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Abstract The left and right dual Moore-Penrose generalized invesseshe sub-
ject of this paper. It is shown that, contrary to the real c#fsese inverses are not
unique, those withminimum Frobenius norrbeing obtained. Their application in
kinematic synthesis is discussed. It is shown that, in tee c&function-generating
RCCC linkages, the left dual generalized inverse leads iokade that meets the
prescribed input-output relations with both a least-sge@aror and a minimum size.
The study concludes with the synthesis of a linkage thatagprates enomokinetic
transmission between shafts with skew, orthogonal axes.

Key words: dual generalized Moore-Penrose inverses, least-squarexamation,
minimum-Frobenius-norm, homokinetic joint, skew axes.

1 Introduction

Dual numbers are well documented in the literature, an sitemibliography being
available in [1], with 73 entries. The literature is extemesfor the scalar case, for
vectors and matrices much less so, but some references cztebebesides the
previous one, namely, [2] and [3]. Moreover, dual numberstimdefined over both
the real and the complex fields [4]; for the purposes of thfgepaeal numbers will
suffice. The set of dual numbers itself, however, is not a flald aring [5].

The reason why dual numbers are relevant to kinematics bbesummarized
in The Principle of Transferendé]:

The kinematics and statics relations of spatial linkaged @mm mechanisms can be derived
upon replacing the real variables occurring in the corresding relations for spherical
linkages by dual numbers
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The theory behind dual numbers is well established, buethes still some ap-
plications domains that haven’t been fully exploited. Tfager is a contribution in
this direction. One objective of the paper is to shed lightrenhandling of overde-
termined systems of dual linear equations (DLE), as arisirtige approximate syn-
thesis of linkagesvhen the number of prescribed conditions to meet exceatlsth
linkage parameters available. In this context, the wetvin results of linear least
squares are revisited in the realm of dual numbers. It is ahtbat the least-square
approximation of an overdetermined system of DLE admitslatism that can be
expressed in the form of the dual-equivalent of Meore-Penrose generalized in-
verse often referred to a thkeft pseudoinverserhe author does not subscribe to
this terminology because it is misleading: the prefix “psudenotes something
“false”, which is not the case here. One novel contribut®thie result that, con-
trary to the real case, the left dual generalized invers@isinique, which allows
for minimizing the Frobenius norm of the said inverse, thgraebtaining a unique
solution that shows a striking similarity with the dual imse of a square matrix [2].
The same result is shown to apply to the right counterparhefiéft generalized
inverse. The concepts discussed in Section 2 are then dpplithe approximate
synthesis of function-generating RCCC linkages.

As an example, the synthesis of a linkage of this type to apprate ahomoki-
netic transmissiorbetween two shafts of skew axes and lying at right angles is
fully discussed. By virtue of the minimum-norm property bétunique left Moore-
Penrose generalized inverse—for conciseness, hencé#iertbregoing matrix will
be referred to as the “left generalized inverse,” with a Eimienomination for its
right counterpart—the linkage thus obtained is one thatombt approximates the
prescribed number of conditions with a least-square ebuiralso does so with
a minimum size. Moreover, the slight errors present in thinogm solution can
be compensated for by means of computer control, upon negdd an inverse-
kinematics approach that guarantees that the linkage putiiufollow the pre-
scribed input signal upon modulating the linkage input adicaly.

2 Back to Basics: Algebra of Dual Numbers

While dual algebra is a classic subject, and its bases areestblished, there
is still room for research contributions in the area of agatibns. One such area
is the approximate synthesis of linkages, which often ldadiear least-square
problems, the subject of this paper. Their nonlinear caopaits are manageable
once the foundations for linear problems have been eshallis

An item that has not been duly addressed in the pertinematites is the def-
inition of the derivative of a dual-valued function of a dewfjument, but it was
discussed by Kotel'nikov in his original book [7]: given tbaal function

f(R) = F(R)+€fo(R), R=X+EXo
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its derivative with respect to its dual argument can be tgaititained as the limit
of a ratio of increments, which yields the relation

df df df
& dx | dx
consistent with Kotel'nikov [7]. This relation will be need below.
The extension of the foregoing definitions to vectors andrices follows as
a combination of these definitions and the rules for the capairt operations for
vectors and matrices. The inverse of a dual matrix is giv¢h]iand [2]. The former
also includes a formula for théual left generalized inverdeAs the formulas are
displayed in that paper without derivation, the paper nsisseimportant point: the
generalized inverse in question is not unique. This issugaide apparent below.
For starters the expression for the dual inverse matriweerin [2] is recalled:
let A = A+ eA, be a dual matrix, witi\, A, € R™", its inverse being defined as
long asA is invertible, althoughh, need not be so. The inverseAfis given by

