TUTORIAL5: VELOCITY ANALYSIS (2)
(p162 in 4th ed.)
PROBLEM 1: Problem 3.26 (p139)
Given:

Scale: $1 \mathrm{~cm}=1 \mathrm{~m} / \mathrm{s}$

* $\vec{V}_{A_{2}}=\overrightarrow{V_{O_{2}}}+\underbrace{\overrightarrow{V_{2}}}_{\overrightarrow{W_{A_{2}}} \times \frac{\vec{W}_{2}}{\vec{R}_{A_{2}} O_{2}} \vec{R}_{A_{2} O_{2}}}$
* $\vec{V}_{A_{3}} \xrightarrow[V_{A_{2}}]{V_{A_{2}}}=\omega_{2} R_{A_{1} O_{2}}=36 \times 0.25=9 \mathrm{~m} / \mathrm{s}$
$J_{\text {Aul3 }}$
* $\vec{V}_{A_{4}}=\vec{V}_{A_{3}}^{2}+\underbrace{\vec{V}_{4 / 3}}_{\begin{array}{l}\text { I/ axis of slet } \\ \text { in } \operatorname{lin} 2\end{array}}$
$\vec{V}_{A_{4}}=\vec{V}_{A_{1}}^{*}+\vec{V}_{\text {G heringatal }^{0}}^{\vec{V}_{4}}$

$$
\Rightarrow V_{A_{4}}=4.7 \times!=4.7 \mathrm{~m} / \mathrm{s}
$$

Tutorial 5: Velocity Analysis (2)
This problem is not illustrated in 4 th ed.
Problem 2: Problem 3.28 (p139)

Position Scale: $1 \mathrm{~cm}=2 \mathrm{~cm}$
Velocity Scale: $1 \mathrm{~cm}=20 \mathrm{~cm} / \mathrm{s}$

Solution:

