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The Spherical Burmester Problem

What is the Burmester problem?

The classical Burmester problem
Are there any points in a rigid body whose corresponding position
lies on a circle of the fixed plane for the four arbitrarily
prescribed positions?–Burmester, 1888
The spherical Burmester problem
An extension of the classical Burmester problem, in which we are
interested in synthesizing a spherical four-bar linkage to visit a
discrete set of orientations of the coupler link
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Revelent Works

The nature of the problem is to solve a system of trigonometric
equations. The challenges can be seen in

The numerics
Branch-defect detection
Consideration of joint type, R- or P- joint

The problem has been studied by different approaches:
Geometric: using the Burmester-Roth Theorem to construct
center axes—Roth, 1967
Polynomial approach: sixth degree polynomial can be found
through variable elimination—Ruth and McCarthy, 1996
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The proposed approach in this work

Proposed here is a semigraphical approach, consisting of three steps:
1 Algebraic formulation—problem definition
2 Graphic display+inspection—raw solution estimates
3 Numerical solution—accurate result

It eliminates spurious solutions and filters complex solutions

An extension of a previous work on the classical Burmester
problem—Chen, Bai and Angeles 2008
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Problem Formulation
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FIGURE 1. The spherical 4R linkage

dyads BA0 and B?A?
0. By analogy with the planar Burmester

problem, points B and B? are called centerpoints, while A0 and
A?

0 circlepoints. As the coupler link moves, while visiting the
m given attitudes of the coupler link, the circlepoint, which is
common to both the grounded link õBA and the coupler link, at-
tains positions A1, . . . , Am, the segments along the axis of the
moving revolute of the dyad thus becoming OA1, . . . , OAm, as
shown in Fig. 2. The axes of the revolutes of one dyad are thus
given by the segments OB and OA0; the position vectors of B
and A0 are b and a0, both of unit magnitude, i.e.,

‖b‖= 1, ‖a0‖= 1 (1)

Likewise, the position vectors of points B? and A?
0 are denoted

by the unit vectors b? and a?
0. With the foregoing model, the

spherical Burmester problem is stated as:

Find a spherical four-bar linkage that will conduct
its coupler link through a set S of m attitudes given
by the orthogonal matrices

�
Q j
	m

1 , defined with re-
spect to a reference attitude given by Q0 = 1, where
1 denotes the 3×3 identity matrix.

3 Synthesis with m Prescribed Poses
For dyad BA0, by virtue of the link rigidity, the angle be-

tween OA j and OB remains constant. The synthesis equation
is thus obtained upon imposing this geometric constraint, i.e.,

aT
j b = aT

0 b or (a j−a0)T b = 0, j = 1, . . . , m (2)

where, apparently,

a j = Q ja0 (3)

whence conditions (2) become

aT
0 (QT

j −1)b = 0, j = 1, . . . , m (4)
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O
B

A2

A1

Aj

b

cj
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FIGURE 2. A spherical dyad and the conic surface formed by the
moving axis OA

In order to ease the ensuing discussion, let

c j ≡ (Q j−1)a0 (5)

Equation (4) then taking the form

cT
j b = 0, j = 1, . . . , m (6)

Geometrically, Eq. (6) states that vector b is perpendicu-
lar to any vector c j. Referring to Fig. 2, this means that seg-
ment OB is perpendicular to segments A0A j, j = 1, . . . ,m.

Note that the rotation matrices Q j admit various param-
eterizations, the one adopted here is in terms of the natural
invariants of the rotation [9]. An expression for the rotation
matrix Q j takes the form

Q j = 1+ s jE j +(1− c j)E2
j , c j ≡ cosφ j, s j ≡ sinφ j (7)

where E j denotes the cross-product matrix (CPM) of e j, the
unit vector that defines the direction of the axis of rotation of

2 Copyright c© 2010 by ASME

Find a spherical four-bar linkage that will conduct its coupler
link through a set S of m attitudes given by the orthogonal
matrices

¦
Qj

©m

1
, defined with respect to a reference attitude

given by Q0 = 1, the 3× 3 identity matrix.
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Synthesis Equations
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FIGURE 1. The spherical 4R linkage

dyads BA0 and B?A?
0. By analogy with the planar Burmester

problem, points B and B? are called centerpoints, while A0 and
A?

