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Abstract

In the determination of the home posture of a two-limb Schönflies Motion Generator (SMG), which is defined
here as that at which the forward-kinematics Jacobian attains its minimum condition number, the geometry
and velocity analysis of the robot is recalled from a previous publication. Given the simplicity of this parallel-
robot architecture, it is possible to obtain a closed-form expression of its condition number based on the
matrix Frobenius norm. By making intensive use of both linear-algebra identities and results specific to
the kinematics of the Schönflies subgroup, the normality conditions associated with the minimization of the
condition number of interest are derived in frame-invariant form. The frame-invariant form lends itself to
geometric interpretations that would not be possible with lengthy componentwise expressions.
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1 Introduction

The home posture, sometimes referred to as the home configuration or, even erroneously as the home pose#,
is that posture at which the robot is set when not in operation. There are no rules to define this posture, but
this is usually chosen as a retracted one, occupying a minimum volume. In this report we propose to define
the home posture as that at which the forward-kinematics Jacobian attains a minimum condition number.
As condition number minimization is a rather complex problem, in that gradient evaluations, needed to
geometrically characterize the posture of interest, are particularly challenging, we start by discussing the
computational issues surrounding the derivation of the first-order normality conditions of the optimization
problem at hand. The discussion takes place within the framework of computational kinematics.

The use of computer algebra in robot kinematics can be traced back to the late seventies, during the
intensive quest for finding the characteristic polynomial of the general six-revolute robotic manipulator with
serial architecture. Early attempts to derive this polynomial were reported by Duffy and Derby (1979), Duffy
and Crane (1980), Albala (1982), and Alizade et al. (1983), who derived a 32nd-degree polynomial, but
suspected that this polynomial was not minimal in the sense that the manipulator at hand might not be
able to admit up to 32 postures for a given end-effector (EE) pose. Tsai and Morgan (1985) used a technique
known as polynomial continuation (Morgan, 1987) to solve numerically the nonlinear displacement equations,
cast in the form of a system of quadratic equations. These researchers found that no more than 16 solutions
were to be expected. Primrose (1986) proved conclusively that the problem under discussion admits at
most 16 solutions, while Lee and Liang (1986) showed that the same problem leads to a 16th-degree
univariate polynomial. Using different elimination procedures, Li (1990) and Raghavan and Roth (1990,
1993) devised different procedures for the computation of the coefficients of the univariate polynomial. More
recently, Husty et al. (2007) reported a geometric, streamlined approach to the derivation of the minimal
characteristic polynomial.

While the derivation of the 16th-degree polynomial associated with serial robots can be considered essen-
tially accomplished since the early nineties, kinematicians and geometers embarked in the eighties on a more
challenging problem, the derivation of the minimal characteristic polynomial of the general Stewart-Gough
(SG) manipulator. A breakthrough in the solution of the direct kinematics of parallel manipulators of the
general type was reported by Raghavan (1993), who resorted to polynomial continuation for computing up
to 40 poses of the moving platform for given leg-lengths of the SG manipulator with attachment points
at both the moving and the base platform with an arbitrary layout. What Raghavan did not derive is
the characteristic 40th-degree polynomial of the general SG manipulator. Independently, Wampler (1996)
and Husty (1996) devised procedures to derive this polynomial, although Wampler did not pursue the uni-
variate polynomial approach and preferred to cast the problem in a form suitable for a solution by means
of polynomial continuation. Husty did derive the 40th-degree polynomial for several examples, but stayed
short of showing that his polynomial was minimal in that manipulator architectures are possible that exhibit
up to 40 actual solutions. Dietmaier (1998) did this by devising an algorithm that would iteratively increase
the number of real solutions of a given architecture. With this paper, Dietmaier proved conclusively that
Husty’s 40th-degree polynomial is, in fact, minimal.

Methods of polynomial continuation (Sommese and Wampler, 2005) aside, the above works rely on the
elimination procedures used by computer-algebra software that are capable of eliminating symbolically all
unknowns but one, thereby deriving a univariate polynomial that is the characteristic polynomial sought.
These methods are applicable because, by virtue of what is known as the tan-half trigonometric identities1,
the trigonometric equations of the kinematic model involved are transformed into polynomial equations.

In fact, commercial software is capable of handling cumbersome expressions of scalar quantities in
symbolic form. However, this kind of software is incapable of handling vectors and tensors in invariant,
coordinate-free form. This shortcoming can be overcome if fundamental linear-algebra relations, well known
in the realm of system theory, but rather unknown in computational kinematics, are recalled. In this report
some of these relations are extensively used in determination of the home posture of a class of two-limb
Schönflies-motion generators (SMG). In Sections 2 and 3, the geometry and the velocity analysis of the
SMG are recalled from a previous publication (Gauthier et al., 2009). Then, the constrained kinematics
Jacobian for the SMG is formulated. The frame-invariant expression for the condition number is derived
and minimized in Section 4, thereby the home posture of the robot of interest is found in Section 5. The

1cos x = (1 − T 2)/(1 + T 2), sin x = 2T/(1 + T 2), with T ≡ tan(x/2)
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report ends with some concluding remarks.

2 Geometry of the SMG

The SMG is a two-limb parallel robot with four degrees of freedom. Its moving platform (MP) motion
belongs to the Schönflies displacement subgroup (Angeles, 2004), which consists of three translations in the
Cartesian space and one rotation about a fixed-orientation axis. Each limb comprises four joints forming
a RΠΠR kinematc chain, where R and Π denote revolute and parallogram joints, respectively. Since the
planar parallelogram linkage produces a pure translation of its coupler link with respect to its fixed link,
the linkage can be regarded as a kinematic pair, which is sometimes referred to as the Π pair. It has been
studied as such in the literature (Hervé and Sparacino, 1992; Wohlhart, 1992; Dietmaier, 1998). The axes of
two revolutes in both limbs are parallel to the vertical axis. Hence, each limb can produce translation in the
three-dimensional Cartesian space and one rotation about the vertical axis, as stated in the definition of the
Schönflies displacement subgroup. Two limbs are connected to the MP by means of the end revolutes via an
unlimited-rotaion mechanism. The side and top views of the SMG are illustrated in Figs. 1 and 2. Before
proceeding to derive the geometric relations of the SMG, the notation used in the balance of the report is
listed in Table 1. Vectors and matrices are denoted in the report by bold lower-cases and bold upper-cases,
respectively.

