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Abstract

Robotic Sensor Networks composed of robotic wireless sensing devices hold the poten-
tial to revolutionize environmental sciences by enabling researchers to collect data across
expansive environments, over long, sustained periods of time. An efficient Robotic Sensor
Network would be capable of physically reconfiguring itself to achieve efficient area cover-
age, in-depth examination of targets, reliable wireless connectivity, and dynamic protection
against unexpected environmental developments. We aim to develop intelligent decision
making algorithms for autonomous sensor networks to achieve generic tasks with utmost
efficiency. Designing such algorithms requires tackling challenging problems that lie at the
intersection of robotics, perception and communication. We address the problems related
to automated configuration, adaptive sampling and reconstruction of the field, multi-robot
coordination, and target behavior modeling.

We focus our research on probabilistic modeling of the states of the robotic network and
also probabilistic representation of the spatial field. Research ideas for automated network
configuration are proposed which aim at maximizing the utility of spatial coverage while
minimizing the costs. To represent and reconstruct the spatial field, we propose to use
Gaussian Process(GP) models. GP models can deal with noisy measurements, unevenly
distributed observations, and fill small gaps in the data with high confidence while assigning
higher predictive uncertainty in sparsely sampled areas. For persistent monitoring of a
continuous field or discrete targets, we want to use probabilistic hypothesis density filters
that provide an estimate of target density and use this information to reconfigure the robotic
sensor network.

Thus we propose to develop a framework for a network of robots to autonomously plan
and update their configuration such that they can efficiently observe and track spatially
varying scalar field(s) that express environmentally important phenomena (e.g. tempera-
ture) and also discrete target groups (e.g. group of wifi-hotspot users). Our approach will
be based on using a combination of topological representation of the robot network, and
probabilistic model of the phenomena of interest. We provide details about the progress
achieved till date and also set milestones to evaluate the progress towards our research
goals.
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1 Introduction

A robotic sensor network is a network of robots that are capable of sensing their environ-
ment, collaborating with other robots, and moving. We aim to develop intelligent decision
making algorithms for autonomous sensor networks to achieve generic tasks with utmost
efficiency. Designing algorithms for robotic sensor networks requires tackling challenging
problems that lie at the intersection of robotics, perception and communication. We
focus on addressing the problems related to automated configuration, adaptive sampling
and reconstruction of the field, multi-robot coordination, and target behavior modeling.

One of the major applications of mobile robotics is exploring and mapping an unknown
environmental field. Building a persistent map of an environmental field for a given
region over a period of time requires continuous sensing. This problem has been tackled
previously by deploying a network of static sensor nodes uniformly across the region of
interest. But the environmental fields are usually non-uniform over a given region and
dynamic over a time period. Persistent mapping of such dynamic fields requires the
sensor nodes to estimate the changing field, then adapt their placements accordingly, and
selectively sample the measurements to maximize the information gain while minimizing
costs over time, distance traveled, and communication.
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A robotic sensor node can be abstracted as three functional blocks: sensor to take
measurements from the physical world, a decision making agent to model the environ-
mental field and decide on an optimal policy, and an actuator to provide mobility to the
sensor node. These functional units endow the robotic node with abilities to sense, assess
and model the surroundings, decide on the optimal action, and execute the action.
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Figure 1: Block representation of a sensor node.

A team of such robotic sensor nodes creates an autonomous sensor network. Under
ideal circumstances, a team of robotic sensor nodes collectively can be more efficient in
sensing their environments. However, this comes with a penalty on communication and
requirements to fuse the data captured by different sensor nodes.
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Figure 2: Block representation of a network of sensor nodes.

Mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing re-
quirements, improve the efficiency, and save sensing resources in area exploration, espe-
cially for large environments with limited number of sensors. Recently, adaptive sampling
of sub-regions with high local-variance has become the focus of research in robotic explo-
ration and mapping. The sub-regions of a spatial field which show high local-variance are
referred to as hotspot-regions and such spatial fields with hotspot-regions are character-
ized by continuous spatially correlated measurements with the hotspot-regions exhibiting
extreme measurements and much higher spatial variability than the rest of the field. Mon-
itoring such environmental fields which include hotspot-regions will benefit by a team of
network of robotic sensor nodes, instead of static sensor networks, as they can be more
robust, more tolerant to faults, and capable of performing varied-resolution sampling.
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Thus locomotion of sensor nodes facilitates a number of useful network capabilities, like
the automated configuration; network re-configuration based on the target field; recover
from harsh environment failures and partial breakages.

We propose to develop an adaptive network of robotic sensor nodes that is capable of
- sampling the environment adaptively to produce a varied-resolution map of the spatial
field; self deployment according to the spatial features of the field; tracking the changes
in the field map and targets over time and building a transition model; respond to the
changing field by reconfiguring the network topology.

1.1 Motivational Applications

Robotic sensing networks have many applications in exploration and mapping of an un-
certain and dynamic environmental field. Mobile sensing platforms in the form of un-
manned ground vehicles (UGV), unmanned aerial vehicles (UAV), autonomous surface
vehicles (ASV) and autonomous underwater vehicles (AUV) can actively respond to dy-
namic changes in unknown environments and dynamically deploy themselves to enhance
sensing capability in the area of interest. The mobile sensing nodes in the network can
act collectively to mimic cooperative motions appearing in animal networks such as wolf
packs, bird flocks and fish schools. Some of the examples that motivate us are as listed
below,

• Environmental Sensing such as monitoring of ocean phenomena (plankton bloom,
upwelling, contamination) [1] [2] [3], forest ecosystems [4], rare species [5], or pol-
lution [6].

• Animal tracking and behavior estimation [7]; exploration and monitoring of migra-
tory species and paths.

• Terrestrial Exploration such as Antarctic meteorite search [8]; geologic site survey
and monitoring [9] and prospecting for mineral deposits [10]; or localized methane
sources on Mars [11].

• Search and Rescue missions in forests and open-water environments.

• Urban Application such as surveillance at exhibitions, museums, public gatherings,
and rallies; mobile wifi-hotspots in public spaces.

1.2 Challenges

A series of research issues that need to be addressed include measurement collection and
evaluation, mobile network establishment, data fusion, sensor motion, and target track-
ing. Regardless of the applications, all these tasks aim at information acquisition. The
kind of information to acquire and the way to acquire information can be considered the
core problems in mobile sensing. Every new measurement should increase the knowledge
base, and can be used to guide sensor motion, thus rebuilding network topology. The
first challenge is to define a metric to evaluate potential measurement values.

Secondly, the individual sensor nodes should be able to communicate and share data
with their neighboring nodes to enhance their understanding of the physical world by
merging the data. Robotic sensor networks can decide about their new topology and
trajectory based on the updated field map generated using data from all the sensor nodes
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in the network. Hence, data sharing and data fusion becomes an important challenge of
such a system.

Lastly, the energy consumption of the robotic sensor nodes need to be optimized to
achieve an efficient coverage of the region. On-board energy is mainly consumed for sens-
ing, data transfer, and sensor motion. High sampling frequency results in high energy
consumption for sensing. Low Sampling frequency achieves higher energy efficiency, how-
ever, sensing performance is directly related to the number of measurements collected.
Thus, an intelligent sampling strategy becomes important for saving on-board energy.

