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Abstract—Motion transmission between two shafts with
intersecting axes at right angles is a recurrent problem in
machine design. The mechanism should be able to accom-
modate the given layout of the driver and the driven shafts.
Further, a constant velocity ratio, in our case 1:1, between
the input and the output velocities is usually desired to ease
the control algorithm. In this paper, a four-bar spherical
linkage is optimally designed to transmit motion between
two orthogonal intersecting shafts with an approximately
constant 1:1 velocity ratio through a120◦ rotation of its in-
put link. This is done via minimizing the root-mean-square
value of the design error at a sample of input-output values;
the error is defined as the residue of synthesis equation at
the prescribed set of input values. Optimization is reported
here by means of a shifting of the zeros of the input and
the output dials. To obtain the global minimum of this op-
timization problem, its first-order normality conditions are
formulated. Eliminating all unknowns except for the two
shift angles yields a set of two nonlinear equations in two
unknowns, whose real solutions are found by a semigraph-
ical approach.

Keywords: homokinetic, spherical linkage, design error, optimiza-
tion

I. Introduction

Transmission of motion between two intersecting shafts
is a recurrent problem in mechanical design. So far, dif-
ferent types of coupling mechanisms have been designed
in order to transmit motion between shafts in various lay-
outs. Other design requirements might apply as well; for
instance, in some applications, the coupling mechanism
should be capable of handling small misalignments or lim-
iting the transmitting torque below an upper bound. With
this regard, couplings can be categorized into three groups,
namely, rigid, flexible and torque limiting. While rigid cou-
plings require a perfect geometric layout, flexible couplings
can cope with misalignments. A widely used family of cou-
pling mechanisms, being referred to asconstant velocityor
homokinetic joints, can transmit motion between two shafts
with a constant velocity ratio of 1:1 [1]; this characteristic
is highly desirable from the control viewpoint. A class of
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homokinetic joints allowing relative displacements of the
input and output shafts are wellknown in the automotive in-
dustry. Particularly, in front-wheel drive cars, the motion
of the suspension system as well as the steering mechanism
continuously change the angle between the gearbox and the
wheels; it is important that these variations be tolerated by
the coupling mechanism in operation [2].

Universal joints are simple examples of couplings that
transmit motion between intersecting shafts. One single
universal joint can neither maintain a constant velocity ratio
nor connect two orthogonal shafts. However, these short-
comings can be eliminated by means of pairs of universal
joints to compensate for velocity ratio variations [3]. In
fact, to connect two orthogonal axes, two universal joints
and an intermediate shaft should be mounted such that the
intermediate shaft makes an angle of45◦ with the input and
the output axes, as shown in Fig. 1. It was first realized by
Robert Hooke that the coupling mechanism thus resulting
is of the homokinetic type [2], [3], [4].

Rzeppa joints, whose components are displayed in Fig. 2,
are another type of homokinetic joints, which can trans-
mit motion between two intersecting shafts [5]. As shown
in Fig. 2, the Rzeppa joint consists of an inner race, an
outer race, a cage and six balls. The balls move inside six
grooves located on the external and the internal peripheries
of the inner and the outer races, respectively. The cage is
mounted between the two races so as to keep the balls in-
side the grooves. The rotation of the input shaft, attached
to the inner race, is transmitted to the output shaft, which
is rigidly attached to the outer race, through the motion of
the balls. The maximum angle allowed between the two
shafts is about50◦; hence, two Rzeppa joints should be im-
plemented in series so as to uniformly transmit motion be-
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Fig. 1. Double universal joint mechanism

1



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011 IMD-123
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Fig. 2. Rzeppa joint: 1) inner race; 2) outer race; 3) cage; 4)ball

tween two orthogonal shafts. There are also other types of
homokinetic joints, namely, the tripod and the Thompson
mechanisms [6], [7].

Proposed in this paper is a spherical mechanism, which
couples two orthogonal shafts with an approximately con-
stant velocity ratio. Considering the kinematic relations
governing the motion of spherical linkages [8], achieving
a constant velocity ratio during the whole motion of their
input link is not feasible. Nevertheless, we aim to design
a spherical mechanism so as to exhibit, approximately, a
constant velocity ratio of 1:1 in, at least,120◦ rotation of
its input link, which is large enough for many robotic ap-
plications. The design problem at hand can be formulated
as anunconstrained optimizationtask [9], for which many
solution algorithms are available in the literature. How-
ever, finding the global optimum of any optimization prob-
lem requires identification of all stationary points, defined
as the points at which the first-order normality conditions
(FONCs) are satisfied. In this paper, an elimination proce-
dure is utilized to reduce the FONCs to a set of two non-
linear equations in terms of two unknowns, which is, then,
solved via a graphical approach.