Table 1: Notation

Notation Description
θJi The ith angle in the Jth limb for J = I, II and i = 1 . . . 5
φ The angle of rotation of the moving platform

[
x y z

]T
Cartesian coordinates of point P on the moving platform

cJi cos θJi

sJi sin θJi

aJi Vector
−−−−−−−→
OJ(i−1)OJi for J = I, II and i = 1, 2, 3

aI4 Vector
−−−−→
OI3P

′

aII4 Vector
−−−−−−→
OII3OII4

aII5 Vector
−−−−→
OII4P

′

Considering the side view of the SMG shown in Fig. 1, the position vectors pI and pII of two points, P ′

and OII4, respectively, are found as

pI = aI1 + aI2 + aI3 + aI4, pII = aII1 + aII2 + aII3 + aII4 + l0i (1)

where

aJ1 = l1





cJ1

sJ1

0



 , aJ2 = l2





cJ2cJ1

cJ2sJ1

sJ2



 , aJ3 = l3





cJ3cJ1

cJ3sJ1

sJ3



 , aJ4 = aJ4





cJ1

sJ1

0





Moreover, the relation between pI and pII is obtained from the top view as

pI = pII + aII5, aII5 = aII5

[
−cφ sφ 0

]T
(2)

Apparently, the x and y Cartesian coordinates of the MP at operation point P are the same as those of
point P ′, while the third coordinates obey the relation z = z′ + h.

The coordinates of point P ′ in Cartesian space can be simply obtained from the first relation of eq. (1):

x = (l1 + l2cI2 + l3cI3 + aI4)cI1, y = (l1 + l2cI2 + l3cI3 + aI4)sI1, z′ = l2sI2 + l3sI3 (3)
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Figure 1: Front view of the kinematic chain of the SMG with the two leg-planes coincident with the X-Z
plane (Gauthier et al., 2009)
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Figure 2: Top view of the kinematic chain of the SMG at an arbitrary posture (Gauthier et al., 2009)

Substituting pII from eq. (2) into the second relation of eq. (1) yields

x = (l1 + l2cII2 + l3cII3 + aII4)cII1 − aII5cφ + l0 (4a)

y = (l1 + l2cII2 + l3cII3 + aII4)sII1 + aII5sφ (4b)

z′ = l2sII2 + l3sII3 (4c)

3



The angle of rotation φ of the MP is determined from the top view in Fig. 2, namely,

φ = θII4 − θII1 + π, φ = θI4 − θI1 (5)

3 Velocity Analysis of the SMG

In order to find the relation between the MP twist and the joint rates, both sides of eqs. (1) are differentiated
with respect to time, whence,

ṗJ = ȧJ1 + ȧJ2 + ȧJ3 + ȧJ4 for J = I, II (6)

The time-rates of change of vectors aJi are found as

ȧJi =







θ̇Jik × aJi for J = I, II and i = 1

(θ̇J1k + θ̇JifJ ) × aJi for J = I, II and i = 2, 3

θ̇J1k × aJi for J = I, II and i = 4

− φ̇k × aJi for J = II and i = 5

(7)

Substituting ȧJi from the equation above into eq. (6) yields

ṗJ = θ̇I1k × (aJ1 + aJ2 + aJ3 + aJ4) + θ̇J2fJ × aJ2 + θ̇J3fJ × aJ3 for J = I, II (8)

Moreover, the relation between ṗI and ṗII follows from differentiating eq. (2) with respect to time, i.e.,

ṗII = ṗI + φ̇k × aII5 (9)

Before stating the relation between the MP twist and the joint rates in invariant form, a useful result, already
included in (Gauthier et al., 2009) is recalled below in theorem form:

Theorem 1 If a rigid body moves within the Schönflies displacement subgroup, the velocities of all points

lying on lines parallel to the axis of rotation are identical.

The twist t of the MP is defined as an array of four scalars consisting of three Cartesian components of

the velocity of point P and the angular velocity φ̇, i.e., t =
[

ṗT
I φ̇

]T
. Theorem 1 implies that the velocities

of P and P ′ are identical. However, the velocity of point P ′, denoted by ṗI , has been obtained in eq. (8) for
J = I. The relation for φ̇ in terms of the other joint rates can be derived by substituting ṗII from eq. (9)
into eq. (8). The passive joint rates in both equations are eliminated from the cross-product of each equation
with the vector coefficient of the passive-joint-rate term in that equation, namely,

(fI × aI3) × ṗI = vI θ̇I1 + ∆IfI θ̇I2 (10a)

(fII × aII3) ×
[

ṗI + φ̇k × aII5

]

= vII θ̇II1 + ∆II fII θ̇II2 (10b)

where

vJ = (fJ × aJ3) × (k × rJ14) , ∆J = (fJ × aJ3) · aJ2, rJ14 = aJ1 + aJ2 + aJ3 + aJ4 (11)

The relation between the MP twist t and the actuated-joint-rate vector θ̇ =
[

θ̇I1 θ̇I2 θ̇II1 θ̇II2

]T
can

be expressed as
At = Bθ̇ (12)

where A and B are the forward- and the inverse-kinematics Jacobian matrices, namely,

A =

[
0 ΨI

ΨII (k × aII5) ΨII

]

∈ R
6×4, B =

[
vI ∆I 0 0
0 0 vII ∆II

]

∈ R
6×4 (13)

with 0 denoting the three-dimensional zero vector and ΨJ the cross-product-matrix2 (Angeles, 2007) of
vector ψJ = fJ × aJ3.

2The cross product matrix M of a vector m ∈ R
3 is defined as M ≡ CPM(m) = ∂ (m × v) /∂v, ∀v ∈ R

3
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3.1 Constrained Kinematics of the SMG

In this subsection we derive the Jacobians relating the passive and the active joint rates. These Jacobians
will be used in the derivation of the first-order normality conditions (FONC), pertaining to the minimization
of the condition number of the Jacobians of interest. To this end, vectors ṗI and ṗII are substituted from
eq. (8) into eq. (9), which yields

φ̇k × aII5 = θ̇II1k × rII14 + θ̇II2fII × aII2 + θ̇II3fII × aII3

− θ̇I1k × rI14 − θ̇I2fI × aI2 − θ̇I3fI × aI3

(14)

To eliminate φ̇, eqs. (5) are differentiated with respect to time:

φ̇ = θ̇II4 − θ̇II1, φ̇ = θ̇I4 − θ̇I1 (15)

Substituting the first of eqs. (15) into eq. (14) and then rearranging the result yields

θ̇II3ψII − θ̇II4σ − θ̇I3ψI = θ̇I1k × rI14 + θ̇I2fI × aI2 − θ̇II1k × (rII14 + aII5) − θ̇II2fII × aII (16)

Moreover, equating the right hand sides of the two eqs. (15) gives

θ̇I4 − θ̇II4 = θ̇I1 − θ̇II1 (17)

