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Abstract

Finite Element Analysis (FEA) is known to be a highly reliable tool for structural analysis,
but this is usually conducted offline. Online use of FEA is usually out of the question because
it is highly demanding in terms of computing time. We show in this report how the Cartesian
stiffness matrix of robotic structures of a certain class can be computed online with FEA
support. The procedure is based on an extension of the concept of generalized spring that
is capable of handling anisotropic linearly elastic structures. In this way, FEA is conducted
offline, to compute the Cartesian stiffness matrix of a structural part of a complex shape.
This matrix is then used to update the posture-dependent Cartesian stiffness matrix of the
overall structure. As an illustrative example, the procedure is applied to a Schönflies motion
generator that features two parallelogram linkages fabricated of carbon fiber. In order to
illustrate the online feasibility of the computation involved, the root-mean square value of
the eigenvalues of a dimensionless factor of the stiffness matrix is plotted along a standard
trajectory adopted by the industry.
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1 Introduction

The interaction of a robot with the environment brings about wrenches applied to its moving
platform (MP). The flexible elements of the robot, if properly designed, allow for “small”-
amplitude displacements (SADs) of the MP in response to the applied wrenches. In the
case of robots designed for fast and accurate tasks, the calculation of these displacements is
crucial, which calls for an elastostatic analysis. A SAD is understood here in the sense of
screw theory [1], wherein a line is represented by a six-dimensional array of Plücker coor-
dinates, of which only four are independent; a screw is then defined as a line array with a
pitch, its fifth independent parameter. A sixth parameter, the amplitude A, multiplying the
screw array then defines a twist—point velocity and angular velocity— or a wrench—force
and moment—depending on whether A has units of angular velocity ω or of force F . If
A is defined as A = ω∆t, and the product ω∆t ≪ 1, then a SAD is obtained instead of
the twist. Elastostatic analysis hinges on the stiffness matrix of the robotic structure. This
analysis is mainly conducted by three methods: 1) finite element analysis (FEA); 2) the vir-
tual joint method (VJM), and 3) matrix structural analysis (MSA). One of the most reliable
methods for stiffness analysis is FEA, because by this means, each link, joint, and actuator
can be modelled with its actual shape; however, FEA is highly demanding in computation
time, especially when used in optimization procedures. In [2] the stiffness of the H4 parallel
robot was analyzed by FEA, at one single posture, the results having been verified exper-
imentally. The second method, VJM, is based on the work first proposed by Gosselin [3].
In this method, which is sometimes called lumped-parameter method, the compliance of the
links is replaced by virtual compliant joints and rigid links . Then, by virtue of the elastic
properties of the model, the equivalent virtual joint stiffnesses are derived. In this way,
complex relations in the stiffness analysis are avoided and acceptable accuracy in short com-
putational times is possible; however, because of the one-dimensional virtual springs in the
model, the coupling effect between translational and rotational deflections is not taken into
account. Later, the VJM was applied to conduct the stiffness analysis of spatial six-degree-
of-freedom (dof) parallel robots with revolute joints[4]. Majou et al. applied the VJM to the
Orthoglide robot in order to establish a parametric representation of the Cartesian stiffness
matrix [5]; however, coupling effects between translational and rotational deflections were
neglected. Later, a modification was applied to the VJM in order to take into account the
coupling in question [6]; this analysis was based on a multidimensional lumped-parameter
model that replaces the link compliance with localized six-dof virtual springs. By this means
the coupling between translational and rotational deflections was considered. To ensure high
accuracy, the spring-stiffness values were calculated using FEA. The main idea behind the
third method, MSA, is similar to FEA; however, instead of using a large number of elements,
each part of the robot, link, joint, or actuator, is considered as a simple structural element,
beam or rod, for example. By resorting to the theories of elasticity and kinematic chains, the
stiffness matrix of the whole robot structure is obtained. The main issue that distinguishes
MSA from other methods is that, within MSA, the stiffness matrix of the structure can be
obtained in parametric form, which is important when the stiffness of the structure is to be
optimized. Deblaise et al. found the Cartesian stiffness matrix of the Delta parallel structure
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by using this method [7], while in [8] the MSA for the stiffness analysis of the 6-RSS robot1