The paper is organized as follows: in Section II, the
synthesis equations of the mechanism are derived. Next,
the design problem is formulated as an optimization task,
whose global minima are found thereafter. The paper closes
with some concluding remarks.

II. Synthesis Equations of the Spherical Linkage
A four-bar spherical linkage, shown in Fig. 3, is a mecha-

nism in which all points of the links move on the surfaces of
concentric spheres, whose centre is located at the intersec-
tion of its joints axes. From geometry, the governing syn-
thesis equation of the four-bar spherical linkage, is found
as [8]:

F (ψ, φ) ≡ k1 + k2 cosψ + k3 cosψ cosφ

−k4 cosφ+ sinψ sinφ = 0 (1)
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Fig. 3. The kinematic chain of a four-bar spherical linkage

whereψ andφ are the input and the output angles, shown
in Fig. 3;ki for i = 1, ..., 4, being the linkage Freudenstein
parameters. The relations between the Freudenstein param-
eters and the link dimensions are given below:

cosα1 − k3 = 0 (2a)

cosα4 sinα1 − k2 sinα4 = 0 (2b)

cosα2 sinα1 − k4 sinα2 = 0 (2c)

cosα1 cosα2 cosα4 − cosα3

−k1 sinα2 sinα4 = 0 (2d)

whereαi for i = 1, ..., 4 are the link arcs.
Since we aim to synthesize a spherical linkage for trans-

mitting the motion between two orthogonal axes,α1 = π/2
is substituted into eq. (2a), which makesk3 = 0. Moreover,
our engineering insight into the 1:1 velocity ratio require-
ment reveals that the mechanism should have a symmetric
architecture, withα2 = α4, and hence,k2 = k4. Therefore,
the synthesis equations of the spherical coupling mecha-
nism can be cast in vector form as:

Sk = b (3)

where,
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(4)

with

ψ∗
i

= ψi + ζ, φ∗
i

= φi + η, for i = 1, ...,m (5)
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in which {ψi, φi}
m
1

is the set ofm prescribed input-output
(IO) pairs lying on a line with unit slope in theψ-φ plane,
whereζ and η are the shift angles to be determined op-
timally, and{ψ∗

i
, φ∗

i
}m
1

are the shifted values of the pre-
scribed IO pairs.

III. Optimization of the Spherical Linkage
The objective is thus to design a four-bar spherical link-

age to transmit motion between two orthogonal shafts with
a velocity ratio between the input and the output rates as
close as possible to 1:1. Moreover, the mechanism should
be capable of maintaining this velocity ratio in, at least,
120◦ of rotation of its input link. Hence, the optimiza-
tion problem can be stated as:minimize the rms value
of the components of the design error vector, defined as
e = b − SK, or its square for that matter, over the design

variablesx =
[

k
T ζ η

]T
, subject to no constraints.

This can be algebraically written as:

min f, f ≡
1

m
‖e‖2

To solve this unconstrained optimization problem, first,
a uniformly distributed set ofm angle values in the inter-
val [−60◦, 60◦] is chosen as the prescribed set of input and
output angles. Upon substituting these prescribed values
into eq. (4), the FONCs of the optimization problem are
formulated by zeroing the partial derivatives of the objec-
tive functionf with respect tok, ζ andη, respectively. The
FONCs obtained are, thus,

∂f

∂k
= 0 ⇒ S

T
Sk − S

T
b = 0 (6a)

∂f

∂ζ
= 0 ⇒

(

∂bT

∂ζ
− k

T
∂ST

∂ζ

)

(b − SK) = 0 (6b)

∂f

∂η
= 0 ⇒

(

∂bT

∂η
− k

T
∂ST

∂η

)

(b − SK) = 0 (6c)

where0 is the two-dimensional zero vector.
The stationary points of the foregoing problem can be

found by solving the system of equations (6), which con-
sists of four nonlinear equations in terms of four unknowns,
and hence, is solvable by a host of numerical methods, e.g.
the Newton-Raphson’s. However, such methods are depen-
dent on the choice of an initial guess. Therefore, upon con-
vergence, only one local stationary point is found, which
can be a minimum, a maximum or a saddle point. A global
minimum can be obtained provided that all stationary points
are found; this calls for identification of all solutions of the
FONCs at hand, which is not possible using the Newton-
Raphson method or its numerical counterparts.