0 circlepoints. As the coupler link moves, while visiting the
m given attitudes of the coupler link, the circlepoint, which is
common to both the grounded link õBA and the coupler link, at-
tains positions A1, . . . , Am, the segments along the axis of the
moving revolute of the dyad thus becoming OA1, . . . , OAm, as
shown in Fig. 2. The axes of the revolutes of one dyad are thus
given by the segments OB and OA0; the position vectors of B
and A0 are b and a0, both of unit magnitude, i.e.,

‖b‖= 1, ‖a0‖= 1 (1)

Likewise, the position vectors of points B? and A?
0 are denoted

by the unit vectors b? and a?
0. With the foregoing model, the

spherical Burmester problem is stated as:

Find a spherical four-bar linkage that will conduct
its coupler link through a set S of m attitudes given
by the orthogonal matrices

�
Q j
	m

1 , defined with re-
spect to a reference attitude given by Q0 = 1, where
1 denotes the 3×3 identity matrix.

3 Synthesis with m Prescribed Poses
For dyad BA0, by virtue of the link rigidity, the angle be-

tween OA j and OB remains constant. The synthesis equation
is thus obtained upon imposing this geometric constraint, i.e.,

aT
j b = aT

0 b or (a j−a0)T b = 0, j = 1, . . . , m (2)

where, apparently,

a j = Q ja0 (3)

whence conditions (2) become
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In order to ease the ensuing discussion, let

c j ≡ (Q j−1)a0 (5)

Equation (4) then taking the form

cT
j b = 0, j = 1, . . . , m (6)

Geometrically, Eq. (6) states that vector b is perpendicu-
lar to any vector c j. Referring to Fig. 2, this means that seg-
ment OB is perpendicular to segments A0A j, j = 1, . . . ,m.

Note that the rotation matrices Q j admit various param-
eterizations, the one adopted here is in terms of the natural
invariants of the rotation [9]. An expression for the rotation
matrix Q j takes the form

Q j = 1+ s jE j +(1− c j)E2
j , c j ≡ cosφ j, s j ≡ sinφ j (7)

where E j denotes the cross-product matrix (CPM) of e j, the
unit vector that defines the direction of the axis of rotation of

2 Copyright c© 2010 by ASME

Assuming all links are rigid, all angles αi

remain constant

aT
j b = aT

0 b or (aj−a0)T b = 0; j = 1, . . . , m
(1)

where
aj = Qja0 (2)

In a compact form, (1) becomes

cT
j b = 0, j = 1, . . . , m (3)

with
cj ≡ (Qj − 1)a0 (4)
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Synthesis Equation (cont’d)

In invariant form,

Qj = 1 + sjEj + (1− cj)E2
j , cj ≡ cosφj , sj ≡ sinφj (5)

where Ej denotes the cross-product matrix (CPM) of ej , the unit
vector that defines the direction of the axis of rotation of Qj , and φj

the angle of rotation. The synthesis equation becomes

aT
0 Ej [sj1− (1− cj)Ej ]b = 0, j = 1, . . . ,m (6)

whose solution depends on the number m of prescribed poses.
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Synthesis with three poses

In this case, m = 2, i.e., two constraint equations occur:

cT
1 b = 0, and cT

2 b = 0 (7)

One of the two vectors a0 and b can be prescribed arbitrarily.
In the case of a0 known, then

b =
c1 × c2

‖c1 × c2‖
(8)

A similar reasoning, with obvious modifications, follows if b is
prescribed.

14
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Synthesis with four poses

Now we have m = 3, the constraints being

cT
1 b = 0, cT

2 b = 0 and cT
3 b = 0 (9)

All three vectors cj must be coplanar, and hence

F (a0) ≡ c1 × c2 · c3 = 0 (10)

This is a cubic, homogeneous equation in a0, which defines a conical
cubic surface whose apex is the origin.