was employed.
A novel method, based on the well-known concept of generalized spring [13], is proposed
in this paper; this method relies mostly on a form of the MSA, but enhanced here with
equivalent springs for the flexible parts, in serial and parallel arrays. The concept of gen-
eralized spring appears to have first been proposed by Lončarić [13] as a suspension for a
rigid body and composed of single linearly elastic translational springs. By means of the
method proposed here, the 6 × 6 Cartesian stiffness matrix of the robot, for any robot pos-

ture, can be calculated using stiffness matrices computed offline by means of FEA. Moreover,
although the method is limited to linearly elastic structural elements, it is general enough
to accommodate elastic anisotropies, as appearing in composite materials. The method is
especially attractive in the realm of parallel robots with what is known as Π-joints, which
are parallelogram four-bar linkages [10, 11]. The specific property of this joint, under the
assumption that its links are all rigid, is that any two opposite links move under pure relative
translation. Because of this property, Π joints are widely used in designing industrial paral-
lel robots, e.g. ABB’s Flexpicker and Adept’s Quattro. By means of the generalized spring
concept, the stiffness matrix of the Π joints can be readily calculated, as shown presently.
An important issue arises when some robot parts are made either of composite materials, or
with complex shapes. In such cases, the only reliable method of structural analysis would be
FEA. As the stiffness matrix of a robot is posture-dependent, the elastostatic analysis on the
whole workspace would be too time consuming to be practical. To cope with this problem,
we propose a combination of FEA and the generalized spring concept. In this approach, by
means of FEA the stiffness matrix of each complex part is calculated once and for all; then,
the stiffness matrix thus obtained is used when computing the Cartesian stiffness matrix
of the equivalent generalized spring at a given robot posture. Therefore, FEA is used only
once, off-line, thereby saving precious computation time and analysis costs. The concept
is illustrated with the calculation of the stiffness matrix of a two-limb Schönflies Motion
Generator. As an illustrative example, the robot stiffness matrix is computed along a MP
trajectory. It is expected that the procedure will enable the real-time stiffness control of
robotic structures, thereby allowing for faster, more accurate and safer operations.

2 The Small-rotation Matrix

The rotation of a rigid body displaced from an initial attitude to a new one can be represented
in a variety of forms. In this study the natural invariants of the rotation are used; these are
the angle of rotation φ and the unit vector e parallel to the axis of rotation [9]. The rotation
matrix is then represented as

R = 1 + (sin φ)E + (1 − cos φ)E2 (1)

with E denoting the cross-product matrix (CPM) of e, which is defined for any three-
dimensional vector v as

E =
∂ (e × v)

∂v
(2)

1R denotes an actuated revolute joint, while S stands for spherical, or ball-and-socket, joint.
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and 1 is the 3 × 3 identity matrix. The angular velocity of the rigid body in terms of e, φ
and their time-derivative takes the form [9]

ω =
[

(sin φ)1 + (1 − cos φ)E e
]

[

ė

φ̇

]

(3)

If φ is small, then sin φ → φ and cos φ → 1, the rotation matrix R thus becoming

R = 1 + φE (4)

Under the small-angle assumption, a rigid-body rotation admits a vector representation,

p2

p1

Rd

d

φ

Figure 1: A vector attached to a rigid body after and before translation and small rotation

namely,

φ ≡ φe (5)

the angular velocity ω for small φ then reducing to

ω =
[

φ1 e
]

[

ė

φ̇

]

i.e,

ω = φ̇ = φė + φ̇e

In this particular case, the angular-velocity vector becomes a time-derivative. In Fig. 1 a
vector d attached to a rigid body is shown before and after the body undergoes a small-
amplitude displacement. The algebraic relations among the vectors of Fig. 1 lead to

p2 = p1 + (R − 1)d (6)