Not to be confined to the local minima of the problem, an
elimination procedure is utilized so as to eliminate all the
unknowns except two in eqs. (6). The intersections of the
contour plots of the equations thus resulting, in the plane
of these two unknowns are the set of real stationary points

sought. Thus, we, first, findk from eq. (6a), using computer
algebra, as:

k =
(

S
T
S
)−1

S
T
b (7)

Substitutingk back into eqs. (6b & c) yields a system of two
equations in two unknowns,ζ andη.

Choosingm = 11 input and output values, uniformly
distributed in the interval[−60◦, 60◦], the Freudentein pa-
rameters are eliminated between the FONCs (6) using
eq. (7). The two equations thus resulting are only functions
of ζ andη; henceforth, their solutions can be obtained from
the intersections of their contours, which are illustratedin
Fig. 4.

ζ (rad)

η (rad)
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Fig. 4. The contour plots of the FONCs,C1: the second FONC,C2: the
third FONC

The coordinates of the intersections, being simply ex-
tracted by looking at the plots shown in Fig. 4, and their
corresponding values of the objective function are tabu-
lated in Table I. If higher precision is required, the coor-

TABLE I. Stationary points

k ζk (rad) ηk (rad) f
1 0.5 2.1 0.0026
2 −0.5 −2.1 0.0026
3 1.15 2.6 0.0026
4 −1.15 −2.6 0.0026
5 ζk = −ηk ηk 0.0704
6 ζk = π − ηk ηk 0.0005
7 ζk = −π − ηk ηk 0.0005

dinates of each intersection in Table I should be submitted
to the Newton-Raphson algorithm as an initial guess. It is
noteworthy that, in addition to four isolated solutions, three
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families of solutions exist, as recorded in the last three rows
of Table I.

The type of each stationary point can be determined by
means of the second-order normality conditions. However,
upon comparing the values of the objective function at the
stationary points, it is readily concluded that the global min-
imum occurs at every pair[ζ, η]T verifying eitherζ = π−η
or ζ = −π − η, with the global minimum of the objective
function being0.0005.

Since a family of global minima is obtained, let us arbi-
trarily choose a pair of[ζ, η]T , which satisfies one of the
aforementioned conditions, as[140◦, 40◦]T . Substituting
back these values into eq. (7), the Freudenstein parameters
of the linkage are found ask = [1.1161, 0.9790]T . Here,
a word of caution is in order: equation (7), in general, is a
formula, but not an algorithm, to calculate the least-square
approximation of an overdetermined system of linear equa-
tions. In fact, the verbatim application of this formula is
prone to round-off error amplification, and hence, should be
avoided [10]. Several stable numerical algorithms are avail-
able to safely handle linear least square problems. How-
ever, in our specific case, we have computedk in closed-
form by using Maple. Therefore, the numerical calculations
are limited to substituting backζ andη into the formula and
does not involve any matrix inversions.

The link arcs of the optimum spherical coupling mecha-
nism are obtained as:

α1 = 90◦, α2 = 45.6078◦, α3 = 124.7414◦,

α4 = 45.6078◦

The CAD model of this mechanism is depicted in Fig. 5.
In Fig. 6, the generated output angles are plotted versus

a given set of input angles, uniformly distributed in the in-
terval [−60◦, 60◦]. As expected, the plot is very close to
a unit slope line showing consistency with our requirement
of having constant 1:1 velocity ratio.

IV. Conclusions
A spherical four-bar linkage, with its input and output

axes intersecting at90◦, was proposed to transmit homoki-
netic motion between two intersecting shafts. A design re-
quirement was set such that the velocity ratio between the
input and the output rates be as close as possible to 1:1 in, at
least, 120◦ rotation of the input link. To this end, an uncon-
strained optimization problem was formulated to minimize
the design error by varying the zeros of the input and output
dials. Formulating the FONCs, a set of four nonlinear equa-
tions in four unknowns, namely, the Freudenstein parame-
ters involved, and the values of the shift angles sought, was
obtained. Since we aimed to find the global minimum of
the problem, the Freudenstein parameters were eliminated
to derive a set of two nonlinear equations in terms of two
unknowns. This set of equations was, then, solved by a
graphical approach. The CAD model and the plot of the
output versus the input angles were illustrated as well. The
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Fig. 5. The CAD model of an optimum linkage
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Fig. 6. The generated output angles of the mechanism versus its input
angles

results showed consistency with the constant velocity ratio
prescribed at the outset.
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