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Abstract— This paper describes an approach to surface
identification in the context of mobile robotics, applicable
to supervised and unsupervised learning. The identification
is based on analyzing the tip acceleration patterns induced
in a metallic rod, dragged along a surface that is to be
identified. Eight features in time and frequency domains
are used for classification. Results show that for ten type of
indoor and outdoor surfaces, reliable identification can be
achieved (90.0 and 94.6 percent for a 1 and 4 seconds time-
window, respectively), using a non-sophisticated classifier
(artificial neural network). Demonstration is done on how
such a sensor and a simple control strategy can be used
to guide a blind robot, using a simulation and a real
differential drive robot.

I. INTRODUCTION

This paper discusses a simple approach to terrain
identification, based on the exploitation of contact dy-
namics. Surface sensing using a feeler can have several
advantages for navigation. In the simplest case, the feeler
can be used to detect anomalous surface conditions such
as holes in the ground. More interestingly, it can be used
to probe terrain properties. These properties, for exam-
ple visco-elasticity or friction, might be challenging to
measure accurately using vision or laser range-finders.

Supervised and unsupervised terrain identification can
be performed using the information gathered by the
feeler over different terrains. In turn, the resulting clas-
sification can be exploited in navigation policies. It can
also be employed to train higher-dimensionality sensors,
such as vision, to remotely recognize terrain types.

A. Use of Whiskers as Tactile Sensor in Robotics

For a long time, whiskers in animals have been known
[1] to be a simple and economical solution for collecting
information about surface properties. One of the first
examples of touch sensors in robotics is Grey Walter’s
famous tortoise robot [2]. It relied partly on a simple
switch to modify the behavior of the robot, in order to
avoid obstacles in its quest for reward.
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The task at hand dictates the amount and type of
information that needs to be extracted from a tactile
sensor. Deflection measurement between the robot and a
point of contact have been used in wall-following tasks
by Jung et al. [4]. A natural extension to this application
is to perform profiling or shape measurement using the
same deflection information, as in Russell [5], Scholz
et al. [6], Clements et al. [10], or DaeEun et al. [11].
Finally, shape and texture extraction has been studied by
Schultz et al. [12].

B. Transducer Technology

Various transducer technologies have been employed
to measure whisker deformation or vibration. Electrical
contacts in Walter [2] or Russel [3], represent the
simplest type. More sophisticated schemes include using
potentiometers to measure springy whiskers deflection
(Jung et al. [4], Russel [5]), strain gauges (Pearson et
al. [7], Schultz et al. [12]), load cells (Scholz et al. [6],
Clements et al. [10]), Hall-Effect Sensor (DaeEun et al.
[11], Hipp et al. [13]), vibration or sound picked up by a
microphone (Fend et al. [14], Roy et al. [21]) or changes
in optical transmission of fibre optic whiskers (Liu et al.
[8], Djordjevich et al. [9]).

C. Terrain Identification Using On-board Accelerome-
ters

Techniques to identify terrain relying on acceleration
cues for outdoor wheeled vehicles have been explored
in the literature (Sadhukan et al. [15], Brooks et al.
[16], Weiss et al. [17] [18], DuPont et al. [19]). How-
ever, their sensitivity is limited by the vehicle itself. A
heavy chassis mounted on a suspension system, coupled
with air-filled tires, behaves like a damped mass-spring
systems. This filters out higher-frequency components
of accelerations sensed by accelerometers mounted on
the chassis. Weiss et al. [18] mention how their results
were impacted negatively when using such a vehicle
compared to a cart with no suspension and hard plastic
wheels.

A possible way to mitigate this drawback is to mount
the accelerometers on the wheel frame, as in Brooks et



al. [16]. However, bypassing the suspension system will
not improve detection of surface features that are much
smaller than the radius of the wheel, such as small cracks
on the ground. Using a sensor system similar to what is
proposed here would address this issue, in a temporary
basis during a self-supervised vision training phase for
example, or on a permanent basis if need be. This type
of sensor also makes it possible to sense terrain not
only at the contact point of the wheels, but any arbitrary
locations under the vehicle.

II. DESCRIPTION OF THE SENSOR

Surface texture identification requires higher band-
width transducers than those used typically for deflection
measurements. In our system, a solid-state accelerometer
is placed at the tip of a dragged aluminum rod, as shown
in Fig 1. The hardness and weight of a metallic rod
generate significant vibrations while being dragged on a
surface. The top end of the rod is joined to the vehicle,
maintaining an angle of approximately 40 deg relative
to the surface. The accelerometer is oriented to pick
up accelerations in the sagittal plane, corresponding to
upward and downward motions of the rod.