From eq. (4), after some algebraic manipulations,

p2 = p1 − Dφ (7)
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in which D is the cross product matrix of d. Finally, the six-dimensional small displacement
of two points of a rigid body becomes

[

p2

φ

]

=

[

1 −D

O 1

] [

p1

φ

]

(8)

where O is the 3 × 3 zero matrix. Moreover, the six-dimensional SAD ui, for i = 1, 2, is
defined as

ui =

[

pi

φ

]

(9)

3 Generalized Spring

In multibody systems some flexible links are rigidly connected to each other or to other
much stiffer bodies that can be safely assumed rigid. The main source of potential energy
is the elastic energy stored in the former. Each of these can be considered a generalized
six-dimensional massless spring with one end undergoing six-dimensional SADs u. We label
the first and the second ends constrained and free end, respectively, which is shown in Fig. 2.
In this definition, the ends are considered to be rigid plates, on which a force f and a moment
n, grouped in the six-dimensional wrench array w [9] can be applied. The wrench is the
image of the displacement vector u under a transformation represented by the Cartesian
6 × 6 stiffness matrix K, namely,

w = Ku (10)

In the especial case in which all six possible motions of the first end are constrained, the
matrix K is positive-definite. The rank r (K) of the matrix K generally depends on the
number of constraints imposed on the first end. The dimension of the null space of the

Constrained end

Free end

Flexible body

K

⇔

Figure 2: A generalized spring

matrix K represents the number of independent rigid-body motions that the free end can
undergo without producing any potential energy in the spring.

3.1 The Equivalent Generalized Spring in Multibody Systems

A mechanical system is composed of some flexible bodies, which are connected by means of
joints. To calculate the stiffness matrix of a mechanical system it is convenient to represent
its flexible elements with six-dimensional generalized springs; then, two or more springs are
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replaced with one equivalent single spring. Two possible arrays occur: parallel and serial, as
shown in Figs. 3(a) and (b), respectively. The equivalent spring for the parallel and serial
arrays is defined as the single spring that stores the same potential energy as the two springs
combined, under the same relative SAD of the two end-plates. The stiffness matrix of the
equivalent single spring of the parallel array is calculated from the potential energy of the
system:

V =
1

2

(

uT
2
K1u2 + uT

4
K2u4

)

(11)

Upon resorting to eq. (8) the relations between the displacement vectors of the nodes on the
rigid bodies are

u2 =

[

1 −A1

O 1

]

uO1 ≡ W1uO1, u4 =

[

1 −A2

O 1

]

uO1 ≡ W2uO1 (12)

in which A1 and A2 are the cross product matrices of vectors a1 and a2, respectively; O is
the 3 × 3 zero matrix and 1 is the 3 × 3 identity matrix. Moreover, uO2 is the SAD of the
free end O2 of the equivalent single spring. Upon substitution of the above expression into
eq. (11), one obtains

V =
1

2
uT

o2

(

WT
2
K1W2 + WT

4
K2W4

)

uo2 (13)

Knowing that the derivative of the potential energy with respect to the displacement vector
of the free end at a given point equals the wrench applied at that point,

∂V

∂u
= w (14)

whence,
∂V

∂uo2

= w =
(

WT
2
K1W2 + WT

4
K2W4

)

uo2 (15)

From eq. (15) the stiffness matrix of the equivalent single spring, mapping the free-end
displacement vector onto the wrench applied on that end, is simply the coefficient matrix in
eq. (15), namely,

KPar = WT
1
K1W1 + WT

2
K2W2 (16)

For the serial array, depicted in Fig. 3(b), the same procedure is applicable. As shown in the
same figure, two serial six-dimensional springs in series are replaced with its single equivalent.
The potential energy of the system is

V =
1

2

[

uT
2
K1u2 + (u4 − u3)

T
K2 (u4 − u3)

]

(17)

