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Abstract The left and right dual Moore-Penrose generalized inversesare the sub-
ject of this paper. It is shown that, contrary to the real case, these inverses are not
unique, those withminimum Frobenius normbeing obtained. Their application in
kinematic synthesis is discussed. It is shown that, in the case of function-generating
RCCC linkages, the left dual generalized inverse leads to a linkage that meets the
prescribed input-output relations with both a least-square error and a minimum size.
The study concludes with the synthesis of a linkage that approximates ahomokinetic
transmission between shafts with skew, orthogonal axes.

Key words: dual generalized Moore-Penrose inverses, least-square approximation,
minimum-Frobenius-norm, homokinetic joint, skew axes.

1 Introduction

Dual numbers are well documented in the literature, an extensive bibliography being
available in [1], with 73 entries. The literature is extensive for the scalar case, for
vectors and matrices much less so, but some references can becited, besides the
previous one, namely, [2] and [3]. Moreover, dual numbers can be defined over both
the real and the complex fields [4]; for the purposes of this paper, real numbers will
suffice. The set of dual numbers itself, however, is not a field, but aring [5].

The reason why dual numbers are relevant to kinematics can best be summarized
in The Principle of Transference[6]:

The kinematics and statics relations of spatial linkages and cam mechanisms can be derived
upon replacing the real variables occurring in the corresponding relations for spherical
linkages by dual numbers.
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The theory behind dual numbers is well established, but there are still some ap-
plications domains that haven’t been fully exploited. Thispaper is a contribution in
this direction. One objective of the paper is to shed light onthe handling of overde-
termined systems of dual linear equations (DLE), as arisingin theapproximate syn-
thesis of linkages, when the number of prescribed conditions to meet exceeds that of
linkage parameters available. In this context, the well-known results of linear least
squares are revisited in the realm of dual numbers. It is shown that the least-square
approximation of an overdetermined system of DLE admits a solution that can be
expressed in the form of the dual-equivalent of theMoore-Penrose generalized in-
verse, often referred to a theleft pseudoinverse. The author does not subscribe to
this terminology because it is misleading: the prefix “pseudo” denotes something
“false”, which is not the case here. One novel contribution is the result that, con-
trary to the real case, the left dual generalized inverse is not unique, which allows
for minimizing the Frobenius norm of the said inverse, thereby obtaining a unique
solution that shows a striking similarity with the dual inverse of a square matrix [2].
The same result is shown to apply to the right counterpart of the left generalized
inverse. The concepts discussed in Section 2 are then applied to the approximate
synthesis of function-generating RCCC linkages.

As an example, the synthesis of a linkage of this type to approximate ahomoki-
netic transmissionbetween two shafts of skew axes and lying at right angles is
fully discussed. By virtue of the minimum-norm property of the unique left Moore-
Penrose generalized inverse—for conciseness, henceforththe foregoing matrix will
be referred to as the “left generalized inverse,” with a similar denomination for its
right counterpart—the linkage thus obtained is one that notonly approximates the
prescribed number of conditions with a least-square error,but also does so with
a minimum size. Moreover, the slight errors present in the optimum solution can
be compensated for by means of computer control, upon resorting to an inverse-
kinematics approach that guarantees that the linkage output will follow the pre-
scribed input signal upon modulating the linkage input accordingly.

2 Back to Basics: Algebra of Dual Numbers

While dual algebra is a classic subject, and its bases are well established, there
is still room for research contributions in the area of applications. One such area
is the approximate synthesis of linkages, which often leadsto linear least-square
problems, the subject of this paper. Their nonlinear counterparts are manageable
once the foundations for linear problems have been established.