Equations (16) and (17) can be cast in compact form as

Cθ̇p = Dθ̇a (18)

where θ̇p =
[

θ̇I4 θ̇I3 θ̇II4 θ̇II3

]T
and θ̇a =

[

θ̇I1 θ̇I2 θ̇II1 θ̇II2

]T
are the vectors of the passive and

the active joint rates, respectively3. The 4 × 4 matrices C and D are

C =

[
0 −ψI −σ ψII

−1 0 1 0

]

=

[
0 G
−1 jT

]

, σ ≡ k × aII5

D =

[
k × rI14 fI × aI2 −k × (rII14 + aII5) −fII × aII2

−1 0 1 0

] (19)

where j was introduced in Fig. 1 and G is the 3 × 3 matrix given by

G =
[
−ψI −σ ψII

]
(20)

Explicit expressions for the passive joint rates in terms of the active ones are obtained from eq. (18):

θp = JCθa, JC = C−1D, C−1 =

[
jT G−1 −1
G−1 0

]

(21)

where JC is henceforth referred to as the constrained-kinematics Jacobian. Moreover, G−1 is obtained in
invariant form by resorting to the concept of reciprocal bases (Brand, 1965) as

G−1 =
1

δ






− (σ ×ψII)
T

− (ψII ×ψI)
T

(ψI × σ)
T




 , δ = ψI × σ ·ψII (22)

Subtituting eq. (22) into eq. (21) yields

JC =

[
j11 j12 j13 j14
j21 j22 j23 j24

]

, j11 = jT G−1 (k × rI4) + 1, j12 = jT G−1 (fI × aI2)

j13 = −jT G−1 (k × rII14 + σ) − 1, j14 = −jT G−1 (fII × aII2) , j21 = G−1 (k × rI14)

j22 = G−1 (fI × aI2) , j23 = −G−1 (k × rI14 + σ) , j24 = −G−1 (fII × aII2)

(23)

3The definition of θ̇p may look awkward in light of that of θ̇a, the reason behind this unusual definition being the ease with
which the matrix C thus resulting can be inverted.
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4 Kinetostatic Conditioning of the SMG

The kinetostatics of parallel robots in general is briefly recalled in (Gauthier et al., 2009), with special
attention to the McGill Schönflies Motion Generator motivating this paper. We will not dwell on this issue
further here. Rather, the effective computational issues related to kinetostatic conditioning are stressed
below.

4.1 Condition Number of the Forward Kinematics Jacobian

Before deriving the condition number of Jacobian A, it is necessary to non-dimensionalize all its entries in
order to cope with the dimensional inhomogeneity of the matrix. A dimensionless Jacobian can be achieved
by introducing the characteristic length L, as yet to be determined, so that the dimensionless vectors below
are introduced:

ξJ =
pJ

L
, ρJ1 =

rJ14

L
, ρJ2 =

aJ2

L
, ρJ3 =

aJ3

L
, ρII5 =

aII5

L
, σ =

σ

L
(24)

Furthermore, to simplify the manipulation of the equations, ρJ3 is also normalized as

ρ̃J3 =
L

l3
ρJ3, ‖ρ̃J3‖ = 1 (25)

Upon replacing in the original matrix A the entries bearing units of length with the above vectors, the
dimensionless forward-kinematics Jacobian is obtained as

A =

[
0 ΨI

ΨII (k × ρII5) ΨII

]

∈ R
6×4 (26)

where ΨJ is the cross-product matrix of the unit vector ψJ = fJ × ρ̃J3.
Different definitions of the norm can be used to evaluate the condition number of any matrix. By adopting

the weighted Frobenius norm, the condition number of a n × n matrix M is obtained as

κ2
(
MMT

)
=

1

n2
tr(MMT )tr

(
MMT

)−1
, tr(·) = trace of (·) (27)

Thus, all we need to implement eq. (27) is the trace of A
T
A and of its inverse. The product A

T
A is readily

calculated as

A
T
A =

[
a11 aT

21

a21 A22

]

, a11 = ‖m21‖
2, m21 = ΨIIσ, a21 = Ψ

T

IIm21, A22 = Ψ
T

I ΨI + Ψ
T

IIΨII (28)

Apparently,

tr
(

A
T
A
)

= a11 + tr (A22) (29)

while A22 can be expanded as

A22 = fIf
T
I + ρ̃I3ρ̃

T
I3 + fIIf

T
II + ρ̃II3ρ̃

T
II3 (30)

Since fJ and ρ̃J3 for J = I, II are all unit vectors,

tr
(

A
T
A
)

= a11 + 4 (31)

Matrix
(

A
T
A
)−1

is found from the formula for the inversion of block matrices (Beyer, 1987):

(

A
T
A
)−1

=

[
i11 iT21
i21 I22

]

, i11 =
1

a11 − aT
21A

−1
22 a21

, i21 = −A−1
22 a21i11

I22 =

(

A22 −
1

a11
a21a

T
21

)−1 (32)

An expression for I22 is derived upon recalling the Matrix Inversion Lemma (MIL):
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Lemma 1 (Bryson and Ho, 1975) Let Q and R be m × m and n × n matrices, respectively. If G is an

arbitrary n × m matrix, then,

Q − QG
(
R + GT QG

)−1
GT Q ≡

[
Q−1 + GR−1GT

]−1
(33)

We exploit Lemma 1 to compute I22 by recalling the substitutions proposed by (Gauthier et al., 2009):

Q = A22, G = (A22)
−1

a21, R = a11 − aT
21A

−1
22 a21 (34)

As R is apparently a scalar, it is replaced henceforth by r, to be consistent with our notation. Prior to
implementing the MIL, we have to verify the sign-definition of Q and r. From eq. (30), it is apparent that
A22 is symmetric and positive-definite, and so is its inverse. Hence, Q is positive-definite. The scalar r is
also positive because

det
(

A
T
A
)

= det (A22)
(
a11 − aT

21A
−1
22 a21

)
= ∆22 r > 0, ∆22 ≡ det (A22) (35)

whence,

Q − QG
(
R + GT QG

)−1
GT Q = A22 −

1

a11
a21a

T
21 (36)

Considering eqs. (28), (36) and the MIL, I22 turns out to be

I22 = A−1
22 +

1

r

(
A−1

22 a21a
T
21A

−1
22

)
(37)

The trace of
(

A
T
A
)−1

is obtained from eqs. (32) and (37) as

tr
(

A
T
A
)−1

=
1

r

(
1 + aT

21A
−2
22 a21

)
+ tr

(
A−1

22

)
(38)

To find tr
(
A−1

22

)
, the eigenvalues of A22 are sought. Recalling the expression for A22 in eq. (28) and the

skew-symmetry of cross-product matrices, we have

A22 = −
(

Ψ
2

I + Ψ
2

II

)

