\qquad
\qquad

EXAMINATION BOOK/CAHIER D'EXAMEN

Last Name/ Nom \qquad CLASS TEST

First Name/Prénom: \qquad SOLUTION

McGill ID /N ${ }^{\circ}$ de matricule McGill : \qquad
Date of Exam/Date de l'examen: October 8, 2009 (yyyy/mm/dd) (année/mois/jour)
Subject and Course Code/Sujet et code du cours: MECH 541 Kinematic Syruthests
Section/Section \qquad Room/Salle : \qquad Row and Seat Number/Rangée et siege : \qquad

INSTRUCTIONS:

1. Fill in the above carefully.
2. Write your answers on the right-hand side of the exam book. Use the left-hand side for rough work and calculations.
3. Do not write in the margins.
4. If a page is accidentally left blank, write "PT.O." on it.
5. Do not tear pages from the exam book.
6. At the time of the examination, you must not have in your possession any cellphones, books, calculators, dictionaries, notes or any other extraneous material unless otherwise indicated on the Exam Paper Cover instructions.
7. Put additional books inside the first book when submitting your exam.
8. This book cannot be taken from the examination room.

DIRECTIVES

1. Remplissez soigneusement la section ci-dessus.
2. Écrivez vas réponses dans la section de droite du cahier d'examen. Utilisez la section de gauche pour l'ébauche et le calcul.
3. N'écrivez pas dan les marges.
4. Si vous avez laissé involontairement: une page blanche, veuillez y inscrire «voir page suivante».
5. Aucune page du cahier d'examen ne doit être retirée.
6. Durant l'examen, vous ne pouvez avoir en votre possession de cellulaire, livre, calculatrice, dictionnaire, note bu tout materiel superflu à mons d'indication contraire dans les directives indiquées sur la couverture de l'examen.
7. Veuillez insérer les cahiers additionnels à l'intérieur du premier cahier au moment de remettre votre examen.
8. Le présent cahier doit demeurer dons la ale d'examen.

For Examiner's Use Only Section réservé a l'examinateur 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

McGill University values academic integrity, which entails mutual respect, honesty, trust, fairness, and responsibility'. A healthy academic community can flourish only with intellectual and personal honesty during examinations. Thus, it is essential that the work submitted on examinations reflects one's own honest efforts.

L'Université McGill accorde beaucoup d'importance al l'intégrité universitaire, laquelle repose sur le respect mutuel, l'honnêteté, la confiance, l'équité et la responsabilité'. Un milieu universitaire sain ne peut prospérer que si les participants aux examens font preuve d'honnéteté intellectuelle et personnelle. Il est dons essentiel que les examens reflètent l'effort personnel de chacun.
'Center for Academic integrity. The Fundamental values of Academic Integrity Raleigh, North Carolina Duke University. 1999.

1 (a) \vec{e}_{0}, the Reast-square error vector, must lie in the null space of \tilde{S}^{\top}.

$$
\left.\begin{array}{rl}
\vec{e}_{0}=S_{r}^{s} \vec{k}-\vec{b}= & \underbrace{\left[\begin{array}{ll}
1 & -1.366 \\
1 & -1.409 \\
1 & -1.409 \\
1 & -0.9857 \\
-0.9857 \\
-0.8669
\end{array}\right]}_{\left[\begin{array}{c}
-0.8669 \\
1
\end{array}\right.}\left[\begin{array}{c}
2.906 \\
2.762
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
-0.8660 \\
-0.9848 \\
-0.9848 \\
-0.8660
\end{array}\right]
$$

which is close to zero for the data-precision.

$$
\begin{aligned}
& \begin{array}{l}
(b) \\
s^{\top} S \\
\sim
\end{array}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1.366 & -1.409 & -1.409 & -1.366
\end{array}\right]\left[\begin{array}{cc}
1 & -1.366 \\
1 & -1.409 \\
1 & -1.409 \\
1 & -1.366
\end{array}\right] \\
& =\left[\begin{array}{cc}
4.0 & -5.550 \\
-5.550 & 7.702
\end{array}\right] \\
& \underset{\sim}{S^{\top}} \vec{b}=\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right. \\
& =\left[\begin{array}{r}
-3.702 \\
5.141
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(S_{\sim}^{\top} \underset{\sim}{s}\right) \equiv \Delta=0.0055 \Rightarrow \frac{1}{\Delta}=181.8 \\
& \Rightarrow\left(S_{\sim}^{T} S\right)^{-1}=181.8\left[\begin{array}{ll}
7.702 & 5.550 \\
5.550 & 4.0
\end{array}\right] \\
& \vec{k}_{n e} \equiv\left({\underset{\sim}{S}}^{\top} \underset{\sim}{S}\right)^{-1}{\underset{\sim}{S}}^{\top} \vec{b}=181.8\left[\begin{array}{ll}
7.702 & 5.550 \\
5.550 & 4.0
\end{array}\right]\left[\begin{array}{c}
-3.702 \\
5.141
\end{array}\right] \\
& =181.8\left[\begin{array}{l}
0.0197 \\
0.0179
\end{array}\right]=\left[\begin{array}{l}
3.581 \\
3.254
\end{array}\right]+\vec{h}
\end{aligned}
$$