An item that has not been duly addressed in the pertinent literature is the def-
inition of the derivative of a dual-valued function of a dualargument, but it was
discussed by Kotel’nikov in his original book [7]: given thedual function

f̂ (x̂)≡ f (x̂)+ ε fo(x̂), x̂= x+ εxo
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its derivative with respect to its dual argument can be readily obtained as the limit
of a ratio of increments, which yields the relation

d f̂
dx̂

=
d f
dx

+ ε
d fo
dx

(1)

consistent with Kotel’nikov [7]. This relation will be needed below.
The extension of the foregoing definitions to vectors and matrices follows as

a combination of these definitions and the rules for the counterpart operations for
vectors and matrices. The inverse of a dual matrix is given in[1] and [2]. The former
also includes a formula for thedual left generalized inverse1. As the formulas are
displayed in that paper without derivation, the paper misses an important point: the
generalized inverse in question is not unique. This issue ismade apparent below.

For starters the expression for the dual inverse matrix derived in [2] is recalled:
let Â = A+ εAo be a dual matrix, withA, Ao ∈ IRn×n, its inverse being defined as
long asA is invertible, althoughAo need not be so. The inverse ofÂ is given by

Â
−1

= A−1− εA−1AoA−1 (2)

Paraphrasing the derivation of the expression (2) for the dual inverse, not in-
cluded here for the sake of conciseness, letB̂ = B + εBo be the left generalized
inverse of am×n dual matrixÂ, with m> n. As a consequence,B̂ is bound to be
of n×m. In the sequel, it will be made apparent that onlyA need be of full rank
for the desired generalized inverse to exist, butAo can be rank-deficient. Then,B̂
verifiesB̂Â = 1n, with 1n denoting then×n identity matrix. Upon expansion of the
foregoing left-hand side, two real equations are obtained,one for the primal, one for
the dual part:

BA = 1n, BoA+BAo = On (3)

whereOn denotes then×n zero matrix, the first equation leading to the not so un-
expected resultB = (ATA)−1AT ≡ AI , i.e., the left generalized inverse ofA. When
the foregoing expression is substituted into the second of the two above equations,
a matrix equation forBo is derived:

BoA =−AI Ao ⇒ ATBT
o =−AT

o (A
I )T ≡−AT

o A(ATA)−1

which is a system ofn2 equations inmn> n2 unknowns, the real components ofBo.
The system is, thus, underdetermined, thereby admittinginfinitely many solutions.
The conclusion is, then, that thedual left generalized inverse is not unique. Among
all that many solutions, one of minimumFrobeniusnorm, tr(BBT), can be obtained
if one resorts to the right generalized inverse ofAT , denoted(AT)† [8]:

(AT)† = A(ATA)−1 (4)

whence, after some obvious manipulations,

1 Actually, the authors do not stress the difference between the right and the left generalized in-
verses; they represent both with the same symbol,( · )+.
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Bo =−AI AoAI (5)

Therefore, the minimum-Frobenius-norm̂A
I

is

Â
I
= AI − εAI AoAI (6)

which bears a striking similarity with the dual inverse, an expression also displayed
in [1].

The right Moore-Penrose generalized inverse of a dual matrix Ĉ =C+εCo, with

C, Co ∈ IRm×n andm< n, is defined as the dual matrix̂C
† ≡ D̂ such thatĈD̂ = 1m,

with D̂ = D + εDo and D, Do ∈ IRn×m. The computation ofD and Do follows
the same pattern as that ofB andBo above. The details are not included here for
conciseness, but the results are displayed below:

Ĉ
†
= C†− εC†CoC† (7)

a formula that is also displayed in [1], but without a proof. Again, as in the case of

AI , Ĉ
†

is not unique, the formula displayed above being the one witha minimum
Frobenious norm.