(39)

Since ψJ , for J = I, II, are unit vectors, the identity

Ψ
2

J = −1 +ψJψ
T

J (40)

follows, with 1 denoting the 3 × 3 identity matrix. Substituting eq. (40) into eq. (39) yields

A22 = (2)1 −ψIψ
T

I −ψIIψ
T

II (41)

One can verify that the three eigenvalues of matrix A22 and their corresponding eigenvectors are

λ1 = 2, λ2 = 1 −ψ
T

I ψII , λ3 = 1 +ψ
T

I ψII

v1 =
ψI ×ψII

‖ψI ×ψII‖
, v2 =

ψI +ψII

‖ψI +ψII‖
, v3 =

ψI −ψII

‖ψI −ψII‖

(42)

Moreover, det (A22), denoted by ∆22, is readily derived as the product of of its three eigenvalues, i.e.,

∆22 = 2

[

1 −
(

ψ
T

I ψII

)2
]

= 2‖ψI ×ψII‖
2 (43)

Considering the expression for A22 in eq. (41), its inverse is very likely to be of the form

A−1
22 = k11 + k2U + k3V, U = ψIψ

T

I +ψIIψ
T

II , V = ψIψ
T

II +ψIIψ
T

I (44)

7



The unknown coefficients k1, k2 and k3 are readily found from A22A
−1
22 = 1, which yields

A−1
22 =

1

2
1 +

1

2‖ψI ×ψII‖
2

(

ψIψ
T

I +ψIIψ
T

II

)

+
ψ

T

I ψII

2‖ψI ×ψII‖
2

(

ψIψ
T

II +ψIIψ
T

I

)

(45)

where 1 denotes the 3 × 3 identity matrix. The trace of A−1
22 is now obtained as

tr
(
A−1

22

)
=

3

2
+

2

∆22

[

1 +
(

ψ
T

I ψII

)2
]

(46)

Upon substituting eqs. (31), (38) and (46) into eq. (27), the final form of the squared condition number
sought is

κ2
A

=
1

16
(a11 + 4)

{
1

r

[

1 + aT
21

(
A−1

22

)2
a21

]

+
3

2
+

2

∆22

[

1 +
(

ψ
T

I ψII

)2
]}

(47)

4.2 Minimization of the Condition Number of the Forward-Kinematics Jaco-

bian

The home posture of the robot under study is defined as its farthest possible configuration from singularities.
One can regard the condition number of the Jacobian of the robot at any specific posture as an index of the
above distance. The condition number of A is minimized below over its posture variables, in order to find
the home posture of the robot motivating this study.

Here, we are interested in minimizing κ2
A

for the existing prototype of the SMG, whose geometry is given.

The expression for κ2
A

is given in eq. (47) as an explicit function of six variables, namely, θI1, θI2, θII1, θII2, φ
and L. Since the SMG has four degrees of freedom, only four joint variables are independent. Hence, the
foregoing set of variables is not independent. To formulate the problem as an unconstrained optimization

task (Luenberger, 2003), we introduce the design-variable vector x = [θI1, θI2, θII1, θII2, L]
T
, consisting of

four actuated joint rates plus the characteristic length. The posture with the minimum condition number of
the forward-kinematics Jacobian will be found upon solving a system of five nonlinear algebraic equations,
namely, the FONC, in terms of the design variables. Thus, it is required to derive the gradient of κ

A
, or of

its square for that matter, with respect to the five design variables.
Differentiation of the expression in eq. (47) is a trivial task if that expression is expanded in terms of

components. However, such an expression will a) be unmanageably long and b) not lend itself to a geometric
interpretation. For this reason, we do not follow this track. Instead, we take a frame-invariant approach,
and keep vectors and matrices as such, without expanding them into components.

The FONC are found from the vanishing of the derivatives of κ2
A

, given by eq. (27), with M = A:

∂tr(A
T
A)

∂xi

tr(A
T
A)−1 + tr(A

T
A)

∂tr(A
T
A)−1

∂xi

= 0, for i = 1, . . . , 5 (48)

where xi, for i = 1, . . . , 5, is the ith design variable. Considering eqs. (28) and (31), the first derivative term
of eq. (48) is calculated as

∂tr(A
T
A)

∂xi

= 2mT
21

∂m21

∂xi

(49)

Substituting m21 from eq. (28) yields

∂m21

∂xi

=
∂ΨII

∂xi

(k × ρII5) + ΨII

(
∂k

∂xi

× ρII5 + k ×
∂ρII5

∂xi

)

(50)

We thus need to find the derivatives of ΨII , k and ρII5 with respect to each design variable.
Vector k being constant, its derivatives with respect to all design variables vanish. The derivatives of

ψII , the vector of the cross-product matrix ΨII , are calculated below:

∂ψII

∂xi

=
∂fII

∂xi

× ρ̃II3 + fII ×
∂ρ̃II3

∂xi

(51)
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Let us begin with θI1. Since the orientation of the plane of the second limb does not depend on θI1, ∂fII/∂θI1

vanishes. From the chain rule, the next derivative, ∂ρ̃II3/∂θI1, is equal to ∂ ˙̃ρII3/∂θ̇I1. From eq. (7), vector
˙̃ρII3 is found as

˙̃ρII3 = θ̇II1k × ρ̃II3 + θ̇II3fII × ρ̃II3 (52)

whence,

∂ ˙̃ρII3

∂θ̇I1

=
∂θ̇II3

∂θ̇I1

fII × ρ̃II3 (53)

The coefficient ∂θ̇II3/∂θ̇I1 being nothing but the (4,1) entry of JC , in light of the definition introduced in
Subsection 3.1 and hence,

∂θ̇II3

∂θ̇I1

=
(ψI × σ)

T
(k × rI14)

δ
(54)

From eqs. (51), (53) and (54),

∂ψII

∂θI1
= p1fII ×ψII , p1 ≡

(ψI × σ)
T

(k × rI14)

δ
(55)

Recalling that ψII = fII × ρ̃II3, the above equation can be simplified as

∂ψII

∂θI1
= p1 [(fII .ρ̃II3)fII − (fII .fII)ρ̃II3] (56)

Since fII is the unit normal vector to the plane of the second limb, it is also orthogonal to vector ρ̃II3, and
hence,

∂ψII

∂θI1
= −p1ρ̃II3 (57)

The last remaining term in eq. (50), ∂ρII5/∂θI1, is also equal to ∂ρ̇II5/∂θ̇I1 by virtue of the chain rule. The
equations below are reproduced from the results of the velocity analysis in eqs. (5) and (7):