2 Background concepts

2.1 Sensor network deployment

Designing and deploying a sensor network aim to achieve two important qualities: net-
work coverage and network connectivity. Network coverage refers to how well the sensor
network covers the area of the phenomena being monitored, whereas connectivity refers
to the ability of active nodes to stay connected. Wang et al. quantified the relationship
between connectivity and coverage [12]. They define k-coverage as any location in the
region of interest being monitored by at least k nodes, and k-connected if the network re-
mains connected even when k−1 nodes fail. Planning a deployment a-priori is not always
possible and it depends on the nature of monitored environment. To provide coverage
and connectivity in a given area with the least number of sensors possible, two sampling
based deployment approaches are proposed by Isler et al. [13]: (1) concurrent deployment,
where the number and locations of the nodes are decided prior to deployment; and (2) in-
cremental deployment, where the feedback about current coverage and connectivity after
each sensor placement is used to decide the next placement. The authors propose using
random sampling without replacement to achieve incremental deployment, i.e. the area
already covered cannot be randomly picked again. The area covered by sensing range but
not covered by the communication range of any sensor is added to the sampling domain.

The achievements in low power processors, wireless networking, and sensor technology
gave rise to the field of wireless sensor networks. From a robotics perspective, we can
view teams of robots with sensing, communication, and locomotion capabilities as mobile
sensor networks. Locomotion facilitates a number of useful network capabilities, includ-
ing the ability to self-deploy; that is, starting from some compact initial configuration,
the nodes in the network can spread out such that the area ‘covered’ by the network is
maximized. Howard et al. present a potential-field-based approach to deployment. In
their work [14], the fields are constructed such that each node is repelled by both ob-
stacles and by other nodes, thereby forcing the network to spread itself throughout the
environment.

Recently, researchers are interested in leveraging the mobility of robotic sensor nodes
to provide targeted coverage without resorting for exhaustive coverage. In [15], Stump et
al. discuss the problems like finding the minimum number of robots and their locations
so as to establish communication of a set of targets with a base station and solve for
deployment of robots to maintain the communication links of moving targets with the
base station. Another interesting problem arises when the network of robots is assigned
to monitor a set of stationary targets. If the number of targets to be monitored is more
than the available robotic sensor nodes, then it is possible to be in a situation where all
the targets cannot be monitored all the times. In such scenarios few robots are required to
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actively visit more than one location to monitor multiple targets. Tokekar et al. present
path planning techniques which compute paths for all robots such that every target is
visible from at least one path [16].

2.2 Adaptive sampling

Generally, the problem of multi-robot exploration can be stated as follows [17]: n iden-
tical robots set out to explore an unknown area, each robot is equipped with sensing,
localization, mapping, and limited-range communication capability. Designing a coordi-
nated exploration algorithm to carry out the mission reliably and quickly has been the
focus of many recent approaches. Adaptive sampling refers to strategies [18] in which the
procedure for selecting locations to be included in robot paths depends on the sampling
data observed during exploration. When the environmental phenomena are smoothly
varying without any local-maxima peaks, non-adaptive strategies are known to perform
well [19]. However, if the environment contains high local-variance, adaptive sampling
can exploit the clustering phenomena to map the environmental field more accurately
than non-adaptive sampling. Low et al. present an adaptive multi-robot exploration
strategy that can perform both wide-area coverage and adaptive sampling of high local-
variance regions using non-myopic path planning [18]. A key feature of this approach is
in covering the entire adaptivity spectrum, thus allowing strategies of varying adaptivity
to be formed and theoretically analyzed in their performance. They conclude that a more
adaptive strategy improves mapping accuracy.

In contrast to random exploration of the environmental field [20], directed explo-
ration selects robot paths to observe regions of high uncertainty. Directed exploration
strategies that focus on feature sampling expect areas of high uncertainty to contain
highly-varying measurements [10] [21]. Another approach to seek the trade-off between
cost and information is to use down-sampling. Compressive sensing, a recently developed
down sampling and reconstructing method yielding a sub-Nyquist sampling criterion,
uses condensed linear measurements for reconstruction under a sparse domain without
losing useful information [22] [23] [24].