As in the case of parallel springs, the relations between the displacement vectors are

u2 =

[

1 −A1

O 1

]

uO2 ≡ W1uO2, u3 =

[

1 −A2

O 1

]

uO2 ≡ W2uO2

u4 =

[

1 −A3

O 1

]

uO3 ≡ W3uO3

(18)
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Upon substitution of eq. (18) into eq. (17), the potential energy is obtained in terms of the
displacement vectors, uo1, uo2 and uo3. For the sake of brevity, the final force-displacement
relation is shown, without the intermediate steps:

w2 = WT
1
K1W1uO1 + WT

2
K2W3uO2 (19a)

w3 = WT
3
K2W2uO1 + (WT

1
K1W1 + WT

2
K2W2)uO2 (19b)

where O is the 3 × 3 zero matrix, and 0 is the three-dimensional zero vector. Here, the
mapping between the SAD uO3 and the applied wrench wO3 is required; it is assumed that
w3 = 0. Under this assumption, eq. (19b) enables us to calculate uO3 in terms of uO2,
namely,

uO3 = −P−1WT
3
K2W2uO2 (20)

with P defined as

P = WT
2
K2W2 + WT

1
K1W1 (21)

Upon substitution of eq. (20) into eq. (19a), the matrix mapping the SAD uO2 into the
wrench w2 is obtained as

Kser = WT
3
K2W3 − WT

3
K2W2P

−1WT
2
K2W3 (22)

which is the equivalent stiffness matrix of the serial array. It is apparent from expressions (16)

K1

K2

Ke

a1

a2

P1

P2
P3

P4

O2

O1

O2

O1
fixed

fixed

⇔

(a)

K1

K2

Ke

P4

a1

a2

a3

P2

P3

O1

O2

O3

Po1

Po3

fixed
fixed

⇔

(b)

Figure 3: Generalized equivalent spring of: (a) two parallel springs and (b) two serial springs

and (22) that, once K1 and K2 are available, with as high a level of realism and accuracy
as needed, the updating of the parallel and serial equivalent stiffness matrices follows with
a negligible computational cost. Indeed the multiplication of two 6 × 6 matrices includes
36 scalar products of two six-dimensional vectors; this multiplication thus needs 6 × 36 =
216 flops. At each posture, the calculation of a parallel array stiffness matrix include four
multiplications of 6 × 6 matrices, which results in 864 flops. In the case of serial arrays
there are 10 multiplications plus the inversion of a 6× 6 matrix, which needs 6× 127 = 762
flops; therefore, to calculate the stiffness matrix of a serial array 2160+762 = 2922 flops are
required. The effect of passive revolute joints, always present in parallel robots, is discussed
below.
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3.2 A Flexible Body Coupled by Means of Passive Revolute Joints

Assume that the first end of the flexible body is attached to the previous body via a passive
revolute joint R, as depicted in Fig. 4. This joint allows the flexible link to freely rotate
about axis A, which means that, if a force is applied at the free end of the flexible body in a
direction normal to A, the potential energy of the spring does not change. In other words,
a link with a revolute joint exhibits a zero translational stiffness along the line of action of
the force, which reduces the rank of the stiffness matrix by one.

e
β

Free end

R
A

Figure 4: A link with passive revolute joint

3.3 Stiffness Matrix of the Π-joint

In the Π-joint shown in Fig. 5, the two shorter links are assumed rigid, the flexibility of the
Π-joint coming from the two identical longer links, which are articulated to the rigid links
by means of R joints of parallel axes. Therefore, the Π joint can be modelled as a parallel
array of two equivalent generalized springs of the two articulated flexible links. The stiffness
matrix Kl of each of the two foregoing links, which is the positive-semidefinite equivalent
stiffness matrix of each of the links with one passive revolute joint at the first end, is first
calculated. Then, the stiffness of the equivalent spring of the Π joint becomes