ρ̇II5 = −φ̇k × ρII5, φ̇ = θ̇II4 − θ̇II1 (58)

From the (3,1) entry of the constrained kinematics Jacobian in eq. (23), we obtain

∂θ̇II4

∂θ̇I1

=
− (ψII ×ψI)

T
(k × rI14)

δ
(59)

whence,

∂ρII5

∂θI1
=

∂ρ̇II5

∂θ̇I1

= p2σ, p2 ≡
(ψII ×ψI)

T
(k × rI14)

δ
(60)

Substituting eqs. (57) and (60) into eq. (50) yields

∂m21

∂θI1
= −p1ρ̃II3 × σ + p2ψII × (k × σ) (61)

Recalling σ = k × ρII5, eq. (61) can be simplified as

∂m21

∂θI1
= −p1ρ̃II3 × σ − p2ψII × ρII5 (62)

Substituting eq. (62) into eq. (49) yields

∂tr
(

A
T
A
)

∂θI1
= 2mT

21

(
−p1ρ̃II3 × σ − p2ψII × ρII5

)
(63)
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In order to formulate the first FONC from eq. (48), we need ∂tr
(

A
T
A
)−1

/∂θI1. From the expression

for the trace of
(

A
T
A
)−1

, given in eq. (38), its derivative with respect to θI1 follows:

∂tr(A
T
A)−1

∂θI1
=

∂ (1/r)

∂θI1

(
1 + aT

21A
−2
22 a21

)
+

1

r

(

2aT
21A

−2
22

∂a21

∂θI1
+ aT

21

∂A−2
22

∂θI1
a21

)

−
2

∆2
22

∂∆22

∂θI1

[

1 +
(

ψ
T

I ψII

)2
]

+
4ψ

T

I ψII

∆22

(64)

Let us calculate each derivative in the above equation, separately. Using eq. (34), ∂ (1/r) /∂θI1 is expanded
as

∂ (1/r)

∂θI1
=

−1

r2

(
∂a11

∂θI1
− 2aT

21A
−1
22

∂a21

∂θI1
− aT

21

∂A−1
22

∂θI1
a21

)

(65)

The term ∂a11/∂θI1 is already available in eq. (63). Moreover,

∂a21

∂θI1
=

∂Ψ
T

II

∂θI1
m21 + Ψ

T

II

∂m21

∂θI1
(66)

Substituting ∂ΨII/∂θI1 and ∂m21/∂θI1 from eqs. (57) and eq. (62) into eq. (66) leads to:

∂a21

∂θI1
= p1ρ̃II3 × m21 + ΨII

(
p1ρ̃II3 × σ + p2ψII × ρII5

)
(67)

The partial derivative of the inverse of a square matrix M with respect to a scalar argument x is recalled
below for quick reference:

∂M−1

∂x
= −M−1 ∂M−1

∂x
M−1 (68)

Applying eq. (68) for calculating ∂A−1
22 /∂θI1 requires ∂A22/∂θI1. Upon recalling the expansion of A22

from eq. (30), its derivative is obtained as

∂A22

∂θI1
=

∂fI
∂θI1

fT
I + fI

∂fT
I

∂θI1
+

∂ρ̃I3

∂θI1
ρ̃T

I3 + ρ̃I3

∂ρ̃T
I3

∂θI1
+

∂fII

∂θI1
fT
II + fII

∂fT
II

∂θI1

+
∂ρ̃II3

∂θI1
ρ̃T

II3 + ρ̃II3

∂ρ̃T
II3

∂θI1

(69)

Considering Fig. 2, the derivative of vector fJ normal to the plane of the Jth limb turns out to be

∂fJ
∂θJ1

= k × fJ ≡ eJ , for J = I, II (70)

The term ∂ρ̃II3/∂θI1 is already available in eq (53). Again, by application of the chain rule, ∂ρ̃I3/∂θI1

equals ∂ ˙̃ρI3/∂θ̇I1 which calls for
˙̃ρI3 = θ̇I1k × ρ̃I3 + θ̇I3fI × ρ̃I3 (71)

whence,
∂ ˙̃ρI3

∂θ̇I1

= k × ρ̃I3 +
∂θ̇I3

∂θ̇I1

fI × ρ̃I3 (72)

Moreover, ∂θ̇I3/∂θ̇I1 is found from the (2,1) entry of the constrained-kinematics Jacobian in eq. (23) as

∂θ̇I3

∂θ̇I1

=
− (σ ×ψII)

T
(k × rI14)

δ
(73)

Hence,

∂ρ̃I3

∂θI1
= k × ρ̃I3 + p3ψI , p3 ≡

− (σ ×ψII)
T

(k × rI14)

δ
(74)
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For future reference, it is helpful to find ∂ψI/∂θI1, namely,

∂ψI

∂θI1
= (k + p3fI) ×ψI = k ×ψI − p3ρ̃I3 (75)

Substituting eqs. (53), (70) and (74) back into eq. (69) yields

∂A22

∂θI1
= fI (k × fI)

T
+ (k × fI) f

T
I +

(
k × ρ̃I3 + p3ψI

)
ρ̃T

I3

+ ρ̃I3

(
k × ρ̃I3 + p3ψI

)T
+ p1ψII ρ̃

T
II3 + p1ρ̃II3ψ

T

II

(76)

Further, substituting eqs. (66) and (76) into eq. (65) gives ∂ (1/r) /∂θI1 as

∂ (1/r)

∂θI1
=

−1

r2

{

−2p1m
T
21 (ρ̃II3 × σ) − 2p2m

T
21

(
ψII × ρII5

)

− 2aT
21A

−1
22

[

p1ρ̃II3 × m21 + ΨII

(
p1ρ̃II3 × σ + p2ψII × ρII5

)

]

+ aT
21A

−1
22

[

(k × fI)
T

+ fI (k × fI)
T

+ ρ̃I3

[
(k × ρ̃I3) + p3ψI

]T

+
[
(k × ρ̃I3) + p3ψI

]
ρ̃T

I3 + p1ρ̃II3ψ
T

II + p1ψII ρ̃
T
II3

]

A−1
22 aT

21

}

(77)

Going back to eq. (64), the derivative of the squared inverse matrix and its determinant are as yet to be
determined. The former is found by a straightforward application of eq. (68):

∂(M−1)2

∂x
=

∂M−2

∂x
= −M−1 ∂M

∂x
M−2 − M−2 ∂M

∂x
M−1 (78)

The derivative of the determinant of matrix A22 is obtained by recalling the expression for det (A22) in
eq. (43) as

∂

∂θI1
det (A22) =

∂∆22

∂θI1
= 4

(
ψI ×ψII

)T
(

∂ψI

∂θI1
×ψII +ψI ×

∂ψII

∂θI1

)

(79a)

Substituting ∂ψI/∂θI1 and ∂ψII/∂θI1 from eqs. (75) and (57) into the above equation leads to

∂∆22

∂θI1
= 4

(
ψI ×ψII

)T [(
k ×ψI − p3ρ̃I3

)
×ψII − p1ψI × ρ̃II3

]
(79b)

All required derivatives in the expression for ∂tr
(

A
T
A
)−1

/∂θI1 are now available.