Likewise, the centerpoint conical surface M was obtained for
unit vector b = [u,v,w]T as

F(b)=0.01678u3 +0.05157u2v+0.01743u2w−0.04005uv2

+0.02803uvw−0.05074uw2−0.00259v3−0.05317v2w

−0.00933vw2 +0.02762w3 (27)

The corresponding circlepoint and centerpoint curves are
shown in Fig. 5. One of the two curves can be used to select
two points. For example, we can select two centerpoints from
the centerpoint curve. The corresponding circlepoints are then
found form the intersection of the circlepoint curve with the
three planes derived from linear equations (13). Apparently,
infinitely many dyads are capable of visiting the prescribed
orientations.
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FIGURE 5. Four-pose synthesis curves on the unit sphere, (a) the
circlepoint curve and (b) the centerpoint curve

6.3 Example 3: Synthesis with a P-joint
In this example, the five prescribed attitudes are listed in

Table 3. These attitudes, involve displacement, c1, . . . ,c4 that
are coplanar, and hence, admit one fixed P-joint. We deter-
mine first the dyad comprising one P-joint. By using Eq. (25),
contours of four determinant equations are plotted in Fig. 6.
It is seen that there is only one solution {ϑa,ϕa}. The corre-
sponding unit vector b? is thus obtained, followed by the unit
vector a?

0. For the remaining dyad consisting of two R-joints,
four solutions are found with a procedure similar to that of
Example 1. Of the four solutions of a0 and b, one is identical
to the solution of a?

0 and b?. In other words, solutions of the
dyad containing one P-joint are a special case of the general
spherical R-R dyad. All results are listed in Table 4.

Altogether, there are three possible mechanisms contain-
ing one P-joint for the given solutions. One synthesized mech-
anism is shown in Fig. 7, which is a branching-free mecha-
nism, as made apparent by animations.

TABLE 3. Five poses for Example 3

φ j[rad] eT [β1,β2,β3][deg]

0 [0,0,1] [0,0,0]

0.2563 [−0.2280,−0.4553,−0.8606] [−12.5,7.0,−2.6]

1.1307 [−0.0578,0.2370,−0.9697] [−64.2,−10.5,−10.8]

1.1938 [0.5049,0.8505,−0.1468] [14.3,−56.9,45.6]

1.3665 [0.7119,0.6601,0.2393] [45.1,−30.7,73.2]

TABLE 4. Solutions of Example 3

a0 b

# 1 [0.2845,0.3863,0.8773] [0.1219,−.7089,−.6946]

# 2 [0.7226,0.5295,0.4442] [0.2309,0.4566,0.8591]

# 3 [0.9573,−.2433,0.1555] [0.8134,0.1643,0.5579]

a?
0 b?

# 4 [0.5221,0.8442,−.1208] [0.0655,0.1015,0.9926]

FIGURE 6. Contour plot to find position vectors for the unit vector
of the P-joint.

7 Discussion and Conclusions
In this paper, the spherical Burmester problem was re-

visited with the intent of formulating not only a robust set of
synthesis equations but also a robust solution of the equations
thus resulting. Both are considered essential for mechanism
synthesis.

The synthesis equations were formulated in the space of
two independent angles, longitude and latitude, which led, for
five prescribed poses, to a system of four overdetermined non-
linear equations in two unknowns. A semigraphical approach
led to a visual estimation of the real solutions, which were then
used as initial guesses to a Newton-Gauss procedure. The for-
mulation is robust in that it is general enough, to account for
the existence of spherical prismatic joints. Robustness in the

7 Copyright c© 2010 by ASME

Figure: (a) the circlepoint curve and (b) the centerpoint curve
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Synthesis with five poses

Now m = 4, the synthesis equations can be cast into the form
2
664

aT
0 E1[s11− (1− c1)E1]

aT
0 E2[s21− (1− c2)E2]

aT
0 E3[s31− (1− c3)E3]

aT
0 E4[s41− (1− c4)E4]

3
775

| {z }
≡C

b = 04 (11)

Non-trivial solutions require a rank-deficient C:

∆j(a0) ≡ det(Cj) = 0, j = 1, . . . , 4 (12)

Cj being the 3× 3 matrix obtained from C upon deleting its jth row.
Equations (12) define four conical cubic surfaces with one common
apex.
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Synthesis with one P-joint

A spherical linkage may end up with a P-joint, i.e., a slider moving on
a circular guide, similar to the planar crank-slider mechanism.

