A Robust Solution of the Spherical Burmester Problem

Jorge Angeles ${ }^{\dagger}$ and Shaoping Bai ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mechanical Engineering McGill University, Montreal, Canada
${ }^{\ddagger}$ Department of Mechanical and Manufacturing Engineering Aalborg University, Denmark

Outline

(1) Introduction
(2) Synthesis for spherical rigid-body guidance

三三

Outline

(1) Introduction
(2) Synthesis for spherical rigid-body guidance
(3) A linkage with a P-joint
4. Implementation considerations

Outline

(1) Introduction
(2) Synthesis for spherical rigid-body guidance
(3) A linkage with a P-joint
(4) Implementation considerations
(5) Examples

Outline

(1) Introduction
(2) Synthesis for spherical rigid-body guidance
(3) A linkage with a P-joint

4 Implementation considerations
(5) Examples
(6) Conclusions

Outline

(1) Introduction
(2) Synthesis for spherical rigid-body guidance
(3) A linkage with a P-joint

4 Implementation considerations
(5) Examples

6 Conclusions

Outline

(1) Introduction
(2) Synthesis for spherical rigid-body guidance
(3) A linkage with a P-joint

4 Implementation considerations
(5) Examples
(6) Conclusions

The Spherical Burmester Problem

What is the Burmester problem?

- The classical Burmester problem

Are there any points in a rigid body whose corresponding position lies on a circle of the fixed plane for the four arbitrarily prescribed positions?-Burmester, 1888

- The spherical Burmester problem

An extension of the classical Burmester problem, in which we are interested in synthesizing a spherical four-bar linkage to visit a discrete set of orientations of the coupler link

Revelent Works

The nature of the problem is to solve a system of trigonometric equations. The challenges can be seen in

- The numerics
- Branch-defect detection
- Consideration of joint type, R- or P- joint

The problem has been studied by different approaches:

- Geometric: using the Burmester-Roth Theorem to construct center axes-Roth, 1967
- Polynomial approach: sixth degree polynomial can be found through variable elimination - Ruth and McCarthy, 1996

The proposed approach in this work

Proposed here is a semigraphical approach, consisting of three steps:
(1) Algebraic formulation-problem definition
(2) Graphic display+inspection-raw solution estimates
(3) Numerical solution-accurate result

It eliminates spurious solutions and filters complex solutions
An extension of a previous work on the classical Burmester problem - Chen, Bai and Angeles 2008

Problem Formulation

Find a spherical four-bar linkage that will conduct its coupler link through a set \mathcal{S} of m attitudes given by the orthogonal matrices $\left\{\mathbf{Q}_{j}\right\}_{1}^{m}$, defined with respect to a reference attitude given by $\mathbf{Q}_{0}=\mathbf{1}$, the 3×3 identity matrix.

Synthesis Equations

Assuming all links are rigid, all angles α_{i} remain constant

$\mathbf{a}_{j}^{T} \mathbf{b}=\mathbf{a}_{0}^{T} \mathbf{b} \quad$ or $\quad\left(\mathbf{a}_{j}-\mathbf{a}_{0}\right)^{T} \mathbf{b}=0 ; j=1, \ldots, m$
where

$$
\mathbf{a}_{j}=\mathbf{Q}_{j} \mathbf{a}_{0}
$$

In a compact form, (1) becomes

$$
\begin{equation*}
\mathbf{c}_{j}^{T} \mathbf{b}=0, \quad j=1, \ldots, m \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{c}_{j} \equiv\left(\mathbf{Q}_{j}-\mathbf{1}\right) \mathbf{a}_{0} \tag{4}
\end{equation*}
$$

Synthesis Equation (cont'd)

