
MECH 541 Kinematic Synthesis
The Spherical Burmester Problem—Fall 2009

1 Problem Formulation

The spherical Burmester Problem is stated below:

Problem 1 Find a spherical four-bar linkage that will conduct its coupler link through a set S of
m attitudes given by the orthogonal matrices {Qj }m1 , defined with respect to a reference attitude
given by Q0 = 1, where 1 denotes the 3× 3 identity matrix.

The four-bar linkage in question is depicted in Fig. 3.3, with its four linkage dimensions {αj }41.
To be consistent with the notation used for the planar Burmester Problem, the two grounded
revolutes are labelled B, the two moving revolutes A0. The linkage is thus fully defined by the two
dyads BA0. If a distinction is needed between the two dyads, one will be labelled B?A?

0.
The axes of the revolutes of one dyad are thus given by the segments OB and OA0, points B

and A0 being the intersections of these axes with the unit sphere; their position vectors are b and
a0, both of unit magnitude, i.e.,

‖b‖ = 1, ‖a0‖ = 1 (1)

Such as in the planar Burmester Problem, point B is called centre point, while A0 circular point.
As the coupler link moves, while visiting the m given attitudes, the circular point, which is common
to both the grounded link BA0 and the coupler link, attains positions A1, . . . , Am, the segments
along the axis of the moving revolute of the dyad thus becoming OA1, . . . , OAm. The synthesis
equation is obtained upon imposing the geometric constraint that the angle between OAj and OB
remains equal to that between OA0 and OB, i.e.,

aT
j b = aT

0 b or (aj − a0)
Tb = 0, j = 1, . . . , m (2)

where, apparently,
aj = Qja0 (3)

whence conditions (2) become

aT
0 (QT

j − 1)b = 0, j = 1, . . . , m (4)

An expression for Qj is readily obtained from the general expression for the rotation matrix
displayed in eq.(2.1c):

Qj = 1 + sjEj + (1− cj)E2
j , cj ≡ cosφj, sj ≡ sinφj (5)

where Ej = CPM(ej), ej denoting the unit vector that defines the direction of the axis of rotation
of Qj, and φj the corresponding angle. Hence,

Qj − 1 = [sj1 + (1− cj)Ej]Ej (6)

Therefore, eq.(4) becomes
aT

0 Ej[sj1− (1− cj)Ej]b = 0 (7)

In order to ease the ensuing discussion, let

gj ≡ (Qj − 1)a0 (8)

whence eq.(4) takes the form
gT

j b = 0, j = 1, . . . , m (9)
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2 Three Poses

In this case, m = 2, i.e., two constraint equations occur:

gT
1 b = 0 and gT

2 b = 0 (10)

Hence, one of the two vectors a0 and b can be prescribed arbitrarily. If, for example, the former
is prescribed, then g1 and g2 are known. The conditions of eq.(10) can thus be verified if b is
computed as the cross product of the two other vectors in those equations, i.e.,

b =
g1 × g2

‖g1 × g2‖
(11)

where b has been normalized to render it of unit magnitude.
A similar reasoning follows if b is prescribed, if with obvious modifications.

3 Four Poses

Now we have m = 3, the constraints being

gT
1 b = 0 gT

2 b = 0 and gT
3 b = 0 (12)

In order to be able to find a vector b simultaneously perpendicular to all three vectors gj in the
above equation, these three vectors must be coplanar, and hence,

F (a0) ≡ g1 × g2 · g3 = 0 (13)

which is a product of three factors that are linearly homogeneous in a0, as per eq.(8), and hence, the
synthesis equation (13) is cubic and homogeneous in a0. Moreover, the synthesis equation represents
a conical surface K with apex at the origin, of third degree. This surface can be termed, in analogy
with the planar case, the circlepoint conical surface. The surface intersects the unit sphere centred
at the origin along a spherical curve of third degree. The curve can be regarded as the generatrix of
the conical surface, each of whose elements defines the axis of a revolute that verifies the synthesis
equations, the foregoing joint thus being the moving revolute of the spherical dyad of the linkage
sought.

By a similar reasoning, the centrepoint conical surface M is obtained likewise. Any element of
this surface can play the role of the axis of the fixed revolute of the same dyad.

4 Five Poses

For m = 4, the synthesis equations lead to a homogeneous system of four homogeneous bilinear
equations in the unknown vectors a0 and b. As these are three-dimensional vectors, the total
number of unknowns at hand is six, but then again, two additional equations are available, namely,
eqs.(1), and the problem is fully determined. The four homogeneous equations can then be cast in
the form 

aT
0 E1[s11− (1− c1)E1]

aT
0 E2[s21− (1− c2)E2]

aT
0 E3[s31− (1− c3)E3]

aT
0 E4[s41− (1− c4)E4]


︸ ︷︷ ︸

≡ G

b = 04 (14)
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in which G is a 4×3 matrix whose jth row is apaprently gT
j . In light of the second of equations (1),

moreover, the trivial solution of eqs.(14) is not acceptable, and hence, G must be rank-deficient,
i.e., its three columns must be linearly dependent. This happens if and only if the four independent
3× 3 determinants obtained by taking three rows of G at a time vanish. Let

∆j(a0) ≡ det(Gj), j = 1, . . . , 4 (15)

with Gj denoting the 3 × 3 matrix obtained from G upon deleting its jth row. From Section 3
it is known that each of the four determinants defines a conical cubic surface whose apex is the
origin. The common intersections of all four surfaces are common elements of these surfaces; they
are the multiple moving-revolute axes that are capable of guiding the coupler link through the five
prescribed poses.

