, if the full mobility condition is imposed only on the
input or output link, then / : 2; ifthese conditious are imposed
on both the input and output links, rhen / = 4. Due to the
extra variables, matrix A in Eq. (13) will have extra zsro col-
umlls comparing with those given in Eqs. (8a and 9a). There-
fore, the problem is formulated as minimizing the Euclidean
norm of e subject to the equality constraint g(x) = 0, i.e.,

and, in the spherical case, we have

f 
t cos'y'r cos{rcosdr -cosOll

A=l l  
.o : / t  cosv2cosd2 -cosoz 

l ,

l; -*- cos,p.coso. -coso,l

[ ']"Yol"t'I
' I Srnt rsrnOr I'=l'l

Lsrnvuslnozl

(9a)

(eb)

e = b - A x
The objective fulction is w'ittelt as follows:

z1x; = j e?we

Clearly, A and b are functions of the given input-output pairs
and the ith row of A and the ith component of b are functions
of ry'i and dt only. Equation (7) is the basic equation in forming
the objective function in the optimization procedure.

3 Treatmetrt of Mobility Conditions
In this section, the constnint relations suitable for our prob-

lern are derived. The mobility conditions of four-bar planar
and spherical linkages have been extensively studied in the past
(Grashof, 1883; Blicajd, 1927; Duditza and Ditt ch, 1969;
cupta and Radcliffe, 1971; Angeles and Bernier, 1987). For
ourproblem, the mobility criterion for planar four-bar linkages
presented in Gosselin and Angeles (1988) and the one for spher-
ical four-bar linkages given in Liu (1988) are employed. They
are stated in Table 1.

The colditions of Table I are the basic inequalities for de-
riving our consffaint equations. Notice that these consfaints
are given in terms of quadratic positive functions on both sides
of the inequalities listed in Table l. We can make both sides
equal by simply adding a third positive term oll the smaller
side, thereby replacing the inequalities by equality constraints.
This additional termii chosen as tbe square of ar additional
variable, which will be taken into account in the optimization
procedure. For example, to obtain the expression for the full-
mobility condition of the input link of a spherical four-bar
linkage, we introduce two slack variables, k5 and k6, which
leads to the followine:

gr= (k2+ k)z - (k-r- ko])2 + ti=O
gr= (k2- k)2 - (h+ ka\2 + ti=O

(l0a)

(l0D)

subject to

It is now an easy task to verify that both e(x) and g(x) are
continuous and differentiable functions of x, ther€by meeting
the basic requirements for using a gradient method of solution,
such as the orthogonal-decomposition algorithm. As intro-
duced by Angeles, Andercon, and Cosselin (1987), the said
algodthm is an iterative scheme aDd has attractive convergence
properties. lt has been used by Ltu (1988) to solve the problem
of synthesis of sphe cal four-bar path generators and proved
to be efficient for equality-consfiained least-square optimi-
zation problems. Additionally, the continuity of both the ob-
jective and constraint functions allow us to apply continuation
techniques (Wasserstrom, 1973; Richte! and Decarlo, 1983)
in the optimization procedure, in case au initial gu€ss reason-
ably close to the solution is difficult to locate. In using this
algorithm, the Jacobian matrices of both the error function
e(x) and the constraint function g(x) are needed. These are
computed as explai!€d below.

From Eq. (13), the Jacobian matdx of the error function
can be readily obtained as

d e d- ;= ;  O-Ax)=  -A  (18)
Itx dx

while the Jacobian matrix of the constraint futrction does not
have a general form and is dealt with on a case-by-case basis.

One problem that may arise in the optimization procedure
is dimensional unbalance, which sometimes leads to very large
link length ratios. A means to cope with this reiies on the

min e(x)

9(x) = o

(t7a)

( t7  b )

and kr and t6 will be included as additional design parameters
in the optimization procedure. This also applies to other in-
equalities in Table l. This will ease the problem formulation,
and, eventually, its solution-

4 Optimization Scheme
Now the method for the optimum synthesis of four-bar

fulction gelerators with mobility considerations on the input
or output lillk is outlined. As mentioned before, the optimi-
zation scheme focuses on minimizing the design elror, which
is defined as the error residuals in the iaput-output equation.
If \re use e to represent this eIIo!, we have

e = b - A k
where e and b are rn-dimensional vectors, tn being the number
of prescribed input-output pairs: A is an m x n matrix and
k is au z-dimensional vecto!, where'r = 3 for planar linkages
alrd ? : 4 for sphedcal ones. If n1 > n, F,q. ('7) is an over-
determined system of equations and the Euclidean norm of e

Journal ol Mechanical Design

( l  t )

DECEMBER 1992, Vol. 114 / 571



Fig. 3 The optimum tinkage

introduction of penalty terms in the objective function, which
are defined in such a way that their value increases with di-
mensional unbalance and deqeases when the link lengths be-
come proportionate. To suit thc formulation adopted at the
outset, based on least-squares, we write the penalty term in a
quadratic form. For example, if we introduce ap'dimensional
penalty function p(x), w€ can write it in the following form

Table 2 Input-ouiput .elations

{ (deg.)

C (dee.)

we have an overdetermined linear system of equations, which
will be solved together with the constraint conditions by using
our optimization method.