This system is mechanically passive, low power, ro-
bust, and inexpensive. It can be made weather resistant
without requiring seals around any rotating or moving
parts. Energy used to probe the ground is provided by
the vehicle itself as it moves forward. However, no
information is collected when the robot is immobile,
and backward motion requires the rod to be taken off
the ground temporarily.

Fig. 1. Aluminum rod equipped with a single-axis accelerometer on
its tip, used as a sensing device. A simple box emulates the chassis
of a robot, and contains the data acquisition system.

A. Selected Features

Important information contained in the phase spec-
trum is discarded by relying strictly on amplitude spec-
trum feature. For example, signals in Fig. 3 have identi-
cal amplitude spectra but different phase spectra. These
phase spectrum differences translate into significant vari-
ations in the time-domain. Consequently, features in the
time and frequency domain were both selected, within

Fig. 2. Accelerometer output for a) grass, b) concrete paving,
c) tiled linoleum and d) untiled linoleum surfaces. Grass has few
high-frequency components: the soft surface prevents their genera-
tion. Paving signal has high-frequency components (due to surface
hardness) as well as large jumps (the crack between the bricks).
Linoleum surfaces are similar, except at time 0.6 s in tiled linoleum:
this correspond to the rod going over a crack between tiles.

non-overlapping time-windows of size W . Seven of
these features are in time-domain:

• mean, variance, skewness, kurtosis and fifth mo-
ment,

• number of times 20 uniformly separated thresholds
are crossed,

• sum of the variation over time:
W−1∑
t=1

|a(t)− a(t + 1)|,

and one is in frequency-domain:
• sum of higher half of amplitude spectrum.

Some of these features are comparable to the ones used
in Weiss et al. [17].

The variance of the signal is a good indicator of the
amount of vertical motion experienced by the rod, which
is large for uneven surfaces such as grass and gravel.
The skewness of the histogram helps identify cases
with asymmetric distribution of acceleration, typical for
surfaces with regular but infrequent asperities such as
cracks between tiles. The sign of the skewness plays
an important role too, as some terrains tend to have a
distribution more skewed to the top than the bottom:
compare Fig. 2 b) and c) for example. The presence of
high-frequency components helps differentiate between
hard and soft surfaces.

III. SUPERVISED CLASSIFIER TRAINING

The performance of classification in supervised learn-
ing, and indirectly the capability of clustering data dur-
ing unsupervised learning, depends greatly on the quality
and the discriminating power of a sensor and selected
features on its data set. To evaluate this discriminating



Fig. 3. Two signals a) and c) with identical amplitude spectra
but different phase spectra. Signal c) was generated by replacing
phase spectrum of a) with random phase values. Important features
in time-domain are lost: the histograms b) and d) are significantly
different. This points to limitations in pure spectral analysis for terrain
identification, at least for this type of sensor.

power, an artificial neural network was selected as a
classifier and trained to identify various terrain surfaces
with manually collected data.

A. Data Collection

The box and rod combination was manually dragged
over various surfaces, at an approximate rate of 70 cm/s.
The scaled output of the accelerometer was collected at 4
kHz, 8 bit resolution, using an IsaacTM Data Acquisition
system. After manually labelling the data, between 250
and 500 seconds of valid data was available for each
surface. Four outdoor and six indoor horizontal surfaces
were sampled: computer room flooring, tiled and untiled
linoleum flooring, terazzo, wood bench surface, indus-
trial carpet, grass, packed dirt with small gravel, gravel
and paving made of concrete bricks. Fig. 2 shows the
accelerometer output for one second, for four different
surfaces.

B. Classifier Testing Results

The NETLAB [20] library implementation of a neural
network was employed. The neural network had eight
inputs (one for each feature), ten outputs (representing
each of the ten terrains), and 20 neurons for each of
the two layers. The data set was split randomly, with 70
percent of the data going for training and the other 30
percent used for testing.

The success rate over all ten surfaces (Table I) was
90.0 and 94.6 percent for time windows of 1 and 4 sec-
onds, respectively. When only outdoors terrains (grass,
paving, large gravel, and small gravel) are considered in
the testing phase for a neural networks trained on all ten
surfaces, success rate climbs to 98.85 and 99.96 percent
for time windows of 1 and 4 seconds, respectively.

TABLE I
AVERAGE TESTING CLASSIFICATION RATE FOR A NEURAL

NETWORK TRAINED TEN TERRAINS.