5 Determination of the Home Posture of the SMG

The home posture of the SMG is found here via the minimization of the condition number of Jacobian A,
as given by eq. (47). This is done upon solving the five FONC introduced in subsection 4.2.

The first FONC can be found by substituting the obtained derivatives into eq. (48). All other FONC
are derived likewise. Then, each FONC is rearranged as a polynomial in terms of the charectristic length L.
Thus, the ith FONC turns out to be of the form

ηi2L
4 + ηi1L

2 + ηi0 = 0, for i = 1, . . . , 5 (80)

its polynomial coefficients ηij being displayed in Appendix A.
The expressions thus resulting, although streamlined when compared to their expansion componentwise,

still take three pages, which makes a solution of eqs. (80) numerically challenging. In order to solve eqs. (80),
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Figure 3: Front view of the kinematic chain of the SMG at the symmetric home posture

we resort to our engineering insight into the problem. Considering the symmetry of the architecture of the
SMG, it is very likely that the home posture defined above is symmetric. Hence, the home posture is
anticipated to occur at the configuration where the planes of the two limbs coincide. Therefore, θI1 and
θII1 are substituted in the FONC with 0 and π, respectively. Moreover, the angle of rotation φ of the MP
is assumed to vanish at the home posture. The system of five nonlinear algebraic equations of the FONC
should be solved now for the three remaining unknowns, θI3, θII3 and L. However, substituting the assumed
values mentioned above for the three variables, θI1, θII1 and φ, the first and the third FONC, ∂κ2

A
/∂θI1

and ∂κ2
A

/∂θII1, are satisfied identically. Thus, a reduced system of three equations in three unknowns is
obtained:

4
∂tr
(
A−1

22

)

∂θI2
L2 + ‖ΨII (k × aII5)‖

2 ∂tr
(
A−1

22

)

∂θI2
= 0 (81a)

4
∂tr
(
A−1

22

)

∂θII2
L2 + ‖ΨII (k × aII5)‖

2 ∂tr
(
A−1

22

)

∂θII2
= 0 (81b)

∂κ2
A

∂L
= 0 (81c)

Since A−1
22 is symmetric and positive-definite, its trace is also positive. Therefore, verification of eqs. (81a, b)

requires
∂tr
(
A−1

22

)

∂θI2
= 0 and

∂tr
(
A−1

22

)

∂θII2
= 0 (82)

If one expands these two expressions, it turns out that they are satisfied by the orthogonality of the two
vectors ψI and ψII . In fact, any set of joint angles for θI3 and θII3, adding up to π/2, yields the characteristic
length L = 0.01987m when substituted into eq. (81c), which tallies with the result reported in (Gauthier
et al., 2009) using a brute-force approach. Hence, the minimum condition number of the forward-kinematics
Jacobian is found as κ

A
= 1.2196, occuring at the posture with joint and posture variables

[θI1, θII1, φ] = [0, π, 0]
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while θI3 + θII3 = π/2. It is noteworthy that a) the minimum condition number reported by Gauthier et al.
(2009) is 4.8783 b) the other two independent joint angles, θI2 and θII2, can be obtained from the solution of
the inverse-displacement problem reported by Gauthier et al. (2009). If a fully symmetric posture is desired,
the joint angles can be chosen as

[θI1, θII1, θI2, θII2, θI3, θII3, φ] = [0, π, 0.53π, 0.53π, π/4, π/4, 0]

which thus determines the home posture sought. This posture is depicted in Fig. 3.

6 Conclusions

In this report the home posture of the McGill Schönflies Motion Generator (SMG) is sought via the min-
imization of the condition number of the forward-kinematics Jacobian. Although computer algebra can
manipulate cumbersome mathematical expressions, it is confined to work with scalar quantities. Indeed,
computer algebra is incapable of handling vector and matrix expressions in their invariant form, thereby
requiring that the user assume a reference frame and introduce components, which in many cases can lead to
extremely cumbersome expressions that prevent calculation of the final numerical results. On the contrary,
a coordinate-free formulation of the problem at hand allows for expressions that give insight, and hence, by
invoking the intuition of the analyst into the problem, the derivation of the final numerical results.

In the realm of computational kinematics, knowledge from linear algebra proves to be invaluable in ma-
nipulating the expressions resulting from the kinematic relations of the system at hand. This is demonstrated
here while deriving the first-order normality conditions (FONC) for minimization of the condition number
of the forward-kinematics Jacobian of the SMG. As made apparent in the report, the expressions become
too cumbersome to prevent the analyst from finding a solution, if the components of the vectors and ma-
trices are substituted at the outset. Nevertheless, by resorting to the relations from the kinematic analysis
of the robot, as well as some useful theorems from linear algebra, the FONC of the minimization problem
are derived. Considering the algebraic structure of these equations, the symmetry of the robot architecture
provides some clues for solving the system of equations thus resulting.
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A Appendix

The coefficients used in this appendix are listed below.

ǫ11 = σT Ψ
T

IIΨIIσ ǫ21 = Ψ
T

IIΨIIσ ̺ = ǫ11 − ǫ21
T A−1

22 ǫ21

p4 =
(ψI × σ)

T
(fI × aI2)

δ
p5 =

(ψII ×ψI)
T

(fI × aI2)

δ
p6 =

− (σ ×ψII)
T

(fI × aI2)

δ

p7 =
(ψI × σ)

T
(fI × aI2)

δ
p8 =

− (ψI × σ)
T

(k × rII14 + σ)

δ
p9 =

− (ψII ×ψI)
T

(k × rII14 + σ)

δ

p10 =
(σ ×ψII)

T
(k × rII14 + σ)

δ
p11 =

− (ψI × σ)
T

(fII × aII2)

δ
p12 =

− (ψII ×ψI)
T

(fII × aII2)

δ

p13 =
(σ ×ψII)

T
(fII × aII2)

