McGill University Department of Mechanical Engineering

MECH 541 Kinematic Synthesis

Class Test

OPEN BOOK. ONLY FACULTY STANDARD CALCULATORS ALLOWED

Date and Time: December 1st, 2009, from 8:35 a.m. to 9:55 a.m.

1. The synthesis of a symmetric gripper based on a planar four-bar linkage, with $k_2 = k_3$ is revisited. This case is known to lead to a $m \times 2$ synthesis matrix **S**, with a two-dimensional unknown vector $\mathbf{k} = [k_1, k_2]^T$ and a *m*-dimensional right-hand side vector **b**. The synthesis of the linkage was conducted for the data given in Table 1, with $\overline{\phi}_i$ denoting the prescribed output-angle value, ϕ_i the generated value. Furthermore, the sensitivity values of the design error e_i w.r.t. the generated value ϕ_i are displayed in the fifth column of the table.

ith point	ψ_i	$\overline{\phi}_i$	ϕ_i	$\mathrm{d}e_i/\mathrm{d}\phi_i$
1	0.5236	4.188	4.189	1.900
2	0.6981	4.015	4.014	1.948
3	0.8727	3.840	3.840	1.956
4	1.047	3.667	3.665	1.885

Table 1: Four data points equally spaced along line $\phi = 3\pi/2 - \psi$

The corresponding synthesis matrix **S** and vector **b**, both computed at the *prescribed* values of the output angle, along with the least-square approximation of the synthesis equation $\mathbf{Sk} = \mathbf{b}$ are given below¹:

$$\mathbf{S} = \begin{bmatrix} 1 & -1.367\\ 1 & -1.408\\ 1 & -1.409\\ 1 & -1.365 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -.8666\\ -.9847\\ -.9848\\ -.8670 \end{bmatrix}, \quad \mathbf{k} = \begin{bmatrix} 2.919\\ 2.771 \end{bmatrix}$$

Letting \mathbf{S}_g denote the synthesis matrix evaluated at the generated values, this was obtained as

$$\mathbf{S}_g = \begin{bmatrix} 1 & -1.366\\ 1 & -1.409\\ 1 & -1.409\\ 1 & -1.366 \end{bmatrix}$$

(a) (10%) Find the structural error **s** of the linkage given by **k** above, and show that the linkage thus obtained does not minimize **s** at the given four-digit precision; moreover,

¹These values are slightly different from those given in Class Test 1, as they were computed with additional digits.

- (b) (40%) find an improvement to **k** that is expected to give a lower structural error, using *verbatim* the expression displayed in eq.(3.159) with a four-digit precision. *Hints:*
 - (i) The product $\mathbf{A}^T \mathbf{A}$, with \mathbf{A} of $m \times 2$, is a 2 × 2 matrix whose diagonal entries are the Euclidean norms-squared of the corresponding columns of \mathbf{A} , its identical off-diagonal entries being given by the scalar product of those two columns.
 - (ii) The inverse of a 2×2 matrix **M** is²

$$\mathbf{M}^{-1} = \frac{1}{\det(\mathbf{M})} \begin{bmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{bmatrix}$$

2. Shown in Fig. 1 is a triangular workpiece RST that will undergo three steps of machining in a flexible manufacturing cell. As this operation will take place for a large batch of workpieces, the manufacturing engineer has decided to use a four-bar linkage to guide the workpiece through the different poses. Space limitations require that the grounded revolute joints have their centres at points B(-1, 1) and $B^*(1, 1)$.

- (a) (40%) Compute the centre A_0 of the floating joint. *Hint: it will help speed up the computations if the synthesis equations are expressed in the form* $\mathbf{M}\mathbf{a}_0 = \mathbf{n}$ *, where the row* \mathbf{m}_j^T *of the* 2 × 2 *matrix* \mathbf{M} *and the* n_j *entry of* \mathbf{n} *are functions of* \mathbf{b} *,* \mathbf{r}_j *and* \mathbf{Q}_j *. Hint (ii) of Problem 1 will also be helpful here.*
- (b) (10%) The circular point of the second dyad $B^*A_0^*$ was found to be $A_0^*(1-\sqrt{2}/2,\sqrt{2})$. Assuming that the driving link is BA_0 , determine the type of linkage this is, doublecrank, crank-rocker, rocker-crank or double-rocker.

Figure 1: A triangular workpiece to undergo three machining steps in a flexible manufacturing cell, with lengths in m

²Caveat: the subscripts of the off-diagonal entries of the expression given in eq.(1.8) are flawed; entries should be swapped.