A Robust Solution of the Spherical Burmester Problem

Jorge Angeles[†] and Shaoping Bai[‡]

[†]Department of Mechanical Engineering McGill University, Montreal, Canada [‡]Department of Mechanical and Manufacturing Engineering Aalborg University, Denmark

Outline

- 2 Synthesis for spherical rigid-body guidance
- **3** A linkage with a P-joint
- **4** Implementation considerations
- 6 Examples

Outline

1 Introduction

2 Synthesis for spherical rigid-body guidance

- **3** A linkage with a P-joint
- **4** Implementation considerations
- **5** Examples

Outline

2 Synthesis for spherical rigid-body guidance

- **3** A linkage with a P-joint
- 4 Implementation considerations
- **5** Examples

Outline

- 2 Synthesis for spherical rigid-body guidance
- **3** A linkage with a P-joint
- 4 Implementation considerations
- 5 Examples

Outline

2 Synthesis for spherical rigid-body guidance

- **3** A linkage with a P-joint
- 4 Implementation considerations

Outline

- 2 Synthesis for spherical rigid-body guidance
- 3 A linkage with a P-joint
- 4 Implementation considerations
- **5** Examples

The Spherical Burmester Problem

What is the Burmester problem?

- The classical Burmester problem Are there any points in a rigid body whose corresponding position lies on a circle of the fixed plane for the four arbitrarily prescribed positions?-Burmester, 1888
- The spherical Burmester problem An extension of the classical Burmester problem, in which we are interested in synthesizing a spherical four-bar linkage to visit a discrete set of orientations of the coupler link

Revelent Works

The nature of the problem is to solve a system of trigonometric equations. The challenges can be seen in

- The numerics
- Branch-defect detection
- Consideration of joint type, R- or P- joint

The problem has been studied by different approaches:

- Geometric: using the Burmester-Roth Theorem to construct center axes—Roth, 1967
- Polynomial approach: sixth degree polynomial can be found through variable elimination—Ruth and McCarthy, 1996

The proposed approach in this work

Proposed here is a semigraphical approach, consisting of three steps:

- Algebraic formulation—problem definition
- **2** Graphic display+inspection—raw solution estimates
- **③** Numerical solution—accurate result

It eliminates spurious solutions and filters complex solutions

An extension of a previous work on the classical Burmester problem—Chen, Bai and Angeles 2008

Introduction

Synthesis A linkage with a P-joint Implementation considerations Examples Conclusions

Problem Formulation

Find a spherical four-bar linkage that will conduct its coupler link through a set S of m attitudes given by the orthogonal matrices $\{\mathbf{Q}_j\}_1^m$, defined with respect to a reference attitude given by $\mathbf{Q}_0 = \mathbf{1}$, the 3×3 identity matrix.

Synthesis Equations

 A_2

Assuming all links are rigid, all angles α_i remain constant

$$\mathbf{a}_j^T \mathbf{b} = \mathbf{a}_0^T \mathbf{b}$$
 or $(\mathbf{a}_j - \mathbf{a}_0)^T \mathbf{b} = 0; j = 1, \dots, m$
(1)

where

$$\mathbf{a}_j = \mathbf{Q}_j \mathbf{a}_0 \tag{2}$$

In a compact form, (1) becomes

$$\mathbf{c}_j^T \mathbf{b} = 0, \quad j = 1, \dots, m \tag{3}$$

with

$$\mathbf{c}_j \equiv (\mathbf{Q}_j - \mathbf{1})\mathbf{a}_0 \tag{4}$$

- ◆ □ ▶ → 4 目 ▶ → 目 ▶ → 1 □ ▶ → 0 0 0

Synthesis Equation (cont'd)

In invariant form,

$$\mathbf{Q}_j = \mathbf{1} + s_j \mathbf{E}_j + (1 - c_j) \mathbf{E}_j^2, \quad c_j \equiv \cos \phi_j, \quad s_j \equiv \sin \phi_j \qquad (5)$$

where \mathbf{E}_j denotes the *cross-product matrix* (CPM) of \mathbf{e}_j , the unit vector that defines the direction of the axis of rotation of \mathbf{Q}_j , and ϕ_j the angle of rotation. The synthesis equation becomes

$$\mathbf{a}_0^T \mathbf{E}_j [s_j \mathbf{1} - (1 - c_j) \mathbf{E}_j] \mathbf{b} = 0, \quad j = 1, \dots, m$$
(6)

whose solution depends on the number m of prescribed poses.

