## Problem 1:


using a different symbol for the prismatic kinematic pair:


The dump truck mechanism considered is a six-bar mechanism (linkage). Two equivalent kinematic diagrams are shown here (the only difference is in the symbol how the prismatic joint is represented.

Two "basic" linkages can be identified in the system.

- kinematic pairs ABCD and links 1234: form an RRRR four-bar mechanism
- Kinematic pairs DEFG and links 1456: form an RRPR slider-crank mechanism

Problem 2:
Link lengths: $1 \mathrm{in}, 3 \mathrm{in}, 5 \mathrm{in}, 5 \mathrm{in}, s=1 \mathrm{in}, l=5 \mathrm{in}, p=3 \mathrm{in}, q=5 \mathrm{in}$ Grashof's law $\quad s+l \leq p+q \rightarrow 5+1<3+5 \rightarrow$
$\rightarrow$ all possible four-bar linkages assembled from these links will satisfy Grashof's law

There are two possible ways to assemble the links. Inversions for each case are shown below: Inot to scalel

double-crank mechanism

crank-rocker mechanism

crank-rocker mechanism

double-rocker mechanism

double-crank mechanism

crank-rocker mechanism

double-rocker mechanism

crank-rocker mechanism

Problem 3
(a):
number of links: 6

$$
n=6
$$

$$
\text { number of one dof kinematic pairs: } 7
$$

number of two dof kinematic pairs: O there are no redundant kinematic pairs
mobility: $\quad m=3(n-1)-2 j_{1}-j_{2}=1$
(b):
number of links: 8

$$
n=8
$$

$$
\text { number of one dot kinematic pairs: } 10
$$

number of two dot kinematic pairs: 0 there are no redundant kinematic pairs
mobility: $\quad m=3(n-1)-2 j,-j_{2}=1$

Problem 4:

number of links: 7

$$
\text { number of one oof kinematic pairs: } 8
$$

$$
\begin{aligned}
& n=7 \\
& j_{1}=8
\end{aligned}
$$

no two dot kinematic pairs
no redundant kinematic pairs
mobility: $\quad m=3(n-1)-2 j_{1}-j_{2}=2$
there is only one actuator input at joint $A \longrightarrow$ underactuated mechanism

