Problem 1:

$$
\begin{aligned}
& R_{B A}=R_{C B}=R_{P B}=25 \mathrm{~mm} \\
& R_{C A}=40 \mathrm{~mm} / \text { input }
\end{aligned}
$$

Loop closure equation:

$$
\vec{R}_{C A}+\vec{R}_{B C}=\vec{R}_{B A}^{0} \quad\left(\text { or } \quad \vec{R}_{C}+\vec{R}_{B C}=\vec{R}_{B}\right)
$$

(a) Graphical solution: scale: $2 \mathrm{~cm} / 1 \mathrm{~cm}$

(b) Analytical solution using complex numbers

$$
\begin{aligned}
& \vec{R}_{C A}+\vec{R}_{B C}=\vec{R}_{B A} \\
& \left.R_{C A} e^{j \theta_{1}}+R_{B C} e^{j \theta_{3}}=R_{B A} e^{j \theta_{2}} \quad / e^{j \theta_{1}} \quad \text { (but } \Theta_{1}=0\right) \\
& \left.\begin{array}{rl}
R_{C A} A^{\prime}+R_{B C} d^{j \theta_{3}}=R_{B A} e^{j \theta_{2}} \rightarrow \quad & R_{C A}+R_{B C} \cos \Theta_{3}=R_{B A} \cos \theta_{2} \\
& R_{B C} \operatorname{oin} \Theta_{3}=R_{B A} \operatorname{cin} \theta_{2}
\end{array}\right\} \\
& \begin{aligned}
R_{C A}^{2}+R_{B C}^{2}+2 R_{C A} R_{B C} \cos \Theta_{3}=R_{B A}^{2} & \rightarrow \pi_{3}=\cos ^{-1}\left(\frac{R_{B A}^{2}-R_{C A}^{2}-R_{B C}^{2}}{2 R_{C A} R_{B C}}\right)=\begin{array}{l}
143.1^{\circ}=0_{3} \\
-143.19^{\circ}=\Theta_{3}^{\prime}
\end{array} \\
& R_{C A}-R_{B A} \cos O_{2}=-R_{B C} \cos \left(\Theta_{3},\right.
\end{aligned} \\
& \mathrm{R}_{\mathrm{BA}} \sin \mathrm{O}_{2}=\mathrm{R}_{B C} \operatorname{cin}_{3} \\
& R_{C A}^{2}+R_{B A}^{2}-2 R_{C A} R_{B A} \cos \pi_{2}=R_{B C}^{2} \rightarrow \theta_{2}=\cos ^{-1}\left(\frac{R_{C A}^{2}+R_{B A}^{2}-R_{B C}^{2}}{2 R_{C A} R_{B A}}\right)=<\begin{array}{l}
36.9^{\circ}=\pi_{2} \\
-36.9^{\circ}=9_{2}^{\prime}
\end{array} \\
& \left.\vec{R}_{P A}^{00}=\vec{R}_{B A}+\vec{R}_{P B} \rightarrow R_{P A} e^{j \theta_{P}}=R_{B A} e^{j \theta_{2}}+R_{P B} e^{j \theta_{3}} \rightarrow R_{P P} \cos \Theta_{P}=R_{B A} \cos \theta_{2}+R_{P B} \cos \theta_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow X_{p}=0 \quad Y_{p}=30 \mathrm{~mm} \\
& x_{p}^{\prime}=0 \quad Y_{p}^{\prime}=-30 \mathrm{~mm} \\
& \text { accurate }
\end{aligned}
$$

