1 A Rigid Body

Below in Fig. 1 the concept of a planar or spatial rigid body is illustrated. The two blobs or “space potatoes” as I sometimes call them are made of a rigid solid material that constitutes the material out of which mechanism or machine “links” are imagined to be made. They don’t expand, contract or distort in any other way that affects real material. This idea allows us to study pure motion without interference of reality in the form of elasticity, thermal expansion, viscosity or other phenomena that detract from an ideal situation. The two examples shown are intended to represent a planar and a spatial rigid body. A rigid body is characterized by two essential properties.

- The distance between any two points, so as to move with it, fixed to the body remains constant, i.e., does not change. E.g., this might be the distance between points A and B on either body. This distance is, in the respective cases
 \[\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \quad \text{(planar case)} \]
 \[\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2} \quad \text{(spatial case)} \]
- Reflections such as the turning over of the planar triangle, shown above as \(ABC \rightarrow BAC \), and the turning inside-out of the spatial tetrahedron, shown above as \(ABCD \rightarrow BACD \), are not allowed regardless of distances between points being preserved.

2 Joints

Mechanism and machine parts or links nevertheless move with respect to one another because adjacent links are connected by articulations called joints. Fig. 2 shows a number of these. The only two that can occur in planar
mechanisms, the main topic in this course, are revolute joints (R-joints) and translational prismatic joints (P-joints). These are one degree of freedom joints (1dof). Since planar motion enjoys only three degrees of freedom (3dof) with two of translations, say, in \(x \) and \(y \), and one of rotation, say, about axes with directions parallel to \(z \), P-joints and R-joints both remove 2dof between any pair of planar rigid bodies they connect. In the spatial case with 6dof, P- and R-joints remove 5dof.

![Figure 2: Some Mechanical Joint Schematics (Taken from [1])](image)

1. **Lower pair** joints are those where relative motion occurs on *surface* rather than line or point contact. Which of the above are lower pairs? The Chebychev-Grübler-Kutzbach relation (CGK), to be introduced next, applies only to mechanisms containing only lower pairs. Is contact between a pair of cylinders, that roll without slipping on each other, a lower pair contact?

2. Why cannot a cylindrical joint be used in planar mechanisms? After all planar motion admits 2dof of translation and 1dof of rotation and a cylindrical joint admits 1dof of each.
3 The Chebychev-Grübler-Kutzbach Relation (CGK)

This “magic formula”, that is sometimes used to determine the mobility $m - m_e$ stands for mobility of planar systems, m_r for 3D spatial ones–, or dof, of a kinematic chain, loop or network, doesn’t always work but at least it establishes a lower mobility bound or the lowest dof number that a system can have. It is based on four parameters.

- The inherent number of dof, d in the space under consideration: E.g., 3D Euclidean space admits $d = 6$ dof; 3 translational degrees and 3 rotational degrees. Motion in planes is confined to $d = 3$ dof; a rotation and 2 dof translation.
- The number of links n, or rigid bodies, in the mechanism under consideration.
- The number j of joints, of each dof type i, that articulate the mechanism.
- The number $d - i$ of dof that any given joint type removes from the inherent number of dof in the space.

$$m = d(n - 1) - \sum_{i=1}^{d-1} (d - i)j_i, \quad m_e = 3(n - 1) - 2j_1 - j_2, \quad m_r = 6(n - 1) - 5j_1 - 4j_2 - 3j_3 - 2j_4 - 1j_5$$

It is not strictly true that only 1 dof P- and R-joints can exist in planar mechanisms. Examples of 2 dof exceptions include wheels rolling with sliding along straight or curved paths or with respect to one another and round pins that can move along and rotate in straight or curved slots of constant width. However somehow this sort of situation can be interpreted as a local P- and R-joint combination. Let us now try the couple of examples in Fig. 3.