(1)

Al—Al_eala Al )

Paraphrasing the derivation of the expression (2) for thed dwerse, not in-
cluded here for the sake of gonciseness,éleft B + ¢B, be the left generalized
inverse of anx n dual matrixA, with m > n. As a consequencB,is bound to be
of nx m. In the sequel, it will be made apparent that oAlyneed be of full rank
for the desired generalized inverse to exist, Aytcan be rank-deficient. TheB,
verifiesBA = 1,, with 1, denoting then x nidentity matrix. Upon expansion of the
foregoing left-hand side, two real equations are obtaioed for the primal, one for
the dual part:

BA =1, ByA+BAy,=0, (3)

whereO, denotes tha@ x n zero matrix, the first equation leading to the not so un-
expected resu = (ATA)~IAT = Al i.e., the left generalized inverse &f When
the foregoing expression is substituted into the seconbeofwo above equations,
a matrix equation foB,, is derived:

BoA=-A'A, = ATB] = —Al(ANT = —ATA(ATA) !

which is a system af® equations irnn> n? unknowns, the real componentsRy.
The system is, thus, underdetermined, thereby admiitifigitely many solutions
The conclusion is, then, that tideial left generalized inverse is not unigéenong
all that many solutions, one of minimuRtobeniusnorm, t{BB" ), can be obtained
if one resorts to the right generalized inverse\df denoted AT)" [8]:

(AT)T=AATA)? (4)

whence, after some obvious manipulations,

1 Actually, the authors do not stress the difference betwhenight and the left generalized in-
verses; they represent both with the same symbol! .
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Bo = —A'ALA! (5)
Therefore, the minimum-Frobenius—noﬁ&h is

A=Al —ealAA (6)

which bears a striking similarity with the dual inverse, apression also displayed
in [1].

The right Moore-Penrose generalized inverse of a dual m@tg: C + €Co, with
C, Co € R™Mandm< n, is defined as the dual mati® = D such thaCd = 1,
with D = D +&Dy andD, Do € R™™. The computation oD and D, follows
the same pattern as that BfandB, above. The details are not included here for
conciseness, but the results are displayed below:

&' =ct_ecfcoct 7)

a formula that is also displayed in [1], but without a proo§ain, as in the case of

Al éT is not unique, the formula displayed above being the one avithinimum
Frobenious norm.

Now the left dual generalized inverse is applied to the smudf an overdeter-
mined system ofndual linear equations in < mdual unknowns, grouped in vector
X, of the form

Ax=b (8)
whereA is assumed as above, to be a duad n matrix, withm> nand with a full-
rank primal partg andb being, respectivelyy- andm-dimensional dual vectors. As
the system is overdetermined, it is not possible to find aorécthat will verify all
mdual equations (8), but it will be shown that it is possibldinal the vectok that
will render the Euclidean norm of the dual eréoa minimum, withe defined as

e=b— A% (9)
whose Euclidean norfr|&|| is the square root of the scalar prodétg, i.e.,
N ~ T Ae  1Re
18117 = |[b]|* - 2b" A%+ || A%||? (10)
The error Euclidean norm is minimized upon zeroing the dire of || |2 with
respect tk, which readily leads to thdual normal equationéDNE):
ATAx=A"h = A'g=0 (11)
thereby stating an important theoretical result: the mummmnorm error—i.e., the

. L . L AT
errorgy of minimum Euclidean norm—Iies in the null spacefof, a restatement of
the classicaProjection Theorembut now in dual space. Another theoretical result

2 If eande, denote the primal and dual parts@fthen||&]|? = ||e||? + £2€' e,.
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is the expression for the least-square solufigiobtained directly from the normal
equations (11):

%0=A'D (12)

Expression (12) is a representation of théqueminimum-norm least-square solu-
tion of system (8), but should not be used verbatim to comggitbecause of the

frequent ill-conditioning of the produaﬁ;AT. Instead, the QR decomposition [9]
should be applied.

Interestingly, having chosen the dual p&gtof A with minimum norm guaran-
tees that the dual paxtg of the least-square solutidty is of minimum Euclidean
norm. This property will be exploited in the synthesis of aGXClinkage intended
to approximate a homokinetic transmission between twatslodiskew axes, lying
at right angles.