δ
p14 = ψ

T

I ψII p15 = 1 + p2
14

γ = ψII × σ

̟1 = ψII × aII5

̟2 = ψII ×̟1

̟3 = p1ρ̃II3 × γ + p1ψII × (ρ̃II3 × σ) + p2̟2

̟4 = p4ρ̃II3 × γ + p4ψII × (ρ̃II3 × σ) + p5̟2

̟5 = γ ×
(
k ×ψII − p8ρ̃II3

)
−ψII ×

[(
k ×ψII − p8ρ̃II3

)
× σ

]
+ (1 − p9)̟2

̟6 = p11ρ̃II3 × γ + p11ψII × (ρ̃II3 × σ) + p12̟2

Q1 = fIe
T
I + eI f

T
I +

(
k × ρ̃I3 + p3ψI

)
ρ̃T

I3 + ρ̃I3

(
k × ρ̃I3 + p3ψI

)T
+ p1ψII ρ̃

T
II3 + p1ρ̃II3ψ

T

II

Q2 = p6ψI ρ̃
T
I3 + p6ρ̃I3ψ

T

1 + p7ψII ρ̃
T
II3 + p7ρ̃II3ψ

T

II3

Q3 = fIIe
T
II + eII f

T
II +

(
k × ρ̃II3 + p8ψII

)
ρ̃T

II3 + ρ̃II3

(
k × ρ̃II3 + p8ψII

)T
+ p10ψI ρ̃

T
I3 + p10ρ̃I3ψ

T

I

Q4 = p13ψI ρ̃
T
I3 + p13ρ̃I3ψ

T

I + p11ψII ρ̃
T
II3 + p11ρ̃II3ψ

T

II3

The coefficients of the FONC polynomials, as introduced in eq. (80), are listed below.

η12 =
−4

̺2

[
2γT (−p1ρ̃II3 × σ − p2̟1) − 2ǫ21

T A−1
22 ̟3 + ǫ21

T A−1
22 Q1A

−1
22 ǫ21

]
(83a)

η11 =
2

̺
γT (−p1ρ̃II3 × σ − p2̟1) −

ǫ11 + 4ǫ21
T
(
A−1

22

)2
ǫ21

̺2

[

−2p1γ
T (ρ̃II3 × σ) − 2p2γ

T̟1

− 2ǫ21
T A−1

22 ̟3 + ǫ21
T A−1

22 Q1A
−1
22 ǫ21

]

+
8

̺
ǫ21

T A−2
22 ̟3 −

4

̺
ǫ21

T
(
A−1

22 Q1A
−2
22 + A−2

22 Q1A
−1
22

)
ǫ21

−
32p15

∆2
22

(
ψI ×ψII

)T [(
k ×ψI − p3ρ̃I3

)
×ψII − p1ψI × ρ̃II3

]
+

16p14

∆22

[(
k ×ψI − p3ρ̃I3

)T
ψII

−p1ψ
T

I ρ̃II3

]

(83b)
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η10 = 2

(
ǫ21

T A−2
22 ǫ21

̺
+

3

2
+

2

∆22
p15

)

γT (−p1ρ̃II3 × σ − p2̟1) −
ǫ11ǫ21

T A−2
22 ǫ21

̺2

[

−2γT (p1ρ̃II3 × σ

−p2̟1) − 2ǫ21
T A−1

22 ̟3 + ǫ21
T A−1

22 Q1A
−1
22 ǫ21

]

+
2ǫ11
̺
ǫ21

T A−2
22 ̟3 −

ǫ11
̺
ǫ21

T
(
A−1

22 Q1A
−2
22

+A−2
22 Q1A

−1
22

)
ǫ21 −

8ǫ11p15

∆2
22

(
ψI ×ψII

)T [(
k ×ψI − p3ρ̃I3

)
×ψII − p1ψI × ρ̃II3

]

+
4ǫ11p14

∆22

[(
k ×ψI − p3ρ̃I3

)T
ψII − p1ψ

T

I ρ̃II3

]

(83c)

η22 =
−4

̺2

[
2γT (−p7ρ̃II3 × σ − p5̟1) − 2ǫ21

T A−1
22 ̟4 + ǫ21

T A−1
22 Q2A

−1
22 ǫ21

]
(83d)

η21 =
2

̺
γT
(
−p7ρ̃II3 × σ − p5ψII × aII5

)
−

ǫ11 + 4ǫ21
T A−2

22 ǫ21

̺2

[

−2p7γ
T (ρ̃II3 × σ) − 2p5γ

T̟1

− 2ǫ21
T A−1

22 ̟4 + ǫ21
T A−1

22 Q2A
−1
22 ǫ21

]

+
8

̺
ǫ21

T A−2
22 ̟4 −

4

̺
ǫ21

T
(
A−1

22 Q2A
−2
22 + A−2

22 Q2A
−1
22

)
ǫ21

−
32p15

∆2
22

(
ψI ×ψII

)T (
−p6ρI3 ×ψII − p4ψI × ρ̃II3

)
+

16p14

∆22

(

−p6ρ̃
T
I3ψII − p4ψ

T

I ρ̃II3

)

(83e)

η20 = 2

(
ǫ21

T A−2
22 ǫ21

̺
+

3

2
+

2

∆22
p15

)

γT (−p7ρ̃II3 × σ − p5̟1) −
ǫ11ǫ21

T A−2
22 ǫ21

̺2

[

2γT (−p7ρ̃II3 × σ

−p5̟1) − 2ǫ21
T A−1

22 ̟4 + ǫ21
T A−1

22 Q2A
−1
22 ǫ21

]

+
2ǫ11
̺
ǫ21

T A−2
22 ̟4 −

ǫ11
̺
ǫ21

T
(
A−1

22 Q2A
−2
22

+A−2
22 Q2A

−1
22

)
ǫ21 −

8ǫ11p15

∆2
22

(
ψI ×ψII

)T (
−p6ρI3 ×ψII − p4ψI × ρ̃II3

)
+

4ǫ11p14

∆22

(
−p6ρ̃

T
I3ψII

−p4ψ
T

I ρ̃II3

)

(83f)

η32 =
−4

̺2

{

2γT
[(

k ×ψII − p8ρ̃II3

)
× σ − (1 − p9)̟1

]
− 2ǫ21

T A−1
22 ̟5 + ǫ21

T A−1
22 Q3A

−1
22 ǫ21

}

(83g)

η31 =
2

̺
γT
[(

k ×ψII − p8ρ̃II3

)
× σ − (1 − p9)̟1

]
−

ǫ11 + 4ǫ21
T A−2

22 ǫ21

̺2

{

γT
[(

k ×ψII − p8ρ̃II3

)
× σ

− (1 − p9)̟1] − 2ǫ21
T A−1

22 ̟5 + ǫ21
T A−1

22 Q3A
−1
22 ǫ21

}

+
8

̺
ǫ21

T A−2
22 ̟5 −

4

̺
ǫ21

T
(
A−1

22 Q3A
−2
22

+A−2
22 Q3A

−1
22

)
ǫ21 −

32p15

∆2
22

(
ψI ×ψII

)T [
ψI ×

(
k ×ψII − p8ρ̃II3

)
− p10ρ̃I3 ×ψII

]
(83h)