The Bezout number of the four cubic equations (15) is 34 = 81, which is an overestimate of
the actual number of possible solutions; this is known to be six (Chiang, 1988; McCarthy, 2000).
This statement is proven below, in following McCarthy. To this end, a result from algebra is first
recalled:

Lemma 1 Let M be a n× n matrix function of the real scalar x, its ith column containing entries
which are all polynomials in x of degree di. Then, det(M) is a polynomial in x of degree d =
d1 + d2 + . . .+ dn.

An informal proof is given below: Consider M of 3 × 3, its (i, j) entry being labelled mij. If
det(M) is expanded by cofactors of its first column, then

det(M) = m11(m22m33 −m23m32)−m21(m12m33 −m13m32) +m31(m12m23 −m13m22) (16)

Each term of the above summation is the product of a term mj1 of degree d1 by a difference of
products of degree d2 + d3, the summation then being of degree d1 + d2 + d3. The reader should be
able to apply this analysis to any n× n matrix with the structure of M.

What McCarthy does is, first, let a0 = [ x, y, z ]T , then relax condition (1)1, and let z = 1,
which yields

Dj(a0) ≡ Aj3y
3 + Aj2y

2 + Aj1y + Aj0 = 0, j = 1, . . . , 4 (17)

where Ajk is a polynomial in x of degree 3− k. In the final step, the four equations above are cast
in linear homogeneous form in the first four powers of y, including y0 = 1:

Ay = 04 (18)

with

A ≡


A13 A12 A11 A10

A23 A22 A21 A20

A33 A32 A31 A30

A43 A42 A41 A40

 , y ≡


y3

y2

y
1

 (19)

In light of the shape of y—its fourth entry is 1 6= 0—the system (18) does not admit the trivial
solution, and hence, A must be singular, i.e.,

det(A) = 0 (20)

1This is possible because one is interested in finding a line, the axis of the moving-revolute joint; any point on
the axis suffices to find the axis, not only the one lying a unit distance from the origin.

3



Apparently, the first column of A is cubic, the second quadratic, the third linear and the fourth
of degree 0 in x, whence det(A) is a polynomial in x of degree 3 + 2 + 1 + 0 = 6, q.e.d.

As a consequence, the problem admits six, four, two or zero circlepoint solutions. The same
reasoning leads to the conclusion that the problem also admits six, four, two or zero centrepoint
solutions. Therefore, the number of possible dyads that solve the problem is six, four, two or zero.
Correspondingly, the number of spherical four-bar linkages that can guide their coupler link through
the five given attitudes is the number of combinations of six, four or two objects taking two at a
time, i.e., 15, 6 or 1.

Remark: If a0 happens to lie in the X-Y plane, then z = 0, and the substitution z = 1 does not
work. In this case, simply choose an alternative coordinate, e.g., y = 1, and the proof should work.

5 Computational Algorithm

The foregoing discussion is intended to lay down the principles underlying the Spherical Burmester
Problem. It is by no means intended to be an algorithm to compute the coordinates of points B
and A0 on the unit sphere. This is most simply done using spherical coordinates on the unit sphere,
namely, longitude and latitude. Let, then, ϑA and ϕA

2 be the longitude and the latitude of A0, ϑB

and ϕB those of B. Hence,

a0 =

 cosϕA cosϑA

cosϕA sinϑA

sinϕA

 , b =

 cosϕB cosϑB

cosϕB sinϑB

sinϕB

 (21)

Now the four determinant equations (15) in a0 become equations in the harmonic functions of ϕA and
ϑA. Hence, any two of the four equations thus resulting can be used to find the spherical coordinates
of a0. Again, as in the planar case, it is convenient to use all four equations to add robustness to the
solution. The method recommended here to compute all real solutions is based on a semigraphical
approach: the jth determinant equation (15) defines a contour Cj in the ϕA-ϑA plane. If the four
contours are plotted in the rectangle −π ≤ ϕA ≤ π, −π ≤ ϑA ≤ π, then the intersections of the
four contours yield all the solutions sought. These intersections can be estimated by inspection
with two digits of precision, which can be good enough for most engineering problems. If higher
precision is required, these estimates can be fine-tuned by means of the Newton-Gauss method
for nonlinear least-square problems, as only two unknowns are to be found from four nonlinear
equations. Moreover, if the estimates are given as initial guesses to the Newton-Gauss method,
then the code implementing the method should converge within a couple of iterations.

6 Example

An example of spherical rigid-body guidance is given by Chiang (1988). The four cubic conical
surfaces resulting from these data are produced and displayed in Chiang5Poses.mw

The above Maple worksheet is available on the course website:

http://www.cim.mcgill.ca/~rmsl/Index/index.htm

When visiting that site, look four Courses and then MECH 541.

2Literals ϑ and ϕ are read varphi and vatheta, respectively.
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