For comparison purposes, the problem is fint solved by
using Eq. (12). To this end, rve minimize the design elror
directly, without considering any constraints on the mobility
conditions. This leads to the following results:

kr = 1.3311, kz= -0-1730, kt= - 0.4421

and it is easy to verify, using Table l, that the input link is a
rocker, which does not meet the mobility condition imposed,
although the Euclidean norm of the design error is very small.
Now, our optimization scheme is applied to include the mo-
bility consuaint. From Table 1 we can readily obtain the con-
straint equatious, uamely,

_ .  f  1k ,  +  t r ; ' -  ( t -  k ) ' z+  t?o1
g ( x ) = | . .  "  , l = o-  

|  ( , t r  - r t ) ' -  ( t -k2) '+ l4 l

where 0 is the 2-dimensional zero vector and ka and k5 are the
slack va ables. We then have the design vector w tten as

x= [kr. k2, kr, k4, kr{

The Jacobiau matrix of the constraint function is readily com-
puted as

dg]Jxl  ̂ f k1+kt -l-kz kt+ki ka of
- = z l  I

dx Lkr- k, | - kz kt- kt 0 k5l

Since x has included two extra components, namely, ka and
ft5, matrix A, given in Eq. (8c), has to be modified; that is,
two additional zero vectors will appear as its 4th and 5th
columns. The ith row of maffix A then becomes

,4;= [, cos{i, - cos/i, 0, 01, i= 1, 2, . . . , n

Now we can use the optimization method presented in this
papg!. From the initid guess x' = 10.28, 0.74,0-12, 1.69,
0.21', we end up with the following solution:

kt=O.3248, kz=O.5815, k= -0.009725,

ka=1.556, ks=0.?Al5

the Euclidean norm of the error function being 5 x l0-?,
which is larger than the one obtained for the unconstrained
least-square problem. The coresponding link lengths are

at=1, a2=1.702, q=1O3.4, aa= 102-g

Although the mobility conditions are satisfied now, this is,
unfortunately, still not a good result since the dimensional
unbalanc€ is very serious. As we can see, a3 and aa are more
than 100 times larger than 4r. To solve this problem, we resort
to the penalty-function method to penalize this unbalance.
From Eq. (2), i! is apparent that, when all the link lengths are
identical, we have kt = kz = kt = ka = l: when vadations
in the link lengths occur, the values of k's tum to be either
greater or smaller than 1. This gives us the basic idea to form
the penalty function. Indeed, we define the following

I  l  l  l l '
p(x)= | kr -;, k2-;, K3-; I

Clearly, when all the link lengths are identical, p(x) vanishes;
otherwise, its norm becomes large as the dimensional unbal-
ance grows. Computitrg now the penalty function f(x) defined

70 80 90 100 1r0 B0 140

tO 45 50 58 64 74 80 \J

(le)

where R is a diagonal matrix containing penalty factors, i.e.,

R=d iag( r r ,  12 ,  - . - , rp )  (2O)

whil€ p is suitably defined as explained in the example. More-
over, the penalty factors fr, for i = l, . . . , p, will be adjusted
in the optimization procedure. Now a new objective function
Z(x) can be writteD as

Z(x) = z(x) + f(x)

t - l
=i erwe+i prRp

=i rrsr (zt)
where

f e l  f  w  o - . . 1
r=  l  

' l -  
s=  l  " ^ "o l  e2 \

LPI Loe,^ R I
0p*- a]ad o^'p being the p x m ar,d m x p zero matdces,
respectively. The Jacobian maftix of the new funciion f(x) is
computed as

df f de dplr
== | .:-, -:- | \zr)
ax Ldx dx)

where de,/rh has already computed in Eq. (18) arjd dp/dx is
problem dependent.

5 Exampl€
A design problem is solved hele to show the application of

the optimization method presented in this paper.
It is required to design a planar RRRR four-bar linkage to

meet the input-output relations shown in Table 2. Moreoyer,
the input link should be a crank.

The problem consists of seveu given pairs of input-output
angles, i.e., n = 7. For a planar linkage, z = 3, and hence
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in Eq. (19) arld adding it to the objective function, the problem
of dimensional unba.lance can be controlled. Therefore, we
now can write the objective functiou in the form of Eq. (21)
and compute the subjacobian matdx dp(x),/rk as follows

+ r/t4 0
O l+l / t?,
00

Now we repeat the optimization procedure with the new
objective function and a value of rr = 0.N2, for i = l, 2, 3.
The following results are obtained

h=0.215, kz=0.1533, kt=0.2015,

h= 1.103r, ks=0.2463

with the linkage dimensions calculated as:

a t=1 ,  02=1.327,  a3=4.955,  a4= 4 .962

The Euclidean norm in the elror function for this solution is
9 x l0-2. As we can see, with the penalty fuoction formed,
the link lengths of a3 and ca deqease about 20 times. The
problen of dimensional unbalance is therefore eliminated. Ob-
viously, this solutioD has a larger design elro! than the one
without the penalty terms, as expected. The optimum linkage
is shown in Fig. 3.

6 Conclusions

A method for the optimization of four-bar function gen-
entors under mobility consfiaints was plesented, which is ap-
plicable to both planar and spherical four-bar linkages. The
method aims at solving approdmate synthesis problems in
which the residual in the input-output equation, termed the
design error, is minimized over the linkage parameters. The
mobility conditioo, origiually expressed iB inequality form,
was properly treated and converted into equality form by in-
troducing slack variables. HeDce, the synthesis problem is for-
mulated as an equality-constmined nonlinear least-square
optimization problem. The orthogonal-decomposition algo-
rithm, an iterative numerical scheme, is employed in solving
our problem. The dimensional unbalance that often occurs in
solving the synthesis problem is discussed and a penalty-func-
tion-based method is proposod in dealing with this problem.
While the optimization schem€ works fine for planar and
spherical linkages, as discussed in this paper, it can possibly
be extended to other types of linkages, as long as all input-
output equation, along with a set of inequalities defining its
mobility region, can be found, that bears a form similar to
that in the Dlanar or soherical cases.
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