+
16p14

∆22

[

−p10ρ̃
T
I3ψII +ψ

T

I

(
k ×ψII − p8ρ̃II3

)
]

(83i)

η30 = 2

(
ǫ21

T A−2
22 ǫ21

̺
+

3

2
+

2

∆22
p15

)

γT
[(

k ×ψII − p8ρ̃II3

)
× σ − (p9 − 1)̟1

]

−
ǫ11ǫ21

T A−2
22 ǫ21

̺2

{

2γT
[(

k ×ψII − p8ρ̃II3

)
× σ − (1 − p9)̟1

]
− 2ǫ21

T A−1
22 ̟5

+ ǫ21
T A−1

22 Q3A
−1
22 ǫ21

}

+
2ǫ11
̺
ǫ21

T A−2
22 ̟5 −

ǫ11
̺
ǫ21

T
(
A−1

22 Q3A
−2
22 + A−2

22 Q3A
−1
22

)
ǫ21

−
8ǫ11p15

∆2
22

(
ψI ×ψII

)T
[

ψI ×
(
k ×ψII − p8ρ̃II3

)
− p10ρ̃I3 ×ψII

]

+
4ǫ11p14

∆22

[

−p10ρ̃
T
I3ψII

+ψ
T

I

(
k ×ψII − p8ρ̃II3

)
]

(83j)
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η42 =
−4

̺2

{

2γT (−p11ρ̃II3 × σ − p12̟1) − 2ǫ21
T A−1

22 ̟6 + ǫ21
T A−1

22 Q4A
−1
22 ǫ21

}

(83k)

η41 =
2

̺
γT (−2p11ρ̃II3 × σ − 2p12̟1) −

ǫ11 + 4ǫ21
T A−2

22 ǫ21

̺2

[

2γT (−p11ρ̃II3 × σ − p12̟1)

− 2ǫ21
T A−1

22 ̟6 + ǫ21
T A−1

22 Q4A
−1
22 ǫ21

]

+
8

̺
ǫ21

T A−2
22 ̟6 −

4

̺
ǫ21

T
(
A−1

22 Q4A
−2
22

+A−2
22 Q4A

−1
22

)
ǫ21 −

32p15

∆2
22

(
ψI ×ψII

)T
(

−p13ρ̃I3 ×ψII − p11ψI × ρ̃II3

)

+
16p14

∆22

(

−p13ρ̃
T
I3ψII − p11ψ

T

I ρ̃II3

)

(83l)

η40 = 2

(

a′
21

T
(A−1

22 )2a′
21

̺
+

3

2
+

2

∆22
p15

)

γT (−p11ρ̃II3 × σ − p12̟1)

−
ǫ11ǫ21

T A−2
22 ǫ21

̺2

[

2γT (−p12̟1 − p11ρ̃II3 × σ) − 2ǫ21
T A−1

22 ̟6 + ǫ21
T A−1

22 Q4A
−1
22 ǫ21

]

+
2ǫ11
̺
ǫ21

T A−2
22 ̟6 −

8ǫ11p15

∆2
22

(
ψI ×ψII

)T (
−p13ρ̃I3 ×ψII − p11ψI × ρ̃II3

)

−
ǫ11
̺
ǫ21

T
(
A−1

22 Q4A
−2
22 + A−2

22 Q4A
−1
22

)
ǫ21 +

4ǫ11p14

∆22

(

−p13ρ̃
T
I3ψII − p11ψ

T

I ρ̃II3

)

(83m)

η52 =
8

̺2

[
ǫ11 + ǫ21

T A−1
22

(
ψII × γ

)]
(83n)

η51 = −
2ǫ11
̺

+
2ǫ11
̺2

[
ǫ11 + ǫ21

T A−1
22

(
ψII × γ

)]
+

8

̺2

(
ǫ11 + ǫ21

T A−2
22 ǫ21

)
ǫ21

T A−2
22 ǫ21

+
8

̺
ǫ21

T A−2
22

(
ψII × γ

)
(83o)

η50 = −
2ǫ11
̺
ǫ21

T A−2
22 ǫ21 − 2ǫ11

(
3

2
+

2

∆22
p15

)

+
2ǫ11
̺2

[
ǫ11 + ǫ21

T A−1
22

(
ψII × γ

)]
ǫ21

T A−2
22 ǫ21

+
2ǫ11
̺
ǫ21

T A−2
22

(
ψII × γ

)
(83p)

16



Bibliography

Albala, H. (1982), ‘Displacement analysis of the n-bar, single-loop, spatial linkage. part I: Underlying math-
ematics and useful tables, and part II: Basic displacement equations in matrix and algebraic form’, ASME

Journal of Mechanical Design 104, 514–525.

Alizade, R., Duffy, J. and Hajiyev, E. (1983), ‘Mathematical models for analysis and synthesis of spatial
mechanism. part IV: Seven-link spatial mechanisms’, Mechanism and Machine Theory 18(5), 323–338.

Angeles, J. (2004), ‘The qualitative synthesis of parallel manipulators’, ASME Journal of Mechanical Design

126, 617–624.

Angeles, J. (2007), Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms, 3rd
edn, Springer, New York.

Beyer, W. H. (1987), CRC Handbook of Mathematical Sciences, 6th edn, CRC Press, Boca Raton, Fla.

Brand, L. (1965), Advanced Calculus, John Wiley & Sons, New York.

Bryson, A. and Ho, Y. (1975), Applied Optimal Control: Optimization, Estimation and Control, 1st edn,
Taylor & Francis, New York.

Dietmaier, P. (1998), ‘The Stewart-Gough platform of general geometry can have 40 real postures’, In Proc.

Sixth International Workshop on Advances in Robot Kinematics, Dordrecht.

Duffy, J. and Crane, C. (1980), ‘A displacement analysis of the general spatial 7-link, 7R mechanism’, ASME

Journal of Mechanical Design 15(3), 153–169.

Duffy, J. and Derby, S. (1979), ‘Displacement analysis of a spatial 7R mechanism—a generalized lobster’s
arm’, ASME Journal of Mechanical Design 101, 224–231.

Gauthier, J., Angeles, J., Nokleby, S. and Morozov, A. (2009), ‘The kinetostatic conditioning of Schönflies
motion generators’, ASME Journal of Mechanism and Robotics 1(1).
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