Time-Window Size Time-Window Size
1 s 4 s

Indoor and Outdoor 90.0 % 94.6 %
Outdoor only 98.85 % 99.96 %

This shows that outdoor surfaces are reliably identified,
compared to indoor surfaces. One possible reason is that
most of the indoor surfaces are smooth with few distinct
features. Additionally, the carpet surface was sometimes
confused with the packed dirt with small gravel outdoor
terrain, as they are both irregular soft surfaces.

Fig. 4. Confusion matrix for testing phase of the trained neural
network. Time-window size is 1 second. Results shown as percentage,
averaged over 25 randomly training sets. Surfaces are sorted in
descending order of success. Outdoor terrains are easily identified,
while indoor surfaces are more challenging. Entries less than 0.05
percent are rounded down to 0.

C. Reducing Dimensionality: Applying PCA

A commonly used method to reduce dimensionality
is Principal Component Analysis, or PCA. In PCA, data
is projected along principal axes, and n primary projec-
tions are selected. Fig. 6 shows the classification rate as
a function of the number of retained dimensions. This
graph indicates that over 6 dimensions, no significant
improvement is made in classification rate.

IV. SURFACE CONTOUR FOLLOWING WITH
SIMULATED VEHICLE AND A MOBILE ROBOT

Experiments were conducted with both a simulated
and a real robot, to validate the idea that a simple
contact-based terrain sensor can be used for practical
navigation tasks.



Fig. 5. Confusion matrix for testing phase of the trained neural
network. Time-window size is 4 second. Results shown as percentage,
averaged over 25 randomly training sets. Surfaces are sorted in
descending order of success. Entries less than 0.05 percent are rounded
down to 0.

Fig. 6. Variation of training and testing classification rates, as a
function of the number of principal dimensions kept after performing
PCA. Time-window size is 1 second.

A. Control Algorithm For Surface Contour Following

The control algorithm works as follows. First, it is
assumed that the robot is able to execute two simple
locomotion commands: forward motion at speed V , and
rotation at angular velocity θ̇. With the robot already on
the track, it goes forward at a velocity Vnominal. When a
sensor detects a transition to a different surface type (A
on Fig. 7), the robot reduces its speed by half, and starts
turning at a rate θ̇TR. Once the outer sensor is brought
back on the track (location B), it drives straight for a
brief moment in order to move away from the border. It
then rotates in the opposite direction at rate −θ̇TR for
half the duration it took to bring the outer sensor back on
the track. This orients the robot parallel to a line passing
through A and B. If the followed contour is piecewise
linear and A, B correspond to a straight contour of the
surface, the robot will be oriented parallel to the track.

1) Simulation Results: The simulator operated by
allowing a vehicle to move along a 2D terrain. The
sensor readings were simulated by playing back the data
previously collected in the training phase, based on the

Fig. 7. Control scheme used to follow a surface (light grey). Sensors
are shown as darker grey disks, near the corners of the robot (shown
as a square). The robot initially drives straight (a). When the left-hand
side sensor leaves the track at A, it triggers a clockwise rotation (b)
until the sensor reaches the track again at B. The robot then moves
straight for a brief moment (c), then rotates counterclockwise by angle
θ2 = θ1/2 (d). Finally, it drives straight again (e), in an orientation
parallel to a line passing through A and B.

terrain under the simulated rod sensor. The simulated
environment was a 3-4 m wide track of concrete paving,
surrounded by grass (see Fig. 8). The track itself was
hand-drawn, resulting in a slightly irregular contour.
Curves of various radii were present, in both directions.
Simulated sensors were located directly in front of
the robot at (0.6,0.6) m and (0.6,-0.6) m. The trained
classifier shown in Sec. III-B with a 1 second time-
window was used, which strikes a compromise between
rapid detection and accuracy. The robot was initially
placed on the track at the location marked with a star in
Fig. 8, heading in the direction of the side of the track.
The nominal speed was Vnominal = 1m/s.

Overall the control strategy and detection results were
robust for the presented simulation. The right-hand side
sensor spent 94.2 percent of its time on the actual track,
while the left-hand side sensor spent 79.0 percent of its
time on the track. After more than one thousand loops,
the robot was still following the track. The most difficult
case was when the robot encounters a sharp 90 deg turn.
In those cases, the robot would usually require two exits
to negotiate the turn: once to get back on the track, and
a second time to orient itself along the straight segment
after the curve. This can be seen in the magnified area
of Fig. 8.

2) Experimental Results with a Mobile Robot: A
smaller version of the sensor was built and mounted
on the left side of an iCreateTMrobot from iRobotTM.
The robot is propelled using a differential drive, and its
motion was remotely controlled via a serial interface.
The sensor signals were captured using a standard sound
card.