![Diagram](image)

Figure 3: What is the Mobility of These Two Mechanisms? (Taken from [2], p.41, P1.5 (c), (d))

Diagram (c) Contains $n = 7$ links, all conveniently numbered except for 1, taken as the “ground” link. There are 8 R-joints, $O_{2,3,7}, A, B, C, E, F$, some that were labeled after the fact. That is something you should do, when solving such problems, in order not to mis-count, the most common source of error in these situations. There is also a rolling-without-slipping cylinder pair in contact at D. All 9 joints are type $i = 1$ so $m_e = 3(7 - 1) - 9(2) = 0$. This concludes that the assembly has no mobility and will not move if one attempts to push, pull or turn any link. One may try to confirm this by disconnecting link 7 at joint A. Holding the cylinders fixed in any position, thus fixing joint positions F and E, establishes the motion of point A as that of a 4-bar mechanism coupler point. This curve is known to be of sixth degree and that certainly will not comply with the circular path of point A rotating about O_7 at the radius of link 7. This seems to support the result obtained as m_e except for the fact that the distance between points E and F can be changed continuously over some range. This allows point A to “paint a patch” rather than a discrete curve. The patch will sustain an arc of the circular path centred on O_7. This is actually a 1 dof mechanism! Another way to argue for 1 dof is to disconnect the “geared” cylinders that leaves an $n = 7$ link mechanism with 8 j_1 joints giving $m_e = 3(7 - 1) - 2(8) = 2$. Replacing the coupled motion of rolling without slipping removes an additional dof, again producing $m_e = 1$. The answer in the “back of the book” is actually wrong but technically correct when interpreted as an exercise in applying the CGK formula.

Result for example (d) is unequivocal. We are given $n = 4$. A, B, C are P-joints, $2j_1 = 2(3) = 6$, and D, E are 2 dof PR-joint combinations, $1j_2 = 1(2) = 2$ so one obtains $m_e = 3(4 - 1) - 6 - 2 = 1$ dof.
4 Four-Bar Mechanism Types and Properties

Here will be introduced and discussed Grashof’s Law, inversion, crank-rocker, drag link, double rocker, slider-crank, time ratio and transmission angle, all in the context of four link planar 1 dof mechanisms.

4.1 Grashof’s Law, etc.

This equation determines whether any link in a 4-bar mechanism can turn full circle. The equation is written as

\[s + l \leq p + q \]

where \(s \) is the length of the shortest link, \(l \) is that of the longest while \(p \) and \(q \) are the lengths of the remaining two. Illustrated in Fig. 4 is such a mechanism wherein the equality holds. Examining the two half-scale images on the right one sees that this particular inversion is a crank-rocker, i.e., one link turns full circle while the opposite one swings though a smaller arc.

![Figure 4: A Crank-Rocker Inversion and Its Two Assemblies](image)

It would appear from Fig. 1.28 on p.36 of [2] that taking either the longest or next longest link as the base or fixed frame (FF) produces a crank-rocker. Choosing FF to be the shortest link seems to produce a drag-link mechanism where both links attached to FF can execute full turns while if the shortest link chosen to be the coupler, opposite to FF, the mechanism becomes a double-rocker and neither end of the coupler can go full circle. One should study the argument on pp.35-37 of [2], too. Note that “\(p \), level” on p.37 was probably meant to be “\(p \), lever”. Every assembly sequence, there are six –press \(3P_3 \) on your calculator– of four links has four inversions, depending on which link becomes FF. In this sense “inversions” means a specific instance of having chosen one of the four links to be FF.

4.2 Cycle Time Ratio and Transmission Angle

Crank-rocker mechanisms are useful in machine subassemblies where a link must reciprocate and be driven by a constant speed motor that turn the crank. Often the rocker (lever) must deliver more work in one direction than in the other, i.e., called the working and return strokes, respectively. This means that the working stroke corresponds to a longer time period during which the rocker sweeps its entire angular range and to the greater part of the arc through which the crank rotates while always turning at the same speed. The return stroke corresponds to a shorter time interval fraction and smaller crank angle. The time ratio \(Q \) of longer time period to shorter is identical to the
ratio larger α to smaller β crank angle displacement.

$$Q = \frac{\alpha}{\beta}$$

Before designing a crank-rocker, given the lever length $p = BC$, the angle δ that it must swing though and a desired value of Q, let us reexamine Fig. 4. Recall that its links fulfills the Grashof condition as an equality; a limiting case. This causes it to behave strangely as regards its time ratio. Assume that the crank is turning counter-clockwise in the initial configuration 0 shown in the in the top diagram on the right. Notice that the rocker sequence 0-1-2 is clockwise before proceeding counter-clockwise 2-3-...9. As it passes position 9 after the first half turn the remaining half turn can be imagined by reflecting the top diagram about the horizontal circle diameter but proceeding from left to right backward through the number sequence. But now it is in the 0 configuration shown below and the second revolution is illustrated by the sequence illustrated below and its reflected reverse sequence for the second half turn. The full cycle of two crank revolutions sees the rocker swing through the larger fan, i.e., the upper one and its reflection in the first revolution, and then, similarly, through the small fan. Notice that the mechanism is in a condition called “singularity” when any three of its R-joints are in line. There are four such positions 0, 2, the reflection of 2 and 9 this last being identical to 8 in the lower diagram. This cautionary tale is meant to