Different value fum \vec{k}. Let's quantify difference:

$$
\begin{aligned}
& \Delta \vec{k} \equiv \vec{k}-\vec{k}=\left[\begin{array}{l}
3.581 \\
3.254
\end{array}\right]-\left[\begin{array}{l}
2.906 \\
2.762
\end{array}\right]=\left[\begin{array}{l}
0.6750 \\
0.4920
\end{array}\right] \\
& \|\vec{k}\|=\sqrt{2.906^{2}+2.762^{2}}=[4.009 \\
& \frac{\Delta \vec{k}}{\|\vec{k}\|}=\left[\begin{array}{l}
0.1684 \\
0.1227
\end{array}\right] \Rightarrow \| \frac{\Delta \vec{k}}{\|\vec{k}\| \|_{\infty}=0.1684}
\end{aligned}
$$

Comment: Difference is of abut 17% Which \vec{k} to take? Check normality condm for

$$
\begin{aligned}
& \vec{k}_{n e} \text { : } \\
& \vec{e}_{n e}=S \vec{h}_{n e}-\vec{b}=\left[\begin{array}{ll}
1 & -1.366 \\
1 & -1.409 \\
1 & -1.409 \\
1 & -1.366
\end{array}\right]\left[\begin{array}{l}
3.581 \\
3.254
\end{array}\right]-\left[\begin{array}{c}
-0.8660 \\
-0.9848 \\
-0.9848 \\
-0.8660
\end{array}\right] \\
& {\left[\begin{array}{c}
-0.8640 \\
-1.004 \\
-1.004 \\
-0.8640
\end{array}\right]} \\
& =\left[\begin{array}{c}
0.0020 \\
-0.0192 \\
-0.0192 \\
0.0020
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\underset{\sim}{s}}^{T} \vec{e}_{n e} & =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1.366 & -1.409 & -1.409 & -1.366
\end{array}\right]\left[\begin{array}{c}
0.0020 \\
-0.0192 \\
-0.0192 \\
0.0020
\end{array}\right] \\
& =\left[\begin{array}{c}
-0.0344 \\
0.0486
\end{array}\right] \not \overrightarrow{0}_{2} \text { for data-precision }
\end{aligned}
$$

$\Rightarrow \vec{k}_{n e}$ not acceptable; \vec{k}^{2} acceptable
2 (a) Let $A_{1} \& A_{2}$ be the axes of the H pairs, with $A_{1} \| A_{2}$. Let \vec{n} be the unit normal of the plane of the Π joints \Rightarrow

$$
\mathscr{L}(1,5)=H\left(A_{1}, p_{1}\right) \cdot H\left(A_{2}, p_{2}\right) \cdot D_{\pi}(\vec{n}) \cdot D_{\pi}(\vec{n})
$$

where p_{1} \& p_{2} are the pitches of the H pairs. As all four bounds of the above product are independent, $\operatorname{dim}[\mathcal{L}(1,5)]=d o f=4$
Since all four bonds lie in $\mathcal{X}(\vec{e})$, where \vec{e} is the unit vector panclel to $\& 1$ \& A_{2},

$$
\mathscr{L}(1,5)=x_{0}(\vec{e}) \quad \frac{\text { Ans. }}{5}
$$

(b) Let \vec{f} be the unit vector panelel to $B_{1} \& B_{2}$, the axes of the second chain. Let $\mathcal{L}(1,5)$ found above be denoted $\mathcal{L}_{I}(1,5)$, the bond of the secund chain being $\mathcal{L}_{\text {II }}(1,5)=x(\vec{f})$. Moreover,

$$
\mathcal{L}_{I}(1,5)=J_{3} \cdot R(A), \mathcal{L}_{\text {II }}(1,5)=\tilde{J}_{3} \cdot R(B)
$$

Where $A \| \vec{e}$ \& $B \| \vec{f} \Rightarrow$

$$
\mathscr{L}_{I}(1,5) \cap \mathscr{L}_{\text {II }}(1,5)=\left(J_{3} \cdot R(A)\right) \cap\left(\tau_{3} \cdot R(B)\right)=J_{3}
$$

i.e., the parmblel amy of chains is a J_{3}-generator Ans.