Fig. 8. Clockwise trajectory of the vehicle (thin black curves) as it
follows a simulated concrete paving path (grey) surrounded by grass
(white). Ten consecutive loops are shown. The starting location is
marked with a star on the left-hand side. The robot initially points
upward. The magnified view shows the robot trajectory as it negotiates
a turn.

Fig. 9. Picture of the iRobot equipped with a rod sensor on the left
side. The thick black arrow at the top indicates the direction of motion.

The robot was controlled using the same algorithm
as in the simulation. The target surface consisted of a
3x3 m carpet placed on top of a tiled floor. A mixture
of Gaussians classifier was trained to differentiate these
two surfaces. Qualitatively, the robot performed in a
similarly fashion to the simulation. Fig. 10 shows the
robot executing the re-entry maneuver. A successful test
sequence of 5 minutes without failure can be seen in the
submitted video. In this sequence, the robot returned on
the carpet surface for every exit case, while managing
to re-oriented itself parallel to the contour of the surface
after re-entry.

V. UNSUPERVISED LEARNING OF TERRAINS WITH A
MOBILE ROBOT

This set of experiments investigated the use of the
sensor in the context of unsupervised learning. For
each experiment run, the robot was manually placed
and oriented in such a way so that it encountered
two different surfaces along a straight path. A training

Fig. 10. Sequence of pictures taken as the robot executed the control
algorithm, after leaving the carpet. Picture sequence is from left-to-
right, top-to-bottom. After re-entry, the robot re-oriented itself parallel
to the carpet edge.

data set was autonomously collected along this path at
a constant speed of 150 mm/s, for the predetermined
durations displayed in Table II. PCA was applied to
the training data, while keeping the two major compo-
nents. A mixture of two Gaussians classifier was then
trained on this modified data set, using an unsupervised
learning technique described in Giguere et al.[22]. This
technique searches for the classifier parameter value
~θ that minimizes an objective function related to the
time-variation of the posterior probabilities p(ci|~x, ~θ) of
samples x ∈ X , for all classes ci ∈ C:

arg min
~θ

|C|∑
i=1

∑T−1
t=1 (p(ci|~xt+1, ~θ)− p(ci|~xt, ~θ))2

var(p(ci| ~X, ~θ))2
(1)

Following the training phase, the robot executed a
180 deg turn and moved forward at the same constant
speed of 150 mm/s. The coming sensor information was
classified in real time using the trained classifier. When
a transition in surface classification was detected, the
robot stopped and turned around to move back to the
original surface.

This complete unsupervised process was executed for
each trial. An experiment was considered successful
when the robot drove up to the surface transition and
triggered slightly past it. The majority of failures were
early false detection of transitions. This could have
been due to the non-representativeness of the collected
training data, or the failure of the clustering algorithm
to properly identify the surfaces in the training data
set. Table II presents the results of these tests for three
different surface transitions.

One has to bear in mind that a successful trial required



TABLE II
EXPERIMENTAL TESTING RESULTS OF AUTONOMOUS TERRAIN

LEARNING AND IDENTIFICATION WITH ROD SENSOR, USING A

DIFFERENTIAL DRIVE ROBOT.

Surface Type Training Success Failures Success
Combination Data Rate

Duration
Terazzo / 40 s 10 10 50 %

Tiled Linoleum
Untiled Linoleum / 30 s 15 5 75 %

Tiled Linoleum
Computer Room 10 s 20 0 100 %
Flooring/ Carpet

at least ten successful classification in a row. This might
explain why the Terazzo/Tiled Linoleum test results
were significantly lower that the two others, standing at
50 percent: these two surfaces were not distinct enough
to ensure a high success rate of the combined clustering
and classification of the data.

VI. CONCLUSION AND FUTURE WORKS

In this paper a novel sensor used for terrain iden-
tification and navigation purposes was presented. A
classifier was successfully trained to identify a number
of different types of outdoor and indoor surfaces, using
a handful of features extracted from the sensor signal
in time and frequency domains. It was shown how the
dimensionality of the problem can be reduced down to
6 dimensions through PCA, without impacting signifi-
cantly the classification results. Simulations and tests on
a real robot demonstrated how a blind robot can navigate
and follow a surface texture. Finally, a few examples of
unsupervised learning of terrains were shown.

For future work, we intend on improving the sensor’s
mechanical design, to allow the robot to move backward
without damaging the sensor. These improved sensors
would then be deployed on a motorized wheelchair, and
used to autonomously navigate in a structured outdoor
setting.
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