We consider this a special case, with α4 = 90 deg. Thus

bT Qja0 = 0, j = 0, . . . , m (13)

The above m equations can be written as

Ha0 = 0n (14)

where H is a n× 3 matrix with n = m+ 1. Non-trivial solutions for b
require a rank-deficient H, i.e., for m = 3,

det(Hi) = 0, i = 1, . . . , 4 (15)

where the 3× 3 matrix Hi is obtained by removing the ith row from
matrix H.
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Representation of the axes of rotation

We shall use spherical coordinates on the unit sphere, namely,
longitude and latitude.

Let ϑA and ϕA be the longitude and the
latitude of A0, ϑB and ϕB those of B. Hence,

a0 =

2
4 cosϕA cosϑA

cosϕA sinϑA

sinϕA

3
5 , b =

2
4 cosϕB cosϑB

cosϕB sinϑB

sinϕB

3
5

(16)
The ranges of all spherical coordinates:
{ϕA, ϑA, ϕB , ϑB} ∈ [−π/2, π/2].
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Branching detection

Branching-defect can occur in spherical linkages.

The branching defect is detected here by means of the sign of the sine
of the transmission angle, in analogy with the planar case:

sinµ =‖ a× b ‖ /(‖ a ‖‖ b ‖) (17)

where a = a− (a · a?)a? and b = b− (b · a?)a?, with
a = Qa0, a? = Qa?

0.

The sign of the sine of the transmission angle is given by

sgn(µ) = sgn
�
(a× b) · a?

�
(18)
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Example 1

Prescribed poses described by axes and angles of rotations with
reference to the initial pose.

Table: Five poses for Example 1

φj [rad] eT [β1, β2, β3][deg]

0 [0,0,1] [0,0,0]
0.2034 [−0.0449,−0.5133,−0.8569] [−10.0,−6.0, 0]
1.1957 [0.1827, 0.7709,−0.6101] [−51.0,−52.0,−12.0]
1.1932 [0.5212, 0.8414,−0.1422] [15.0,−56.0, 47.0]
1.0512 [0.5384, 0.8114, 0.2271] [33.0,−40.0, 47.0]

Note: β1, β2 and β3 are the corresponding angles of longitude and latitude,

respectively, which are also given with the purpose of helping the

visualization of the prescribed attitudes.
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Example 1 (cont’d)

Four sets of real solutions are found from the contour plots of angles
of longitude and latitude

(a)

(b)

FIGURE 3. The four contours for Example 1 leading to four pos-
sible solutions: (a) for the moving axis, (b) for the fixed axis

TABLE 2. Solutions of Example 1

a0(or a?
0) b(or b?)

# 1 [0.7085,−.6418,−.2932] [0.2640,−.6636,−.6998]

# 2 [0.0385,0.3163,0.9478] [0.1143,0.7263,−.6777]

# 3 [0.1642,0.6977,0.6972] [0.5218,0.8413,−.1403]

# 4 [0.8077,0.1493,0.5702] [0.9524,−.2535,0.1686]

6.2 Example 2: Synthesis with Four Poses

In the case of four-pose synthesis, there are infinitively
many solutions available, represented by the circlepoint and
centerpoint curves. Taking the first four poses of Example 1,
the circlepoint conical surface K was obtained for unit vector

(a) M1: 1+2 (b) M2: 1+3

(c) M3: 1+4 (d) M4: 2+3

(e) M5: 2+4 (f) M6: 3+4

FIGURE 4. Six synthesized mechanisms shown together with all
task orientations in yellow. The frames in red show the orientations
of the coupler, while solid dots show some traces of the origin of this
frame. Index 1+2 stands for a mechanism generated from the #1 and
#2 solutions, and so on.

a0 = [x,y,z]T as

F(a0)=−0.01766x3 +0.03116x2y+0.04156x2z+0.02939xy2

+0.08747xyz−0.06021xz2−0.01747y3−0.02155y2z

+0.02673yz2−0.00482z3 (26)

6 Copyright c© 2010 by ASME
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Six spherical linkages for Example 1

Altogether, six linkages can be synthesized for this example.