In invariant form,

$$
\begin{equation*}
\mathbf{Q}_{j}=\mathbf{1}+s_{j} \mathbf{E}_{j}+\left(1-c_{j}\right) \mathbf{E}_{j}^{2}, \quad c_{j} \equiv \cos \phi_{j}, \quad s_{j} \equiv \sin \phi_{j} \tag{5}
\end{equation*}
$$

where \mathbf{E}_{j} denotes the cross-product matrix (CPM) of \mathbf{e}_{j}, the unit vector that defines the direction of the axis of rotation of \mathbf{Q}_{j}, and ϕ_{j} the angle of rotation. The synthesis equation becomes

$$
\begin{equation*}
\mathbf{a}_{0}^{T} \mathbf{E}_{j}\left[s_{j} \mathbf{1}-\left(1-c_{j}\right) \mathbf{E}_{j}\right] \mathbf{b}=0, \quad j=1, \ldots, m \tag{6}
\end{equation*}
$$

whose solution depends on the number m of prescribed poses.

Synthesis with three poses

In this case, $m=2$, i.e., two constraint equations occur:

$$
\begin{equation*}
\mathbf{c}_{1}^{T} \mathbf{b}=0, \quad \text { and } \quad \mathbf{c}_{2}^{T} \mathbf{b}=0 \tag{7}
\end{equation*}
$$

One of the two vectors \mathbf{a}_{0} and \mathbf{b} can be prescribed arbitrarily. In the case of \mathbf{a}_{0} known, then

$$
\begin{equation*}
\mathbf{b}=\frac{\mathbf{c}_{1} \times \mathbf{c}_{2}}{\left\|\mathbf{c}_{1} \times \mathbf{c}_{2}\right\|} \tag{8}
\end{equation*}
$$

A similar reasoning, with obvious modifications, follows if \mathbf{b} is prescribed.

Synthesis with four poses

Now we have $m=3$, the constraints being

$$
\begin{equation*}
\mathbf{c}_{1}^{T} \mathbf{b}=0, \quad \mathbf{c}_{2}^{T} \mathbf{b}=0 \quad \text { and } \quad \mathbf{c}_{3}^{T} \mathbf{b}=0 \tag{9}
\end{equation*}
$$

All three vectors \mathbf{c}_{j} must be coplanar, and hence

$$
\begin{equation*}
F\left(\mathbf{a}_{0}\right) \equiv \mathbf{c}_{1} \times \mathbf{c}_{2} \cdot \mathbf{c}_{3}=0 \tag{10}
\end{equation*}
$$

This is a cubic, homogeneous equation in \mathbf{a}_{0}, which defines a conical cubic surface whose apex is the origin.

(a)

(b)

Figure: (a) the circlepoint curve and (b) the centerpoint curve

Synthesis with five poses

Now $m=4$, the synthesis equations can be cast into the form

$$
\underbrace{\left[\begin{array}{c}
\mathbf{a}_{0}^{T} \mathbf{E}_{1}\left[s_{1} \mathbf{1}-\left(1-c_{1}\right) \mathbf{E}_{1}\right] \tag{11}\\
\mathbf{a}_{0}^{T} \mathbf{E}_{2}\left[s_{2} \mathbf{1}-\left(1-c_{2}\right) \mathbf{E}_{2}\right] \\
\mathbf{a}_{0}^{T} \mathbf{E}_{3}\left[s_{3} \mathbf{1}-\left(1-c_{3}\right) \mathbf{E}_{3}\right] \\
\mathbf{a}_{0}^{T} \mathbf{E}_{4}\left[s_{4} \mathbf{1}-\left(1-c_{4}\right) \mathbf{E}_{4}\right]
\end{array}\right]}_{\equiv \mathbf{C}} \mathbf{b}=\mathbf{0}_{4}
$$

Non-trivial solutions require a rank-deficient C:

$$
\begin{equation*}
\Delta_{j}\left(\mathbf{a}_{0}\right) \equiv \operatorname{det}\left(\mathbf{C}_{j}\right)=0, \quad j=1, \ldots, 4 \tag{12}
\end{equation*}
$$

\mathbf{C}_{j} being the 3×3 matrix obtained from \mathbf{C} upon deleting its j th row. Equations (12) define four conical cubic surfaces with one common apex.