- Introduce the geometry of singularity in 4-bar mechanisms,
- Show that most probably inertia will carry the crank and coupler through a singular position in the expected manner and
- It is advisable to stay away from limiting cases when using design inequalities like the Grashof condition.

![Figure 5: Input and Output Transmission Angles](image)

Fig. 5 illustrates the notion of transmission angles. The central idea is

- That a small input transmission angle, the deflection angle β –not to be confused with β, the smaller angle and denominator of time ration Q– between crank link $s = AD$ and coupler $q = CD$ tends to
- Maximize the axial force on the coupler, given an input –motor– torque Γ_i that produces a force $F = \Gamma_i/s$ normal to the crank at D and
- That a large output transmission angle γ between coupler and rocker $p = BC$ tends to
- Maximize the torque, produced by the axial force on the coupler at point C, about the R-joint at B on FF.

This is shown by the two force equilibrium diagrams, at the left of Fig. 5, that define force equilibrium at R-joints D and C. All this can be summarized by expressing the relation between input and output torques Γ_i and Γ_o.

$$\Gamma_o = \frac{p}{s} \csc \beta \sin \gamma$$
5 Designing a Crank-Rocker

Study Example 1.4. on pp.26-27 of [2] so as to apply it to the solution to Problem 1.20 on p.43. The purpose here is to provide some insight, into this and other design problems, that is not available in the text. I.e., the instruction to draw the X-line in an arbitrary direction gives rise to question if not confusion. The nature of this problem is best illustrated by Fig. 6 and a little bit of “geometric thinking”.

![Designing a Crank-Rocker with $Q = 1.2$ and $\delta = \pi/3$](image)

- Two singularities ADC' and DAC where the crank and coupler are collinear define the the time ratio angles $\alpha + \beta - 2\pi = 0$ like hands of a clock. Singularity is the hallmark of the rocker range limits shown in blue and ending on C and C'.
- Since the angle between ADC' and DAC must be ϕ

 $$Q = \frac{\pi + \phi}{\pi - \phi} \to 1.2(\pi - \phi) - (\pi + \phi) = 0 \quad \therefore \phi = \frac{\pi}{11} \approx 16.3636 \ldots ^\circ$$
- Since the angle ϕ remains constant at vertex A regardless of where it is located A must lie on a circle subtended by the chord CC'.
- The next observation is that the “elbow folded” and “elbow extended” configurations of DAC and ADC', respectively, define lengths s and q in terms of the short $AC = q - s$ and long $AC' = q + s$ rays subtended from chord CC'.
- This problem has another degree of freedom. The designer is free to choose, say, s rather than the arbitrary direction of the X-line.
- Let us start by finding the centre O and radius R of the circle on which A lies.
- When $AC = AC'$ the triangle is isosceles and $s \to 0$. Now we have a third point for the circle on $CC'A'$ and we can write its equation, where $h = c \cot \frac{\delta}{2}$, $c = p \sin \frac{\delta}{2}$, using an origin midway between C and C'.

\[
\begin{vmatrix}
 w^2 & wx & wy & x^2 + y^2 \\
 1 & -c & 0 & c^2 \\
 1 & c & 0 & c^2 \\
 1 & 0 & -h & h^2 \\
\end{vmatrix} = x^2 + y^2 + \left[h - \frac{c^2}{h}\right]y - c^2 = 0
\]
This gives the centre $O(0, y_O)$ and the square of the radius R^2 as

$$y_O = \frac{c^2 - h^2}{2h}, \quad R^2 = y_O^2 + c^2$$

Now we come to the crux of the design problem. Assume that we wish to choose the crank radius s. We specify the required unknown position of A using a polar coordinate system centred on O. Call u the tangent of the half angle that locates A on the circle or radius R.