(a) M1: 1+2 (b) M2: 1+3 (c) M3: 1+4

(d) M4: 2+3 (e) M5: 2+4 (f) M6: 3+4

FIGURE 4. Six synthesized mechanisms shown together with all task orientations in yellow. The frames in red show the orientations of the
coupler, while solid dots show some traces of the origin of this frame. Index 1+2 stands for a mechanism generated from the #1 and #2 solutions,
and so on.

TABLE 3. Five poses for Example 3

φ j[rad] eT [β1,β2,β3][deg]

0 [0,0,1] [0,0,0]

0.2563 [−0.2280,−0.4553,−0.8606] [−12.5,7.0,−2.6]

1.1307 [−0.0578,0.2370,−0.9697] [−64.2,−10.5,−10.8]

1.1938 [0.5049,0.8505,−0.1468] [14.3,−56.9,45.6]

1.3665 [0.7119,0.6601,0.2393] [45.1,−30.7,73.2]

TABLE 4. Solutions of Example 3

a0 b

# 1 [0.2845,0.3863,0.8773] [0.1219,−.7089,−.6946]

# 2 [0.7226,0.5295,0.4442] [0.2309,0.4566,0.8591]

# 3 [0.9573,−.2433,0.1555] [0.8134,0.1643,0.5579]

a?
0 b?

# 4 [0.5221,0.8442,−.1208] [0.0655,0.1015,0.9926]

five prescribed poses, to a system of four overdetermined non-
linear equations in two unknowns. A semigraphical approach
led to a visual estimation of the real solutions, which were then

FIGURE 6. Contour plot to find position vectors for the unit vector
of the P-joint.

used as initial guesses to a Newton-Gauss procedure. The for-
mulation is robust in that it is general enough, to account for
the existence of spherical prismatic joints. Robustness in the
solution lies in the overdeterminacy of the synthesis equations
and the avoidance of roundoff-error propagation.

Branch-defect is detected by means of a sign-change in
the sine of the transmission angle. All tasks are incorporated
into one working platform developed on Maple, with the sem-
igraphical approach, which aids in the visualization of the syn-

7 Copyright c© 2010 by ASME

Note:
All task orientations shown in yellow
The frames in red show the orientations of the coupler
Branch defects were detected for M3 and M4.
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Example 2: Synthesis with one P-joint

Five poses and solutions to the linkage with one P-joint

φj [rad] eT [β1, β2, β3][deg]

0 [0,0,1] [0,0,0]
0.2563 [−0.2280,−0.4553,−0.8606] [−12.5, 7.0,−2.6]
1.1307 [−0.0578, 0.2370,−0.9697] [−64.2,−10.5,−10.8]
1.1938 [0.5049, 0.8505,−0.1468] [14.3,−56.9, 45.6]
1.3665 [0.7119, 0.6601, 0.2393] [45.1,−30.7, 73.2]

a0 b

# 1 [0.2845, 0.3863, 0.8773] [0.1219,−.7089,−.6946]
# 2 [0.7226, 0.5295, 0.4442] [0.2309, 0.4566, 0.8591]
# 3 [0.9573,−.2433, 0.1555] [0.8134, 0.1643, 0.5579]

a?
0 b?

# 4 [0.5221, 0.8442,−.1208] [0.0655, 0.1015, 0.9926]
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Mechanism synthesized for Example 2

FIGURE 7. One synthesized mechanism with a P-joint, showing
three link positions.

solution lies in the overdeterminacy of the synthesis equations
and the avoidance of roundoff-error propagation.

Branch-defect is detected by means of a sign-change in
the sine of the transmission angle. All tasks are incorporated
into one working platform developed on Maple, with the sem-
igraphical approach, which aids in the visualization of the syn-
thesis problem.
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Conclusions

A robust solution of synthesis equation for the spherical
Burmester problem was formulated
A semigraphical solution method was developed
Branch defect detection and synthesis with one P-joint were
considered
The method was demonstrated with two examples
Future work? spatial Burmester problem
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