Synthesis with three poses

In this case, m = 2, i.e., two constraint equations occur:

$$\mathbf{c}_1^T \mathbf{b} = 0, \quad \text{and} \quad \mathbf{c}_2^T \mathbf{b} = 0 \tag{7}$$

One of the two vectors \mathbf{a}_0 and \mathbf{b} can be prescribed arbitrarily. In the case of \mathbf{a}_0 known, then

$$\mathbf{b} = \frac{\mathbf{c}_1 \times \mathbf{c}_2}{\|\mathbf{c}_1 \times \mathbf{c}_2\|} \tag{8}$$

A similar reasoning, with obvious modifications, follows if **b** is prescribed.

Synthesis with four poses

Now we have m = 3, the constraints being

$$\mathbf{c}_1^T \mathbf{b} = 0, \quad \mathbf{c}_2^T \mathbf{b} = 0 \quad \text{and} \quad \mathbf{c}_3^T \mathbf{b} = 0$$
 (9)

All three vectors \mathbf{c}_j must be coplanar, and hence

$$F(\mathbf{a}_0) \equiv \mathbf{c}_1 \times \mathbf{c}_2 \cdot \mathbf{c}_3 = 0 \tag{10}$$

This is a cubic, homogeneous equation in \mathbf{a}_0 , which defines a conical cubic surface whose apex is the origin.

Figure: (a) the circlepoint curve and (b) the centerpoint curve

Synthesis with five poses

Now m = 4, the synthesis equations can be cast into the form

$$\begin{bmatrix} \mathbf{a}_{0}^{T} \mathbf{E}_{1}[s_{1}\mathbf{1} - (1 - c_{1})\mathbf{E}_{1}] \\ \mathbf{a}_{0}^{T} \mathbf{E}_{2}[s_{2}\mathbf{1} - (1 - c_{2})\mathbf{E}_{2}] \\ \mathbf{a}_{0}^{T} \mathbf{E}_{3}[s_{3}\mathbf{1} - (1 - c_{3})\mathbf{E}_{3}] \\ \mathbf{a}_{0}^{T} \mathbf{E}_{4}[s_{4}\mathbf{1} - (1 - c_{4})\mathbf{E}_{4}] \end{bmatrix} \mathbf{b} = \mathbf{0}_{4}$$
(11)
$$= \mathbf{C}$$

Non-trivial solutions require a rank-deficient C:

$$\Delta_j(\mathbf{a}_0) \equiv \det(\mathbf{C}_j) = 0, \quad j = 1, \dots, 4$$
(12)

 \mathbf{C}_{j} being the 3 × 3 matrix obtained from \mathbf{C} upon deleting its *j*th row. Equations (12) define four conical cubic surfaces with one common apex.

Synthesis with one P-joint

A spherical linkage may end up with a P-joint, i.e., a slider moving on a circular guide, similar to the planar crank-slider mechanism.

We consider this a special case, with $\alpha_4 = 90 \text{ deg}$. Thus

$$\mathbf{b}^T \mathbf{Q}_j \mathbf{a}_0 = 0, \quad j = 0, \dots, m \tag{13}$$

The above m equations can be written as

$$\mathbf{H}\mathbf{a}_0 = \mathbf{0}_n \tag{14}$$

where **H** is a $n \times 3$ matrix with n = m + 1. Non-trivial solutions for **b** require a rank-deficient **H**, i.e., for m = 3,

$$\det(\mathbf{H}_i) = 0, \quad i = 1, \dots, 4 \tag{15}$$

where the 3×3 matrix \mathbf{H}_i is obtained by removing the *i*th row from matrix \mathbf{H} .

Spherical Burmester Problem

Representation of the axes of rotation

We shall use *spherical coordinates* on the unit sphere, namely, *longitude* and *latitude*.

Let ϑ_A and φ_A be the longitude and the latitude of A_0 , ϑ_B and φ_B those of B. Hence,

$$\mathbf{a}_{0} = \begin{bmatrix} \cos\varphi_{A}\cos\vartheta_{A} \\ \cos\varphi_{A}\sin\vartheta_{A} \\ \sin\varphi_{A} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \cos\varphi_{B}\cos\vartheta_{B} \\ \cos\varphi_{B}\sin\vartheta_{B} \\ \sin\varphi_{B} \\ (16) \end{bmatrix}$$

The ranges of all spherical coordinates: $\{\varphi_A, \vartheta_A, \varphi_B, \vartheta_B\} \in [-\pi/2, \pi/2].$

Branching detection

Branching-defect can occur in spherical linkages.