Now the left dual generalized inverse is applied to the solution of an overdeter-
mined system ofmdual linear equations inn< mdual unknowns, grouped in vector
x̂, of the form

Âx̂ = b̂ (8)

whereÂ is assumed as above, to be a dualm×n matrix, withm> n and with a full-
rank primal part,̂x andb̂ being, respectively,n- andm-dimensional dual vectors. As
the system is overdetermined, it is not possible to find a vector x̂ that will verify all
m dual equations (8), but it will be shown that it is possible tofind the vector̂x that
will render the Euclidean norm of the dual errorê a minimum, withê defined as

ê = b̂− Âx̂ (9)

whose Euclidean norm2 ‖ê‖ is the square root of the scalar productêT ê, i.e.,

‖ê‖2 = ‖b̂‖2−2b̂
T

Âx̂+ ‖Âx̂‖2 (10)

The error Euclidean norm is minimized upon zeroing the derivative of‖ê‖2 with
respect tôx, which readily leads to thedual normal equations(DNE):

Â
T

Âx̂ = Â
T

b̂ ⇒ Â
T

ê0 = 0 (11)

thereby stating an important theoretical result: the minimum-norm error—i.e., the

errorê0 of minimum Euclidean norm—lies in the null space ofÂ
T
, a restatement of

the classicalProjection Theorem, but now in dual space. Another theoretical result

2 If e andeo denote the primal and dual parts ofê, then‖ê‖2 = ‖e‖2+ ε2eT eo.
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is the expression for the least-square solutionx̂0, obtained directly from the normal
equations (11):

x̂0 = Â
I
b̂ (12)

Expression (12) is a representation of theuniqueminimum-norm least-square solu-
tion of system (8), but should not be used verbatim to computex̂0, because of the

frequent ill-conditioning of the product̂AÂ
T
. Instead, the QR decomposition [9]

should be applied.

Interestingly, having chosen the dual partBo of Â
I

with minimum norm guaran-
tees that the dual partxo0 of the least-square solution̂x0 is of minimum Euclidean
norm. This property will be exploited in the synthesis of a RCCC linkage intended
to approximate a homokinetic transmission between two shafts of skew axes, lying
at right angles.

3 Synthesis of a RCCC Linkage

The foregoing results will now be applied to the synthesis ofthe RCCC linkage
shown in Fig. 1, with geometric parameters defined using the original Denavit-
Hartenberg notation [10].

The input-output (IO) equation of the RCCC linkage was derived by Yang and
Freudentstein [11]. The same equation was more recently cast in a framework that
allows its analysis in a unified form applicable to planar, spherical and spatial four-
bar linkages [12]. For the sake of brevity, the IO equation isnot derived here. It is
displayed below, as taken from the foregoing reference:

F̂(ψ̂ , φ̂ )≡ k̂1+ k̂2cosψ̂ + k̂3cosψ̂ cosφ̂ − k̂4cosφ̂ + sinψ̂ sinφ̂ = 0 (13)

whereψ̂ , the input angle, has been “hatted”, even though this angle is associated
with a R joint, which undergoes pure rotations about its axis. In fact,ψ̂ = ψ + εb2,
whereb2 accounts for the location of the common normal between this axis (Z2) and
Z3. The primal parts of thedual Freudenstein parameters(DFP) are given below:

k1 ≡
λ1λ2λ4−λ3

µ2µ4
, k2 =

λ4µ1

µ4
, k3 = λ1, k4 =

λ2µ1

µ2
(14)

with the definitionsλi ≡ cosαi andµi ≡ sinαi 6= 0, while αi is displayed in Fig. 1,
their dual counterparts being defined as
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Fig. 1 A generic RCCC linkage

ko1 = −a1λ2λ4µ1µ2µ4+a2(λ1λ4−λ2λ3)µ4−a3µ2µ3µ4+a4(λ1λ2−λ3λ4)µ2

µ2
2 µ2

4

ko2 =
a1λ1λ4µ4−a4µ1

µ2
4

, ko3 =−a1µ1, ko4 =
a1λ1λ2µ2−a2µ1

µ2
2

(15)
The synthesis problem can now be formulated as: given a set ofinput-angle val-

ues{ψi }m
1 and a set of corresponding output values{φi , ui }m

1 , whereui denotes the
i th prescribed value of the output variable3 b1, find the linkage parameters{ai, αi }4