3 Synthesisof a RCCC Linkage

The foregoing results will now be applied to the synthesishef RCCC linkage
shown in Fig. 1, with geometric parameters defined using tiiginal Denavit-
Hartenberg notation [10].

The input-output (10) equation of the RCCC linkage was datiby Yang and
Freudentstein [11]. The same equation was more recentlyrcaframework that
allows its analysis in a unified form applicable to planahesjcal and spatial four-
bar linkages [12]. For the sake of brevity, the 10 equationdsderived here. It is
displayed below, as taken from the foregoing reference:

F({(, ) = ky + kocos + ks cos(l cosp — ks cosp+ sinfysing = 0 (13)

where (), the input angle, has been “hatted”, even though this asgéss$ociated
with a R joint, which undergoes pure rotations about its.dxidact, ) = ¢/ + £bp,
whereb, accounts for the location of the common normal between tigs(#,) and
Z3. The primal parts of thdual Freudenstein parametef®FP) are given below:

EM k:M ks = Ay :M (14)

Mg ? Ha H2
with the definitionsA; = cosa; andy; = sina;j # 0, while a; is displayed in Fig. 1,
their dual counterparts being defined as

Ky
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Fig. 1 A generic RCCC linkage

 &A2Aaph o Ha + 32(A1Aa — A2A3) s — gl HaHa + Ba(A1A2 — AgAa) o
HEHE
) k03 = —alUL k04 =

Ko1 =

a1A1Aals — gl
2
Hy

B A1zl — aplh
ko2 = T
H3
(15)

The synthesis problem can now be formulated as: given a sepof-angle val-
ues{ ¢ }T"and a set of corresponding output val{es, u; } 1", whereu; denotes the
ith prescribed value of the output variable, find the linkage parametefsa;, a; }‘l1
that will produce a RCCC linkage that meets the prescriberkl@tions. Since we
havem 10 conditions to meet, in the form of the dual equations (a8Y four dual
linkage parameters, when= 4 the prescribed 10 values can be met exactly, which
corresponds texact synthesig~orm > 4, no linkage will possibly meet ath pre-
scribed 10 values. However, it is possible to find the linkéget will meet these
values with the minimum error, which is known approximate synthesidlever-
theless, a word of caution is in order: although the errotaretefined in eq.(9) has
components with two different units, radians and m, its nigrmell defined, as per
footnote 2. Hence, a linkage can be found that meets the egistequations with
an error of minimum Euclidean nornmdependent of the units chosérhe said
equations are obtained upon substitution of the input atpubwariables by their
m prescribed values in the 10 equation:

3 The new variabley; is introduced with the purpose of avoiding double subssript
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F(W, @) = ky + ko cosili + ks cos(li cosq — kscos@ +sinlising =0,i=1,...,m

. (16)
which are linear in the dual Freudenstein parame{t&r}s‘l‘. Hence, upon assembling
the m foregoing equations, a system mfdual linear equations in the four DFP is
obtained:

Sk=h (17)
with
1cyn cyncpn —cpr 0 —bpsyn —uicynsp —bosyicp uisp
5 1cyp cypcey —C@ N 0 —bosy, —UsCyhsg — basoce  Uxse,
=|. . . . €. . . .
1 cYm CYmCG —Cn 0 —b2SPm —UmCmSn — D2SYmCn UmShn
S So
(18)
with c(-) ands(-) denoting co§) and sin{-), respectively, while
syrsp U1Sy1cer + bacyrse
R SYosepp UpSY2Cqs + oS,
b=— . - . (19)
SUmShn UmSYmCein + boCfmSen
b bo

Now, upon equating the primal and the dual parts of eq.(1V9, real vector
equations are obtained, namely,

which amount to two overdetermined linear systems of equoatiboth with the
same matrix coefficien$, one fork, one fork,. The computation of the least-
square solution proceeds in two steps: first the primal égué solved fork; with
the least-square solution thus obtainkgl, substituted into the dual equation, the
least square solution of this equatitgg, is obtained. Notice that these calculations
being done using the QR decomposition, the primal syntimestsx needs factoring
only once. This feature is important if the foregoing praseds a part of a second,
external optimization procedure, that calls for many ifierss. It is noteworthy that
the DH parameteb, is not included in either the primal or the dual part of the
DFP, egs.(14) and (15), respectively, and hence, this petearhas been taken to
the right-hand side of the dual synthesis equations (@0has to be treated not as
an unknown, but as a parameter, that can be used to eitheufieea solution or to
optimize an objective function.

