McGill University

Department of Mechanical Engineering

MECH 541 Kinematic Synthesis

Class Test

OPEN BOOK. ONLY FACULTY STANDARD CALCULATORS ALLOWED

Date and Time: October 8th, 2009, from 8:35 a.m. to 9:55 a.m.

1. The synthesis of a planar four-bar linkage, to be used as a symmetric gripper, requires $k_{2}=k_{3}$, and hence, leads to a synthesis matrix \mathbf{S} of $m \times 2$, with a 2-dimensional unknown vector $\mathbf{k}=\left[k_{1}, k_{2}\right]^{T}$ and a right-hand side m-dimensional vector \mathbf{b}. The synthesis of the linkage was conducted for the data given in Table 1, which represent four equally spaced points along the line $\phi=3 \pi / 2-\psi$.

Table 1: Four data points equally spaced along line $\phi=3 \pi / 2-\psi$

i th point	ψ_{i}	ϕ_{i}
1	0.5236	4.189
2	0.6981	4.014
3	0.8727	3.840
4	1.047	3.665

The corresponding synthesis matrix \mathbf{S} and vector \mathbf{b}, along with the least-square approximation of the synthesis equation $\mathbf{S k}=\mathbf{b}$ are given below:

$$
\mathbf{S}=\left[\begin{array}{cc}
1 & -1.366 \\
1 & -1.409 \\
1 & -1.409 \\
1 & -1.366
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-.8660 \\
-.9848 \\
-.9848 \\
-.8660
\end{array}\right], \quad \mathbf{k}=\left[\begin{array}{l}
2.906 \\
2.762
\end{array}\right]
$$

(a) (20\%) Verify whether \mathbf{k} indeed leads to the least-square approximation of the synthesis equations; and
(b) (30%) set up the normal equations of the same problem, and compute their solution with four digits. Comment on the results. Hint: Feel free to use the expression for the inverse of a 2×2 matrix that appears in the Lecture Notes. From this expression follows that the inverse of a 2×2 matrix is a replica of the given one, with its diagonal entries swapped, its off-diagonal entries with the signs reversed, and the whole matrix thus resulting divided by the determinant of the given matrix.
2. Shown in Fig. 1 is a serial kinematic chain of the ННПП type, with the screw pairs of parallel axes and different pitches, while the two Π-joints lie in the same plane, which is parallel to the axes of the H pairs.
(a) (20%) If the links are numbered from 1 to 5 , with 1 being the base and 5 the end-link, find the kinematic bond $\mathcal{L}(1,5)$ of the kinematic chain, and determine the degree of freedom of the chain.
(b) (30%) Find the kinematic bond resulting from the parallel array of two identical chains of the type of Fig. 1, with the planes of their П-joints at right angles. That is, the two chains share the same base and end-links.

Figure 1: A serial chain of the ННПП type with screw pairs of parallel axes and distinct pitches, the planes of the Π joints being parallel to the screw axes