1
that will produce a RCCC linkage that meets the prescribed IOrelations. Since we
havem IO conditions to meet, in the form of the dual equations (13),and four dual
linkage parameters, whenm= 4 the prescribed IO values can be met exactly, which
corresponds toexact synthesis. Form> 4, no linkage will possibly meet allm pre-
scribed IO values. However, it is possible to find the linkagethat will meet these
values with the minimum error, which is known asapproximate synthesis. Never-
theless, a word of caution is in order: although the error vector defined in eq.(9) has
components with two different units, radians and m, its normis well defined, as per
footnote 2. Hence, a linkage can be found that meets the synthesis equations with
an error of minimum Euclidean norm,independent of the units chosen. The said
equations are obtained upon substitution of the input and output variables by their
m prescribed values in the IO equation:

3 The new variableui is introduced with the purpose of avoiding double subscripts.
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F̂i(ψi , φ̂i)≡ k̂1+ k̂2cosψ̂i + k̂3cosψ̂i cosφ̂i − k̂4cosφ̂i +sinψ̂i sinφ̂i = 0, i = 1, . . . , m
(16)

which are linear in the dual Freudenstein parameters{ k̂i }4
1. Hence, upon assembling

them foregoing equations, a system ofm dual linear equations in the four DFP is
obtained:

Ŝk̂ = b̂ (17)

with

Ŝ =








1 cψ1 cψ1cφ1 −cφ1

1 cψ2 cψ2cφ2 −cφ2
...

...
...

...
1 cψm cψmcφm −cφm








︸ ︷︷ ︸

S

+ε








0 −b2sψ1 −u1cψ1sφ1−b2sψ1cφ1 u1sφ1

0 −b2sψ2 −u2cψ2sφ2−b2sψ2cφ2 u2sφ2
...

...
...

...
0 −b2sψm −umcψmsφm−b2sψmcφm umsφm








︸ ︷︷ ︸

So

(18)
with c(·) ands(·) denoting cos(·) and sin(·), respectively, while

b̂ =−








sψ1sφ1

sψ2sφ2
...

sψmsφm








︸ ︷︷ ︸

b

−ε








u1sψ1cφ1+b2cψ1sφ1

u2sψ2cφ2+b2cψ2sφ2
...

umsψmcφm+b2cψmsφm








︸ ︷︷ ︸

bo

(19)

Now, upon equating the primal and the dual parts of eq.(17), two real vector
equations are obtained, namely,

Sk = b, Sko+Sok = bo ⇒ Sko = bo−Sok (20)

which amount to two overdetermined linear systems of equations, both with the
same matrix coefficientS, one for k, one for ko. The computation of the least-
square solution proceeds in two steps: first the primal equation is solved fork; with
the least-square solution thus obtained,k0, substituted into the dual equation, the
least square solution of this equation,ko0, is obtained. Notice that these calculations
being done using the QR decomposition, the primal synthesismatrix needs factoring
only once. This feature is important if the foregoing procedure is a part of a second,
external optimization procedure, that calls for many iterations. It is noteworthy that
the DH parameterb2 is not included in either the primal or the dual part of the
DFP, eqs.(14) and (15), respectively, and hence, this parameter has been taken to
the right-hand side of the dual synthesis equations (20);b2 has to be treated not as
an unknown, but as a parameter, that can be used to either fine-tune a solution or to
optimize an objective function.

Now the RCCC linkage is synthesized so as to approximate a homokinetic trans-
mission for values of the input and the output variables thatsweep angles of 120◦.
Moreover, the primal synthesis equation leading to a spherical linkage, the associ-
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ated synthesis procedure is identical to that reported in [13]. In that paper, a search
is included on the optimum values of the location of the zerosof the input and out-
put dials, which amount to a translation of the data points{ψi , φi }m