Synthesis with one P-joint

A spherical linkage may end up with a P-joint, i.e., a slider moving on a circular guide, similar to the planar crank-slider mechanism.
We consider this a special case, with $\alpha_{4}=90 \mathrm{deg}$. Thus

$$
\begin{equation*}
\mathbf{b}^{T} \mathbf{Q}_{j} \mathbf{a}_{0}=0, \quad j=0, \ldots, m \tag{13}
\end{equation*}
$$

The above m equations can be written as

$$
\begin{equation*}
\mathbf{H a}_{0}=\mathbf{0}_{n} \tag{14}
\end{equation*}
$$

where \mathbf{H} is a $n \times 3$ matrix with $n=m+1$. Non-trivial solutions for \mathbf{b} require a rank-deficient \mathbf{H}, i.e., for $m=3$,

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{H}_{i}\right)=0, \quad i=1, \ldots, 4 \tag{15}
\end{equation*}
$$

where the 3×3 matrix \mathbf{H}_{i} is obtained by removing the i th row from matrix \mathbf{H}.

Representation of the axes of rotation

We shall use spherical coordinates on the unit sphere, namely, longitude and latitude.

Let ϑ_{A} and φ_{A} be the longitude and the latitude of A_{0}, ϑ_{B} and φ_{B} those of B. Hence,

$$
\mathbf{a}_{0}=\left[\begin{array}{c}
\cos \varphi_{A} \cos \vartheta_{A} \\
\cos \varphi_{A} \sin \vartheta_{A} \\
\sin \varphi_{A}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
\cos \varphi_{B} \cos \vartheta_{B} \\
\cos \varphi_{B} \sin \vartheta_{B} \\
\sin \varphi_{B}
\end{array}\right]
$$

The ranges of all spherical coordinates:
$\left\{\varphi_{A}, \vartheta_{A}, \varphi_{B}, \vartheta_{B}\right\} \in[-\pi / 2, \pi / 2]$.

Branching detection

Branching-defect can occur in spherical linkages.
The branching defect is detected here by means of the sign of the sine of the transmission angle, in analogy with the planar case:

$$
\begin{equation*}
\sin \mu=\|\overline{\mathbf{a}} \times \overline{\mathbf{b}}\| /(\|\overline{\mathbf{a}}\|\|\overline{\mathbf{b}}\|) \tag{17}
\end{equation*}
$$

where $\overline{\mathbf{a}}=\mathbf{a}-\left(\mathbf{a} \cdot \mathbf{a}^{\star}\right) \mathbf{a}^{\star}$ and $\overline{\mathbf{b}}=\mathbf{b}-\left(\mathbf{b} \cdot \mathbf{a}^{\star}\right) \mathbf{a}^{\star}$, with
$\mathbf{a}=\mathbf{Q a} \mathbf{a}_{0}, \quad \mathbf{a}^{\star}=\mathbf{Q a} \mathbf{a}_{0}^{\star}$.
The sign of the sine of the transmission angle is given by

$$
\begin{equation*}
\operatorname{sgn}(\mu)=\operatorname{sgn}\left[(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \cdot \mathbf{a}^{\star}\right] \tag{18}
\end{equation*}
$$

Example 1

Prescribed poses described by axes and angles of rotations with reference to the initial pose.