The branching defect is detected here by means of the sign of the sine of the transmission angle, in analogy with the planar case:

$$\sin \mu = \parallel \overline{\mathbf{a}} \times \overline{\mathbf{b}} \parallel / (\parallel \overline{\mathbf{a}} \parallel \parallel \overline{\mathbf{b}} \parallel)$$
(17)

where $\overline{\mathbf{a}} = \mathbf{a} - (\mathbf{a} \cdot \mathbf{a}^{\star})\mathbf{a}^{\star}$ and $\overline{\mathbf{b}} = \mathbf{b} - (\mathbf{b} \cdot \mathbf{a}^{\star})\mathbf{a}^{\star}$, with $\mathbf{a} = \mathbf{Q}\mathbf{a}_{0}$, $\mathbf{a}^{\star} = \mathbf{Q}\mathbf{a}_{0}^{\star}$.

The sign of the sine of the transmission angle is given by

$$\operatorname{sgn}(\mu) = \operatorname{sgn}\left[\left(\overline{\mathbf{a}} \times \overline{\mathbf{b}}\right) \cdot \mathbf{a}^{\star}\right]$$
(18)

Example 1

Prescribed poses described by axes and angles of rotations with reference to the initial pose.

$\phi_j[\mathrm{rad}]$	\mathbf{e}^{T}	$[\beta_1, \beta_2, \beta_3]$ [deg]
0	[0,0,1]	[0,0,0]
0.2034	[-0.0449, -0.5133, -0.8569]	[-10.0, -6.0, 0]
1.1957	[0.1827, 0.7709, -0.6101]	[-51.0, -52.0, -12.0]
1.1932	[0.5212, 0.8414, -0.1422]	[15.0, -56.0, 47.0]
1.0512	[0.5384, 0.8114, 0.2271]	[33.0, -40.0, 47.0]

Table: Five poses for Example 1

Note: β_1 , β_2 and β_3 are the corresponding angles of longitude and latitude, respectively, which are also given with the purpose of helping the visualization of the prescribed attitudes.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Example 1 (cont'd)

Four sets of real solutions are found from the contour plots of angles of longitude and latitude

	$\mathbf{a}_0(\text{or } \mathbf{a}_0^{\star})$	$\mathbf{b}(\text{or } \mathbf{b}^{\star})$
# 1	[0.7085,6418,2932]	[0.2640,6636,6998]
# 2	[0.0385, 0.3163, 0.9478]	[0.1143, 0.7263,6777]
# 3	[0.1642, 0.6977, 0.6972]	[0.5218, 0.8413,1403]
# 4	$\left[0.8077, 0.1493, 0.5702 ight]$	[0.9524,2535, 0.1686]

Six spherical linkages for Example 1

Altogether, six linkages can be synthesized for this example.

Note:

- All task orientations shown in yellow
- The frames in red show the orientations of the coupler
- Branch defects were detected for M3 and M4.

Example 2: Synthesis with one P-joint

Five poses and solutions to the linkage with one P-joint

ϕ_j [rad]	\mathbf{e}^{T}	$[\beta_1, \beta_2, \beta_3][ext{deg}]$
0	[0,0,1]	[0,0,0]
0.2563	[-0.2280, -0.4553, -0.8606]	[-12.5, 7.0, -2.6]
1.1307	$\left[-0.0578, 0.2370, -0.9697 ight]$	[-64.2, -10.5, -10.8]
1.1938	[0.5049, 0.8505, -0.1468]	[14.3, -56.9, 45.6]
1.3665	$\left[0.7119, 0.6601, 0.2393 ight]$	[45.1, -30.7, 73.2]

	\mathbf{a}_0	b
# 1	[0.2845, 0.3863, 0.8773]	[0.1219,7089,6946]
# 2	[0.7226, 0.5295, 0.4442]	[0.2309, 0.4566, 0.8591]
# 3	$\left[0.9573,2433, 0.1555\right]$	$\left[0.8134, 0.1643, 0.5579\right]$
	\mathbf{a}_0^{\star}	\mathbf{b}^{\star}
# 4	[0.5221, 0.8442,1208]	[0.0655, 0.1015, 0.9926]

- ▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

Mechanism synthesized for Example 2

Figure: One synthesized mechanism with a P-joint, showing three link attitudes

- A robust solution of synthesis equation for the spherical Burmester problem was formulated
- A semigraphical solution method was developed
- Branch defect detection and synthesis with one P-joint were considered
- The method was demonstrated with two examples
- Future work? spatial Burmester problem

References

1. L. Burmester. *Lehrbuch der Kinematik*. Arthur Felix Verlag, Leipzig, Germany, 1888.

2. B. Roth. On the screw axes and toerh special lines associated with spatial displacements of a rigid body. *ASME Journal of Engineering for Industry*, 89(1):102–110, 1967.

3. D. A. Ruth and J. M. McCarthy. The design of spherical 4R linkages for four specified orientations. *Mechanism and Machine Theory*, 34(5):677–692, 1999.

4. C. Chen, S. Bai, and J. Angeles. A comprehensive solution of the classic Burmester problem. *CSME Transactions*, 32(2):137–154, 2008.