Problem 2

$$
\begin{aligned}
& r_{1}=400 \mathrm{~mm} \\
& r_{2}=200 \mathrm{~mm} \\
& r_{3}=500 \mathrm{~mm} \\
& r_{4}=400 \mathrm{~mm}
\end{aligned}
$$

input information: links 2 and 3 form a straight line \rightarrow angle between them: 180° or 0°
Loop closure equation: $\quad \stackrel{\stackrel{八}{0}}{\vec{R}_{\mathrm{BO}_{2}}}=\stackrel{\vec{R}_{\mathrm{O}_{4} \mathrm{O}}}{ }+\stackrel{-}{\mathrm{R}}$
(a) Graphical solution: scale: $1 \mathrm{~cm} / 5 \mathrm{~cm}$

$$
\begin{array}{ll}
\frac{\pi_{2}}{2}=29.5^{\circ} \\
\pi_{4}=58^{\circ} & \frac{\pi_{2}^{\prime}}{}{ }^{\circ}=-112^{\circ} \\
a_{4}^{\prime}=136^{\circ}
\end{array}
$$

Total rocking angle of link $4, \beta=78^{\circ}$
（b）Analytical solution using complex numbers

$$
\begin{aligned}
& R_{B} e^{i \theta_{B}}=R_{O_{4}} e^{r \theta^{0}}+R_{B O_{4}} e^{j \theta_{4}} \quad \text { two possibilities: 1. } R_{B}=r_{2}+r_{3}, 0_{B}=O_{2} \\
& \downarrow 1 e^{j \theta_{1}} \quad \theta_{1}=0 \\
& \left.\begin{array}{l}
R_{B} \cos \Theta_{8}=R_{O_{4}}+R_{B O_{4}} \cos \Theta_{4} \\
R_{8} \sin \theta_{8}=R_{B \theta_{4}} \operatorname{vnn} \Theta_{4}
\end{array}\right\} \\
& R_{B}^{2}=R_{O_{4}}^{2}+R_{B O_{4}}^{2}+2 R_{O_{4}} R_{B_{O_{4}}} \cos ⿹_{4} \rightarrow \underline{⿹_{4}}=\cos ^{-1}\left(\frac{R_{B}^{2}-R_{O_{4}}^{2}-R_{B O_{4}}^{2}}{2 R_{O_{4}} R_{B O_{4}}}\right)
\end{aligned}
$$

rearranging the two equations：

$$
\begin{aligned}
& R_{B O_{4}}^{2}=R_{O_{4}}^{2}+R_{B}^{2}-2 R_{O_{4}} R_{B} \cos \Theta_{B} \rightarrow \underline{\Theta_{B}}=\cos ^{-1}\left(\frac{R_{0_{4}}^{2}+R_{B}^{2}-R_{B O_{4}}^{2}}{2 R_{O_{4}} R_{B}}\right) \\
& \text { 1. } R_{6}=r_{2}+r_{3} \rightarrow \mathbb{\Pi}_{2}=28.95^{\circ}, \quad \Theta_{4}=57.9^{\circ} \\
& \text { 2. } \begin{aligned}
R_{6}=r_{3}-r_{2} \longrightarrow & \Theta_{B}^{\prime}=67.97^{\circ} \quad \Theta_{4}^{\prime}=135.95^{\circ} \\
& \longrightarrow \Theta_{2}^{\prime}=67.97^{\circ}-180^{\circ} \cong-112^{\circ}
\end{aligned}
\end{aligned}
$$

The total rocking angle of link 4：$\beta=\theta_{4}^{\prime}-\theta_{4}=78.04^{\circ}$

Note：the graphical solution also gave relatively accurate results．

Problem 3 (Figure 3.23 from the book J.J. Wicker, et. al.)

$$
\text { Given: } \begin{gathered}
R_{A O_{2}}=2 \mathrm{in} \\
R_{B A}=R_{C B}=6 \mathrm{in} \\
R_{C A}=2 \mathrm{in} \\
R_{D C}=\sin
\end{gathered}
$$

Scale $1 \mathrm{~cm}: 0.5 \mathrm{in}{ }_{2}$
$\begin{array}{lll}R_{C A} & R_{D C} & R_{B A} \\ R_{A} & & R_{C B}\end{array}$