P1

P4

e

e
β1

β1

O1

O2

Kl

Kl

KΠ

P2
P3

O1O1

O2
O2

a1

a2

⇔⇔

Figure 5: Equivalent single spring for the Π-joint

KΠ = WT
1
KlW1 + WT

2
KlW2 (23)

It is noteworthy that O1 and O2 can be any arbitrary points of the rigid bodies; for modal
analysis, the centre of mass of each rigid body is the best candidate. The flexible links of
the Π-joint can be made of any linearly elastic material and with any shape; in some cases,
for example, when the Π joints are made of composite materials with complex shapes, it is
not possible to have the stiffness matrix Kl of the link in parametric form. The stiffness
matrix must then be calculated numerically, using, e.g., FEA; the stiffness matrix of the
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Π joint is obtained from eq. (23) once matrix Kl is available from a FEA. This procedure,
which can be used for any other flexible parts, yields the general posture-dependent stiffness
matrix of a flexible component. The foregoing computations can be done online, as shown
in Subsection 3.1

4 Case Study: The McGill SMG

The foregoing results are used to calculate the stiffness matrix of the McGill Schönflies
Motion Generator, shown in Fig. 6, which is modelled as the elastostatic system depicted
in Fig. 7. Kinetostatically, each limb consists of three rigid links: the base platform (BP),
the elbow brackets, and the wrist bracket. Each limb couples, moreover, the MP with the
BP. The parallelograms are thus regarded as joints, namely, Π joints. The kinematic chain
of the McGill SMG is thus of the RΠΠRRΠΠR type. The kinematic chain thus contains
eight rigid links and eight joints, with dof = 4. In this model each Π-joint is replaced with
the corresponding equivalent six-dimensional generalized spring. The McGill SMG has two

Drive Unit of limb II

Elbow Bracket of limb II

Wrist Bracket of limb II

Moving Platform

Drive Unit of limb I

Elbow Bracket of limb I

Wrist Bracket of limb I

Proximal Π-joint of limb I Proximal Π-joint of limb II

Distal Π-joint of limb I Distal Π-joint of limb II

Figure 6: The McGill SMG

kinds of Π-joints, proximal and distal, as depicted in Fig. 6. Each distal Π-joint is made
of two identical aluminium rods, which are modeled as flexible beams; the stiffness of the
equivalent single spring can then be obtained by means of the beam stiffness matrix, which
is shown below,

K =
E

L

















A 0 0 0 0 0
0 12Iz/L

2 0 0 0 6Iz/L
0 0 012Iy/L

2 0 −6Iy/L 0
0 0 0 JG/E 0 0
0 0 −6Iy/L 0 4Iy 0
0 6Iz/L 0 0 0 4Iz

















(24)
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In the case of the proximal Π-joints, these include two boxes made of a combination of woven
and unidirectional carbon/epoxy material, for which no closed-form parametric stiffness
matrix is available. Because of the complex shape and the complexity associated with the
modelling of composite materials, finite element software (ANSYS) was used to calculate the
stiffness matrix of the composite box. ANSYS provides an option in the solution processor,
called Substructure, in which the Cartesian stiffness matrix of a structure can be obtained.
Now the equivalent stiffness matrices of the proximal and distal Π joints, labeled KP and KD,
respectively, are calculated via eq. (23). In the ensuing elastostatic analysis we assume that
the rigid bodies are massless, and thus, when the springs are in a serial array, as explained
in Section 3.1, the series equivalent single spring is used. As depicted in Fig. 7, each robot
limb is considered a serial array of two springs, which is then simplified to the equivalent
single spring for each limb in the elastostatic analysis. By resorting to eq.(22), the equivalent
stiffness of limb J , for J = I, II, is

KIP

KID

KIIP

KIID

Pm

CI1

CMP

CII1

OI OII

PI1 PI2

PI3

PII1PII2

PII3

XY
Z

Figure 7: Elastostatic model of the McGill SMG

KJ = WT
J3

KJDWJ3 − WT
J3

KJDWJ2P
−1

J WT
J2

KJDWJ3 (25)

where KJD denotes the stiffness matrix of the distal Π joint of limb J , and

PJ = WT
J2

KJDWJ2 + WT
J1

KJPWJ1

with KJP denoting the stiffness matrix of the proximal Π joint of limb J . The equivalent
single spring of each limb is connected to its wrist brackets as depicted in Figs. 6 and 7, and
zoom-in in Fig. 8. The two wrist brackets are connected, in turn, to the MP by means of
revolute joints; hence, by invoking the rigidity assumption and because of the presence of
the revolute joints, we have

uJ3 = GJ(HJum + γJζ), ζ =
[

0T eT
γ

]T
(26)
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in which 0 is the three-dimensional zero vector, and eγ is the unit vector parallel to the

revolute joint axis, which, in this case, is
[

0 0 1
]T

, and hence, constant. Moreover,

GJ =

[

1 −AJ

0 1

]

, HJ =

[

1 −DJ

0 1

]

(27)

where AJ and DJ are the cross-product matrices of vectors aJ and dJ , respectively, for
J = I, II, and depicted in Fig. 8. From eq. (26) the potential energy of the robot is

PI3

PM

γI

γII

e

e

MP
aI

dI

dII

aII

PII3

XY

Z

Figure 8: A zoom-in of the MP and the wrist brackets in the elastostatic model of the McGill
SMG

calculated as

V =
1

2

∑

J=I,II

uT
J KJuJ , uJ = GJ(HJum + γJζ), J = I, II (28)

Given that the passive revolute joints transmit a zero moment about their axes, the angle
of rotation γJ can be found in terms of uM , the six-dimensional displacement vector of the
MP at point PM , as

γJ = vT
J uM (29)

where the six-dimensional vector vJ is defined as

vJ = −
1

ζTGJKJGζ
HT

J GTKJGJζ

Upon substitution of eq. (29) into eq. (28), the 6 × 6 stiffness matrix of the overall robot
becomes, finally,

K =
∑

J=I,II

(

GJHJ + GJζv
T
J

)T
KJ

(

GJHJ + GJζv
T
J

)

(30)

which relates the SAD of the MP, defined at point PM , to the wrench applied onto the MP,
with force acting along a line that passes through PM .
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5 Stiffness Indices

In order to assess the elastostatic response of a robot to an external wrench, defining stiffness
indices is essential. Here, the main issue is that a 6 × 6 Cartesian stiffness matrix is formed
by four 3× 3 block matrices whose components have different units, which is made apparent
below:

[

f

n

]

=

[

K11(N/m) K12(N)
KT

12
(N) K22(N.m)

] [

s

θ

]

(31)

where f and n denote force and moment, respectively, the six dimensional array of the left-
hand side being a wrench; s and θ define, in turn, a “small” point-translation—small with
respect to the dimensions of the system bodies—and a “small” rotation about an axis parallel
to the unit vector θ/ ‖θ‖, respectively. The six-dimensional array of the right-hand side is
thus a “small”-amplitude rigid-body displacement. To define stiffness performance indices,
first we should nondimensionalize the stiffness matrix. The method used here is based
on the idea introduced in [14], to define dimensionless parameters for sensitivity analysis
of mechanical systems. The two equations (31), one for moment and one for force, are
displayed below:

f = K11s + K12θ (32a)

n = KT
12
s + K22θ (32b)

Apparently, the force and moment vectors are made up of two independent components,
namely,

f = K11s + K12θ = fs + fθ (33a)

n = KT
12
s + K22θ = ns + nθ (33b)

We can associate each independent part of eqs. (33a) and (33b) with a physically meaningful
quadratic form [14], such as ‖fβ‖

2 = βTKT
βKββ, which defines an ellipsoid in the space of

β, a dummy vector variable, to be defined presently for β = s, a point-displacement, and
β = θ, a “small”-angle rotation vector, similar to φ of eq. (5). The eigenvalues of KT

βKβ

are then used to define dimensionless parameters. A relation between two dimensionless
parameter vectors pβ and β is now introduced:

