McGill University
 Department of Mechanical Engineering

MECH 541 Kinematic Synthesis
 OPEN BOOK. NO CALCULATORS ALLOWED

Date and Time: March 15th, 2012, from 8:35 a.m. to 9:55 a.m.
N.B.: question weights are based on time to finish, rather than difficulty.

1. (50%) While working on the design of a spherical four-bar linkage that would produce a constant velocity ratio of $1: 1$ in the interval $\psi_{1} \leq \psi \leq \psi_{2}$, a clever junior engineer proposes to impose four conditions: $\psi_{1}=-30^{\circ}, \phi_{1}=30^{\circ} ; \psi_{2}=30^{\circ}, \phi_{2}=90^{\circ} ; \dot{\psi}=\dot{\phi}$ at both $\left(\psi_{1}, \phi_{1}\right)$ and (ψ_{2}, ϕ_{2}). With these conditions, a 4×4 synthesis matrix \mathbf{H} and a 4 -dimensional right-hand side vector \mathbf{h}-these variable names have been chosen to avoid confusion with the usual \mathbf{S} and \mathbf{b}-are obtained, namely,

$$
\mathbf{H}=\left[\begin{array}{cccc}
1 & \sqrt{3} / 2 & 3 / 4 & -\sqrt{3} / 2 \\
1 & \sqrt{3} / 2 & 0 & 0 \\
0 & -1 / 2 & 0 & -1 / 2 \\
0 & 1 / 2 & \sqrt{3} / 2 & -1
\end{array}\right], \quad \mathbf{h}=\left[\begin{array}{c}
-1 / 4 \\
1 / 2 \\
0 \\
\sqrt{3} / 2
\end{array}\right]
$$

Compute the solution \mathbf{k} to the synthesis equations $\mathbf{H k}=\mathbf{h}$, and, without computing the Denavit-Hartenberg parameters-angles α_{i}, for $i=1, \ldots, 4$-determine whether the linkage is feasible. Hint: reciprocal bases are strongly recommended here, to do the computation swiftly and safely. To use reciprocal bases, you will have to decouple one equation from the other three.
2. (15%) Shown in Fig. 1 is a serial kinematic chain of the RHHR type, with the screw pairs of parallel axes and different pitches, while each H joint is coaxial with its corresponding R joint. Find the degree of freedom of the mechanism and describe the motion undergone by link 3 with respect to link 1.
3. A spherical four-bar linkage has been designed with the Denavit-Hartenberg parameters $\alpha_{1}=120^{\circ}, \alpha_{2}=\alpha_{3}=\alpha_{4}=90^{\circ}$. The R\&D Department has approved the production of the linkage, as it was found feasible.
(a) (5%) Compute its Freudenstein parameters.
(b) (15\%) Determine whether its input link is a crank. Hint: recall the rationale behind the mobility analysis in planar linkages, and state whether it can be applied here, giving reasons, while taking into account that the linkage is feasible.
(c) (15%) What about the output link?

Figure 1: A RHHR mechanism