Now the RCCC linkage is synthesized so as to approximate akioetic trans-
mission for values of the input and the output variables shatep angles of 120
Moreover, the primal synthesis equation leading to a sphklinkage, the associ-
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ated synthesis procedure is identical to that reported3h [h that paper, a search
is included on the optimum values of the location of the zefale input and out-
put dials, which amount to a translation of the data pofnfs @ }1' en massgi.e.,
under a rigid-body translation, in thgvs.-y plane. A continuum of values for the
optimum shifts were reported in that paper. The values adbipere aré = 146°
andn = 34°, for ¢ andg, respectively.

The valuesys, fori = 1,... m, with m= 501 prescribed dattiads®, are uni-
formly distributed in the interval 86= —60° + 146°) < ¢ < 206, while theirg
counterparts are distributed likewise in the interv@6° (= —60° + 34°) < @ < 94°.
The shafts to be coupled lying at right angles—= 90°, whenceA; = 0 andu; = 1.
Furthermore, given its desired homokinetic behavior, thiedge is assumed sym-
metric, as the input and output links play the same role, waen = a,. In this
light, the number of unknown primal Freudenstein paransetuces to only two,
for k3 = 0 andky = kp, a consequence of the foregoing assumptions and relations
(14). The number of prescribed points led to an overdetexdiinear system of 501
equations in two unknowns, whose least-square solution is

ke = 1.217, ko = 0.9439 = ks = 0.9439 a, = a4 = 46.65°, a3 = 1324° (21)

with a rms value of the minimum-norm error equal to 0.01942,.642%.

Next, a; is set at 240 mm, as imposed by the design conditions,lwith a; for
symmetry. Further, the valuesof b; at the prescribed values gf, which complete
theith triad, were distributed symmetrically aroumd= 0, withu; = —a; /10,uyn =
a;/10, and following a cycloidal motion program:

ap i-1 1 . 2n(i—-1)
A - — sin——~ 22
Ui +U (m—l T kr— (22)

with amplitudeU given asa; /5 in order to limit the output slidin;. This program
was chosen because it starts smoothly with zero velocityaaoéleration, and stops
likewise. The second system of egs.(20), of 501 equationtyv@ unknowns kg
andky, led to the least-square soluti@gy, with ko3 = —a; = —240 mm not being
part of the unknowns, for its value is fixed from the presaibelues fora; and
ai, as per egs.(15). The optimum values were found to be, foahbge-mentioned
values ofkg,

Kor =3190mm, ko = 1546 mm ko = Koo (23)

with a rms value of the minimum-norm dual error of 1.119 mm2@3% of the
amplitudeU. For the record, theaormalizeddual part of the Euclidean norm of the
dual errorge’ey//m, is 0.3260 mm or 0.07% of the amplitutle

Computing the DH linkage parameters now is straightforwasdegs.(15) in-
volve these parameters linearly. The results are displbg&miv:

4 This high number was used with the purpose of bringing thevaph design errorey as close
as possible to thetructural error, which measures the actual deviation of the synthesizgolibut
angle from its prescribed value, as per the results repantfict].
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a=-7646mm az3=2094mm as=ay (24)

where, interestinglys; being defined as kengthin the framework of the DH no-
tation, it must be non-negative. However, a negative vatueaf, and hence, for
a4, was obtained above. The interpretation of the negative Isége is well known
within the methodology set forth by Freudenstein [15]: dbd@y (a4) turn out to be
negative as a result of the linkage synthesis for functiamegation, then measure
angley (@) not as indicated in Fig. 1, but from its extension, i.e., 48 to the
prescribed input (output) angles. This completes the b the synthesis prob-
lem, a CAD model thereof being shown in Fig. 2. In this figuhe butput motion
of the quasi-homokinetic mechanism is the rotation of tHasegd shaft, which is
mounted on the machine frame by means of standard bearings.

Fig. 2 A CAD model of the synthesized RCCC linkage

4 Conclusions

Some novel results in the realm of the algebra of dual numbec®nnection with
dual linear least-square problems were introduced heee,dpplied to the synthe-
sis of the RCCC function generating linkage. The methodpkbgis established
was then illustrated with the solution of a problem of cutneterest, the approx-
imate synthesis of a RCCC linkage for homokinetic transimisbetween shafts
with skew axes, lying at right angles.
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