$$A(x_A, y_A): \quad x_A = R \cos \theta, \quad y_A = R \sin \theta, \quad \cos \theta = \frac{1 - u^2}{1 + u^2}, \quad \sin \theta = \frac{2u}{1 + u^2}$$

Using the elbow folded/elbow extended relationships for DAC and ADC' one may eliminate q and obtain what appears to be a rather ugly quartic –power four in u– relationship in s and u. Not too surprisingly, due to the symmetry evident in Fig. 6, it factors and simplifies to two quadratics, each containing a pair of dimensionless ratios ρ_1, ρ_2 in the design parameters s, c, ϕ, where $c = c(p, \delta)$.

$$u^2 - \frac{2u}{1 - 2\rho_1\rho_2/(\rho_2 + 1)} + 1 = 0, \quad u^2 + \frac{2u}{1 - 2\rho_1/(\rho_2 + 1)} + 1 = 0$$

where

$$\rho_1 = \frac{s^2}{c^2}, \quad \rho_2 = \cot^2 \frac{\phi}{2}$$

The slider-crank design problem is obviously identical except CC' is taken as the wrist pin stroke rather than the chord of the arc traced by the tip C of the rocker that moves through the desired angle δ. If you have been paying attention you might be feeling a bit queasy about Q. What if $Q = 1$, a perfectly reasonable time ratio specification, so as to yield $\phi = 0$? No problem. Imagine a circle of infinite radius whose circumference contains CC', a horizontal line! Almost any point A on this line will constitute a feasible slider-crank or crank-rocker mechanism with $Q = 1$. Don’t ask how to design one where $Q = 0$.

6 Conclusion

Examine problem P1.20 on p.43 of [2] again. Using both formulæ in u, results obtained, for a choice of $s^2/c^2 = 1$ are summarized in Fig. 7. Both equations in this limiting case yielded the same pair of polar angles, i.e., 73.36° and 106.64°, centred on O. Why were negative values obtained? That makes me unhappy. Can you help? Try some other values of Q to check out the validity of my results.
7 Reprise

For those readers who find the preceding treatment to design a crank-rocker or slider-crank "quick-return" mechanism difficult to follow, a different possibly simpler, approach will be described. Examine Fig. 8.

Figure 8: Designing a Crank-Rocker with a Geometric Approach Based on Intersection of Three Circles

- The two singular poses ADC and $D'AC'$ of "three-points-in-a-line" that separate the crank arcs $\alpha = \pi + \phi$ and $\beta = \pi - \phi$ show the angle ϕ to be subtended on the chord CC' of the arc traced by the oscillating rocker tip. When designing a slider-crank CC' is the gamut of the piston or wrist pin centre.
- Regardless of where the crank centre A is located the line segments AC and AC' represent the sum and difference of coupler length q and crank throw radius s, i.e., $q + s$ and $q - s$, respectively.
- Therefore the isosceles triangle ACC', shown on the right of Fig. 8, represents the limiting case $s \to 0$.
- But since ϕ is the vertex angle at A, regardless of where A is situated, the locus of A must be a circumscribing circle on the three points ACC'.
- Still concerning the picture on the right, to find y_O, the distance OO' from the centre of the chord CC' to the the circumscribing circle centre O, one may invoke the following chain of logic applied to another isosceles triangle AOC' whose equal sides of length R are the segments AO and $C'O$.

$$\angle C'OO' + \angle AOC' = \pi, \quad \angle OAC' = \angle OC'A = \frac{\phi}{2}, \quad \angle OAC' + \angle OC'A + \angle AOC = \pi, \quad \therefore \angle C'OO' = \phi$$

- Normalizing by setting $R = 1$ reduces all distance parameters to multiples of R and leads to further mathematical simplification.
- Thus $y_O = \cos \phi$ and $c = \sin \phi$. Choosing an origin on O', all points A, a one parameter set, can be represented on the intersection of any pair of the three following circles $k_{1,2,3}$ shown on the left of Fig. 8.

$$k_1 : \ (x-c)^2 + (y-y_O)^2 - (q-s)^2 = 0 \quad \text{is the green circle, centred on } C', \text{ radius } q-s.$$

$$k_2 : \ (x+c)^2 + (y-y_O)^2 - (q+s)^2 = 0 \quad \text{is the blue circle, centred on } C, \text{ radius } q+s.$$

$$k_3 : \ x^2 + y^2 - 1 = 0 \quad \text{is the red circle, centred on } O, \text{ radius } R = 1, \text{ the circumscribing circle.}$$

- The yellow circle represents the subtraction $(q+s) - (q-s) = 2s$ and one sees immediately the diameter $2s$ of the of the circle swept by the rotation of the crank-pin at D rotating about the fixed crank-shaft axis on A.
The analytical procedure to be described now entails the elimination of x, y, q from $k_{1,2,3}$ and making the appropriate substitutions to obtain two implicit quartics that are plotted as surfaces in ϕ, θ, s^2 and ϕ, θ, ρ where θ is the polar angle measured from the ray on O proceeding to the right and $\rho = q/s$.

First the differences $k_1 - k_3$ and $k_2 - k_3$ are formed to eliminate x^2 and y^2. Then q is eliminated from these two differences and the following substitutions are made.

$$x = \cos \theta, \quad y = \sin \theta, \quad c = \sin \phi, \quad yO = \cos \phi$$

After some algebraic simplification one obtains a quadratic in s^2.

$$s^4 + 2(\sin \theta \cos \phi - 1)s^2 + \cos^2 \theta \sin^2 \phi \rho^2 = 0$$

This first design equation expresses the square s^2 of the crank radius s as a function of ϕ and the angle θ from O to a point A on the circumscribing circle. A plot of this function appears in Fig. 9. Assume that the designer prefers to select, not s but the ratio $\rho = q/s$, the ratio coupler length to crank radius. Forming the difference of equations $k_1 - k_2$ yields qs. Then substitution for s^2 in terms of ρ gives us the design equation as a function of ρ instead of s.

$$qs - \cos \theta \sin \phi = 0, \quad \therefore s^2 = \frac{\cos \theta \sin \phi}{\rho}, \quad \cos^2 \theta \sin^2 \phi \rho^2 + 2(\sin \theta \cos \phi - 1)\rho + \cos^2 \theta \sin^2 \phi = 0$$

A plot of this function appears in Fig. 10. Some observations regarding these design equations are in order but these will be saved for later. Consider that the elimination process in this second method is far simpler than that in the first. Furthermore the issue of organizing dimensionless design ratios has been considerably better handled this time and the symmetry of the problem has been more fully taken advantage of.
8 Singularity

Shown in Fig. 11 is a crank-rocker mechanism to help us recall

- The standard nomenclature, i.e., \(s \) is the crank or input link on the left spanning points \(A \) (on FF) to \(D \) where it connects to the coupler (or connecting rod in the case of a slider crank) \(q \) that in turn connects to \(p \), the output link (a rocker in this case or a slider in the case of a slider crank) at \(C \). The FF "link" is called \(l \) and spans from \(A \) to \(B \), the base of the output link \(p = BC \).

- That singularity occurs twice where crank and coupler exhibit "three-points-in-a-line". Actually four times if assembly mode is switched by reflecting the lines \(AD' C' \) and \(DAC \) downwards below line \(AB = l \).

In contrast Fig. 12 shows a rocker rocker configuration. There one sees two singularities of the input link and coupler in "elbow folded" configuration \(AC'D \) and "elbow extended" configuration \(ADC_x \). Another two appear, similarly, as regards the output link and coupler, \(BD'C \) and \(BCD_x \), respectively. Switching assembly modes as before we can count eight obvious singular conditions. Finally, shown in Fig. 13, we see all singularities of all inversions of all three
types of four bar mechanism. There are only 12 variations, not 24, if one excludes interchanging input and output links. Drag link examples are shown twice because the singularities occur between input link \(s\) and FF \(l\) as \(DAB\), and FF and output link \(p\) as \(ABC\). Putting all four on the same diagram would lead to more confusing clutter in an already dense illustration. Notice that every diagram is labeled with the sequence \(s lpq\) in counterclockwise order as depicted in Fig. 11. That particular one is second from the left in the row of six crank rockers. All other diagrams are permutations of the sequence and assembled in the same order. Note that \(s = 6, l = 18, p = 10\) and \(q = 20\) in all 15 diagrams. For example of the double crank (crank crank) \(lsqp\), illustrated twice at upper left, has input link \(s\) replaced by one of length \(l = 18\), FF link \(l\) replaced by one of length \(s = 6\), output link \(p\) replaced by one of length \(q = 20\) and coupler \(q\) replaced by one of length \(p = 10\). How come everybody exhibits four singularities except for the most industrially useful variety, the crank rocker, that seems to have only two, not counting assembly mode change of course? The two that have been overlooked. Like in the case of the drag link, but confined to the input link \(s\) only, there is a pair of singularities between input link and FF, i.e., \(DAB\) and \(ADB\). That makes six in all for the crank rocker that originally appeared to be singularity deprived! To misquote Hamlet, “Something is rotten in this state of kinematics.”