β = Sβpβ (34)

where Sβ is an orthogonal matrix whose columns are the eigenvectors of matrix KT
β Kβ. In

our case, to define dimensionless parametrs we will have two linear transformation regarding
the force and moment equations; for the force equation the linear transformation leads to

[

s

θ

]

=

[

Ss O

O Sθ

] [

ψs

ψθ

]

(35)

while, for the moment equation,

[

s

θ

]

=

[

Hs O

O Hθ

] [

νs

νθ

]

(36)
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Thus, by substitution of eqs.(35) and (36) into eqs.(32a) and (32b), respectively, the force
and moment vectors are transformed into dimensionless parameter vectors by means of new
linear transformations,

f = Gfψ, n = Gnν (37)

in which Gf and Gn are unit-homogenized coefficient matrices that have units corresponding
to f and n, respectively, i.e.,

Gf =
[

K11Ss K12Sθ

]

, ψ =
[

ψT
s ψT

θ

]T

Gn =
[

KT
12
Hs K22Hθ

]

, ν =
[

νT
s νT

θ

]T
(38)

Matrix GT
f Gf has three independent eigenvectors corresponding to three eigenvalues that

characterize the distorted unit sphere ‖f‖2 = 1. The eigenvalues and eigenvectors of GT
nGn

entail a similar interpretation. GT
f Gf has three mutually orthogonal eigenvectors corre-

sponding to three non-negative eigenvalues that charactrizes the distorsion of the unit sphere
‖f‖. By the same token, the eigenvalues and eigenvectors of GT

nGn yield an ellipsoid in the
nondimensional space of ν. The mean values of the eigenvalues of GT

f Gf and GT
mGm,

{λf
i }

3

1
and {λm

i }
3

1
, respectively, are now defined as translational κt and rotational κr stiffness

performance indices, respectively, i.e.,

κt =

√

√

√

√

1

3

3
∑

i=1

λf
i , κr =

√

√

√

√

1

3

3
∑

i=1

λm
i (39)

where the square roots have been introduced because of the quadratic nature of GT
f Gf and

GT
mGm.

5.1 Numerical Results

Now we compute the stiffness performance indices of the McGill SMG while going through
a pick-and-place operation following a standard test trajectory, which involves a 25 mm
vertical upward translation, a 300 mm horizontal translation, and a 25 mm downward vertical
translation. Moreover, the MP should follow this trajectory with a rotation of 180◦ while
moving along the horizontal segment. Here, we use the smoothed test trajectory reported
by Gauthier et al. [15], which is depicted in Fig. 9. The translational and rotational stiffness
indices of the McGill SMG through the test trajectory are shown in Fig. 10. The behaviour
of the two performance indices through the trajectory shows the points at which the robot
has poor stiffness: the higher the index, the stiffer the structure. However, indices can be
used either for assessment of the behaviour of the robot at different points of the trajectory
or for design optimization purposes, but the two stiffness indices help the designer analyze
the stiffness of the structure accurately and much more in detail.
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6 Conclusions

We proposed a method by which the stiffness matrix of complex robotic structures can be
calculated by means of FEA conducted off-line. This provides substantial savings in time
and calculation cost when the stiffness of the robot is to be calculated along a continuous
trajectory. As a case study, the posture-dependent Cartesian stiffness matrix of the McGill
SMG was computed. Furthermore, by means of a nondimensionalization of the stiffness
matrix, two stiffness performance indices, translational and rotational, were introduced.
These indices were computed along a standard test trajectory for the above-mentioned robot.
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[14] J. Kövecses, and S. Ebrahimi, Parameter Analysis and Normalization for the Dynamics
and Design of Multibody Systems, Journal of Computational and Nonlinear Dynamics

vol. 4, 2009.

[15] J.-F. Gauthier, J. Angeles, and S. Nokleby, Optimization of a Test Trajectory for
SCARA Systems, Advances in Robot Kinematics: Analysis and Design, vol. 4, pp.
225–234.

15


