McGill University Department of Mechanical Engineering

MECH 541 Kinematic Synthesis

Class Test

OPEN BOOK. ONLY FACULTY STANDARD CALCULATORS ALLOWED

Date and Time: December 1st, 2009, from 8:35 a.m. to 9:55 a.m.

1. The synthesis of a symmetric gripper based on a planar four-bar linkage, with $k_{2}=k_{3}$ is revisited. This case is known to lead to a $m \times 2$ synthesis matrix \mathbf{S}, with a two-dimensional unknown vector $\mathbf{k}=\left[k_{1}, k_{2}\right]^{T}$ and a m-dimensional right-hand side vector \mathbf{b}. The synthesis of the linkage was conducted for the data given in Table 1, with $\bar{\phi}_{i}$ denoting the prescribed output-angle value, ϕ_{i} the generated value. Furthermore, the sensitivity values of the design error e_{i} w.r.t. the generated value ϕ_{i} are displayed in the fifth column of the table.

Table 1: Four data points equally spaced along line $\phi=3 \pi / 2-\psi$

i th point	ψ_{i}	$\bar{\phi}_{i}$	ϕ_{i}	$\mathrm{~d} e_{i} / \mathrm{d} \phi_{i}$
1	0.5236	4.188	4.189	1.900
2	0.6981	4.015	4.014	1.948
3	0.8727	3.840	3.840	1.956
4	1.047	3.667	3.665	1.885

The corresponding synthesis matrix \mathbf{S} and vector \mathbf{b}, both computed at the prescribed values of the output angle, along with the least-square approximation of the synthesis equation $\mathbf{S k}=\mathbf{b}$ are given below ${ }^{1}$:

$$
\mathbf{S}=\left[\begin{array}{cc}
1 & -1.367 \\
1 & -1.408 \\
1 & -1.409 \\
1 & -1.365
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-.8666 \\
-.9847 \\
-.9848 \\
-.8670
\end{array}\right], \quad \mathbf{k}=\left[\begin{array}{l}
2.919 \\
2.771
\end{array}\right]
$$

Letting \mathbf{S}_{g} denote the synthesis matrix evaluated at the generated values, this was obtained as

$$
\mathbf{S}_{g}=\left[\begin{array}{ll}
1 & -1.366 \\
1 & -1.409 \\
1 & -1.409 \\
1 & -1.366
\end{array}\right]
$$

(a) (10%) Find the structural error \mathbf{s} of the linkage given by \mathbf{k} above, and show that the linkage thus obtained does not minimize \mathbf{s} at the given four-digit precision; moreover,

[^0](b) (40%) find an improvement to \mathbf{k} that is expected to give a lower structural error, using verbatim the expression displayed in eq.(3.159) with a four-digit precision. Hints:
(i) The product $\mathbf{A}^{T} \mathbf{A}$, with \mathbf{A} of $m \times 2$, is a 2×2 matrix whose diagonal entries are the Euclidean norms-squared of the corresponding columns of \mathbf{A}, its identical off-diagonal entries being given by the scalar product of those two columns.
(ii) The inverse of a 2×2 matrix \mathbf{M} is ${ }^{2}$
\[

\mathbf{M}^{-1}=\frac{1}{\operatorname{det}(\mathbf{M})}\left[$$
\begin{array}{cc}
m_{22} & -m_{12} \\
-m_{21} & m_{11}
\end{array}
$$\right]
\]

2. Shown in Fig. 1 is a triangular workpiece $R S T$ that will undergo three steps of machining in a flexible manufacturing cell. As this operation will take place for a large batch of workpieces, the manufacturing engineer has decided to use a four-bar linkage to guide the workpiece through the different poses. Space limitations require that the grounded revolute joints have their centres at points $B(-1,1)$ and $B^{\star}(1,1)$.
(a) (40%) Compute the centre A_{0} of the floating joint. Hint: it will help speed up the computations if the synthesis equations are expressed in the form $\mathbf{M a}=\mathbf{n}$, where the row \mathbf{m}_{j}^{T} of the 2×2 matrix \mathbf{M} and the n_{j} entry of \mathbf{n} are functions of $\mathbf{b}, \mathbf{r}_{j}$ and \mathbf{Q}_{j}. Hint (ii) of Problem 1 will also be helpful here.
(b) (10%) The circular point of the second dyad $B^{\star} A_{0}^{\star}$ was found to be $A_{0}^{\star}(1-\sqrt{2} / 2, \sqrt{2})$. Assuming that the driving link is $B A_{0}$, determine the type of linkage this is, doublecrank, crank-rocker, rocker-crank or double-rocker.

Figure 1: A triangular workpiece to undergo three machining steps in a flexible manufacturing cell, with lengths in m

[^1]
[^0]: ${ }^{1}$ These values are slightly different from those given in Class Test 1 , as they were computed with additional digits.

[^1]: ${ }^{2}$ Caveat: the subscripts of the off-diagonal entries of the expression given in eq.(1.8) are flawed; entries should be swapped.