Table: Five poses for Example 1

$\phi_{j}[\mathrm{rad}]$	\mathbf{e}^{T}	$\left[\beta_{1}, \beta_{2}, \beta_{3}\right][\mathrm{deg}]$
0	$[0,0,1]$	$[0,0,0]$
0.2034	$[-0.0449,-0.5133,-0.8569]$	$[-10.0,-6.0,0]$
1.1957	$[0.1827,0.7709,-0.6101]$	$[-51.0,-52.0,-12.0]$
1.1932	$[0.5212,0.8414,-0.1422]$	$[15.0,-56.0,47.0]$
1.0512	$[0.5384,0.8114,0.2271]$	$[33.0,-40.0,47.0]$

Note: β_{1}, β_{2} and β_{3} are the corresponding angles of longitude and latitude, respectively, which are also given with the purpose of helping the visualization of the prescribed attitudes.

Example 1 (cont'd)

Four sets of real solutions are found from the contour plots of angles of longitude and latitude

(a)

(b)

	$\mathbf{a}_{0}\left(\right.$ or $\left.\mathbf{a}_{0}^{\star}\right)$	$\mathbf{b}\left(\right.$ or $\left.\mathbf{b}^{\star}\right)$
$\# 1$	$[0.7085,-.6418,-.2932]$	$[0.2640,-.6636,-.6998]$
$\# 2$	$[0.0385,0.3163,0.9478]$	$[0.1143,0.7263,-.6777]$
$\# 3$	$[0.1642,0.6977,0.6972]$	$[0.5218,0.8413,-.1403]$
$\# 4$	$[0.8077,0.1493,0.5702]$	$[0.9524,-.2535,0.1686]$

Six spherical linkages for Example 1

Altogether, six linkages can be synthesized for this example.

Note:

- All task orientations shown in yellow
- The frames in red show the orientations of the coupler
- Branch defects were detected for M3 and M4.

Example 2: Synthesis with one P-joint

Five poses and solutions to the linkage with one P-joint

$\phi_{j}[\mathrm{rad}]$	\mathbf{e}^{T}	$\left[\beta_{1}, \beta_{2}, \beta_{3}\right][\mathrm{deg}]$
0	$[0,0,1]$	$[0,0,0]$
0.2563	$[-0.2280,-0.4553,-0.8606]$	$[-12.5,7.0,-2.6]$
1.1307	$[-0.0578,0.2370,-0.9697]$	$[-64.2,-10.5,-10.8]$
1.1938	$[0.5049,0.8505,-0.1468]$	$[14.3,-56.9,45.6]$
1.3665	$[0.7119,0.6601,0.2393]$	$[45.1,-30.7,73.2]$

	\mathbf{a}_{0}	\mathbf{b}
$\# 1$	$[0.2845,0.3863,0.8773]$	$[0.1219,-.7089,-.6946]$
$\# 2$	$[0.7226,0.5295,0.4442]$	$[0.2309,0.4566,0.8591]$
$\# 3$	$[0.9573,-.2433,0.1555]$	$[0.8134,0.1643,0.5579]$
	\mathbf{a}_{0}^{\star}	\mathbf{b}^{\star}
$\# 4$	$[0.5221,0.8442,-.1208]$	$[0.0655,0.1015,0.9926]$

Mechanism synthesized for Example 2

Figure: One synthesized mechanism with a P-joint, showing three link attitudes

Conclusions

- A robust solution of synthesis equation for the spherical Burmester problem was formulated
- A semigraphical solution method was developed
- Branch defect detection and synthesis with one P-joint were considered
- The method was demonstrated with two examples
- Future work? spatial Burmester problem

References

1. L. Burmester. Lehrbuch der Kinematik. Arthur Felix Verlag, Leipzig, Germany, 1888.
2. B. Roth. On the screw axes and toerh special lines associated with spatial displacements of a rigid body. ASME Journal of Engineering for Industry, 89(1):102-110, 1967.
3. D. A. Ruth and J. M. McCarthy. The design of spherical 4R linkages for four specified orientations. Mechanism and Machine Theory, 34(5):677-692, 1999.
4. C. Chen, S. Bai, and J. Angeles. A comprehensive solution of the classic Burmester problem. CSME Transactions, 32(2):137-154, 2008.