8.1 Counting Singularities

The solution is fairly obvious but requires a little “geometric thinking”. Consider all possible singular configurations in all possible four bar mechanisms.

\[sl = DAB_f^7, \ l_p = ABC_f^7, \ pq = BCD_f^7, \ qs = CDA_f^7\]

That makes eight when one considered the two elbow extremes. But the most we have been able to count is six. The answer is that the four, in the case of drag links and rocker rockers and two in the case of crank rockers, missing ones are complex, i.e, those singular configurations that will not close the loop. See Fig. 1.29 on p.27 in [2].

9 A Design Example with Given \(\rho\) and \(Q\)

The procedure that parameterized \(x, y\) on \(c\), the sine of the polar angle \(\sin \theta\) of the circumscribing circle, was adequate to produce the characteristic plots shown in Figs. 9 and 10 however as noted in Section 6 there are pitfalls in trying to sort out positive and negative signed trigonometric functions to identify the polar coordinates one intends to represent thereby. It will be shown that one fares better by maintaining the three circle constraints in a Cartesian frame. First, the differences of equations \(k_1 - k_3\) and \(k_2 - k_3\) are rewritten incorporating \(\rho = q/s\) as

\[2cx + c^2 - 2yo^2 - (\rho + 1)^2s^2 + 1 = 0 \quad \text{and} \quad -2cx + c^2 - 2yo^2 + yo^2 - (\rho - 1)^2s^2 + 1 = 0\]
Figure 13: Singularities of Drag Link or Crank Crank, Crank Rocker and Rocker Rocker

and inserting the chosen numerical values chosen for our example

\[\rho = 4, \quad \phi = \pi(Q - 1)/(Q + 1), \quad Q = 3/2 \rightarrow \phi = 0.6283185308, \quad c = \sin \phi \text{ and } y_o = \cos \phi \text{ to get} \]

\[2 + 1.175570505x - 1.618033989y - 25s^2 = 0 \quad \text{and} \quad 2 - 1.175570505x - 1.618033989y - 9s^2 = 0 \]

Eliminating \(x \) between these two equations and between the first and \(k_3 \) yields a linear and a quadric bivariate in \(y \) and \(s^2 \).

\[4.70228202 - 3.804226068y - 39.96939716s^2 = 0 \quad \text{and} \quad 2.618033988 - 6.472135956y - 100s^2 + 4y^2 + 80.90169944s^2y + 625s^4 = 0 \]

Solving these two simultaneously for \(s^2 \) yields four real roots, hence.

\[s^2 = \pm 0.1420388931 \quad \text{and} \quad \pm 0.02371638781 \]

Only the positive ones are useful so we get

\[s = \pm 0.3768804759 \quad \text{and} \quad \pm 0.154 \]

Once more, discarding the negative ones –they are just redundant– it is seen that \(2s < 2c \) if \(s = 0.154 \) is used. Recall that \(c = \sin \phi = 0.5877852524 \) and a crank radius of 0.154 cannot achieve the rocker stroke implied by \(Q \).

\[\therefore \quad s = 0.3768804759, \quad q = 4s = 1.507521904 \]
Substituting \(s = 0.3768804759 \) into the linear equation in \(y \) and \(s^2 \) —not the conic, we want a unique value of \(y \)— and then that value of \(y \) obtained into the first— the choice here is open— linear equation in \(x, y, s^2 \), above, completes the picture with

\[
x = 0.9666039945, \quad y = -0.2562747041
\]

Plotting all this on the unit radius circle shown in Fig 14 verifies the design.

![Figure 14: Crank Rocker Four Bar Mechanism Design Verification](image)

References