1 en masse, i.e.,
under a rigid-body translation, in theφ -vs.-ψ plane. A continuum of values for the
optimum shifts were reported in that paper. The values adopted here areξ = 146◦

andη = 34◦, for ψ andφ , respectively.
The valuesψi , for i = 1, . . . m, with m= 501 prescribed datatriads4, are uni-

formly distributed in the interval 86◦(= −60◦+146◦) ≤ ψ ≤ 206◦, while theirφi

counterparts are distributed likewise in the interval−26◦(=−60◦+34◦)≤ φ ≤ 94◦.
The shafts to be coupled lying at right angles,α1 = 90◦, whenceλ1 = 0 andµ1 = 1.
Furthermore, given its desired homokinetic behavior, the linkage is assumed sym-
metric, as the input and output links play the same role, whence α4 = α2. In this
light, the number of unknown primal Freudenstein parameters reduces to only two,
for k3 = 0 andk4 = k2, a consequence of the foregoing assumptions and relations
(14). The number of prescribed points led to an overdetermined linear system of 501
equations in two unknowns, whose least-square solution is

k1 = 1.217, k2 = 0.9439⇒ k4 = 0.9439, α2 = α4 = 46.65◦, α3 = 132.4◦ (21)

with a rms value of the minimum-norm error equal to 0.01942, or 1.942%.
Next,a1 is set at 240 mm, as imposed by the design conditions, withb2 = a1 for

symmetry. Further, the valuesui of b1 at the prescribed values ofφi , which complete
theith triad, were distributed symmetrically aroundb1 = 0, withu1 =−a1/10,um=
a1/10, and following a cycloidal motion program:

ui =−a1

10
+U

(
i −1
m−1

− 1
2π

sin
2π(i −1)

m−1

)

(22)

with amplitudeU given asa1/5 in order to limit the output slidingb1. This program
was chosen because it starts smoothly with zero velocity andacceleration, and stops
likewise. The second system of eqs.(20), of 501 equations for two unknowns,ko1

andko2, led to the least-square solutionko0, with ko3 =−a1 =−240 mm not being
part of the unknowns, for its value is fixed from the prescribed values forα1 and
a1, as per eqs.(15). The optimum values were found to be, for theabove-mentioned
values ofk0,

ko1 = 319.0 mm, ko2 = 154.6 mm ko4 = ko2 (23)

with a rms value of the minimum-norm dual error of 1.119 mm, or2.33% of the
amplitudeU . For the record, thenormalizeddual part of the Euclidean norm of the
dual error,eTeo/

√
m, is 0.3260 mm or 0.07% of the amplitudeU .

Computing the DH linkage parameters now is straightforward, as eqs.(15) in-
volve these parameters linearly. The results are displayedbelow:

4 This high number was used with the purpose of bringing the optimum design errore0 as close
as possible to thestructural error, which measures the actual deviation of the synthesized output
angle from its prescribed value, as per the results reportedin [14].
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a2 =−76.46 mm, a3 = 209.4 mm, a4 = a2 (24)

where, interestingly,ai being defined as alength in the framework of the DH no-
tation, it must be non-negative. However, a negative value for a2, and hence, for
a4, was obtained above. The interpretation of the negative sign here is well known
within the methodology set forth by Freudenstein [15]: should a2 (a4) turn out to be
negative as a result of the linkage synthesis for function generation, then measure
angleψ (φ ) not as indicated in Fig. 1, but from its extension, i.e., add180◦ to the
prescribed input (output) angles. This completes the solution to the synthesis prob-
lem, a CAD model thereof being shown in Fig. 2. In this figure, the output motion
of the quasi-homokinetic mechanism is the rotation of the splined shaft, which is
mounted on the machine frame by means of standard bearings.

Fig. 2 A CAD model of the synthesized RCCC linkage

4 Conclusions

Some novel results in the realm of the algebra of dual numbers, in connection with
dual linear least-square problems were introduced here, then applied to the synthe-
sis of the RCCC function generating linkage. The methodology thus established
was then illustrated with the solution of a problem of current interest, the approx-
imate synthesis of a RCCC linkage for homokinetic transmission between shafts
with skew axes, lying at right angles.
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