2.3 Mobile Sensor Network Localization

Location awareness is important, as applications such as environment monitoring, target
tracking and intrusion detection need to know the locations of mobile node precisely.
Existing approaches for network localization include two categories: range based ap-
proaches [25] and range free approaches [26]. Range based localization can provide more
accurate position estimates compared to range free localization, however, it costs more
due to special hardware required. Localization methods for mobile sensor networks in
general use a combination of beacon nodes, whose location information is known, and
sensor nodes with unknown locations. Sensor nodes compute their locations on receiv-
ing broadcasting messages from the beacon nodes. The scenario with mobile beacon
nodes and mobile sensor nodes is discussed by Zhang et al. in [27], where Monte Carlo
Localization method is used to achieve high sampling efficiency and localization accuracy.

Multi robot SLAM has mostly been addressed in data fusion aspect characterized
by two major sources of uncertainty due to the noise in sensing and motion without
considering controlled mobility [28]. Extended Kalman filters and particle filters have
been successfully implemented for data fusion of multi robot SLAM [29]. Active SLAM
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for multiple cooperating agents on trajectory control is developed, where each agent
shares map information over a data fusion network [30].

2.4 Multi-robot coordination and communication

Good spatial distribution, good overall performance, robustness, reliability, flexibility,
concurrency, and versatility are few of the advantages of a multi-robot system over a
single robot listed by Yan et al. in their survey on multi-robot systems [31]. Even though
they have numerous advantages, multi-robot systems do have costs. One such overhead
is coordination and communication between the robots. The overall system performance
can be directly affected by the quality of coordination and control. Static coordination [32]
refers to an offline set of conventions that are decided before starting the task. Dynamic
coordination [33] [34] occurs online during the task execution and is based on the analysis
of the observations and current state of the system. Both these approaches have their
own pros and cons. For example, static method can handle complex tasks, but its real-
time controlling can be poor, whereas dynamic method can well meet the capability of
real-time, but it has difficulty in dealing with more complex tasks. Hence, in practice it
is common to see the combination of both static and dynamic coordination methods.

Communication, as a means of coordination, enables robots to share position infor-
mation, state of the environment, sensor measurements, and also enable individual robot
to learn about the intentions, goals, and actions of other robots. Yan et al. classify the
communication structure based on the information transfer modes, namely explicit and
implicit communication [31]. Explicit communication refers to the means for the direct
exchange of information between the robots. Klavins [35] introduced a notion of commu-
nication complexity as a means to investigate the scalability of multi-robot algorithms in
terms of how much coordination they require. Klavins also presented several communi-
cation schemes that cover several natural communication complexity classes from O(n2)
communication to O(1) communication. Rekleitis et al. propose a multi-robot coverage
path planning for a team of robots with limited communication, where the environment
is divided into strips and each strip is explored by a single robot, while the others remain
stationary to observe the moving robot and estimate its position [36]. While this has
the advantage of improving the overall accuracy of the map, it does nothing to speed the
exploration process. On the contrary, the robots are forced to remain near each other in
order to stay visible. Implicit communication refers to the way in which the robot gets
information about other robots in the system through the environment. Pagello et al. [37]
present an approach for coordinating a team of soccer playing robots through implicit
communication where the cooperation between the robots is based on the form of the
observed behavior of other robots. We plan to apply both these techniques together to
complement each other, thus we can achieve both accuracy and stability provided by
explicit and implicit communications respectively.

Decision-making can be regarded as a cognitive process resulting in the selection
of a course of action among several alternative scenarios. Two popular classes of ap-
proach for decision making in multi-robot scenarios are centralized [38] [39] and decen-
tralized [40] [41]. The centralized approach faces challenges in scalability, robustness
and vulnerability. Decentralized approach can be further divided into distributed archi-
tectures and hierarchical architectures. There is no central control agent in distributed
architectures [42], such that all the robots are equal with respect to control and are com-
pletely autonomous in the decision-making process. In hierarchical architectures, there
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(a) Two sub-teams of robots en-
circling an obstacle [36].

(b) Emergent pass behavior [37].

Figure 3: Multi-robot coordination.

exist one or more local central control agents which organize robots into clusters. The
hierarchical architecture [43] is a hybrid architecture, intermediate between a centralized
architecture and a distributed architecture. We will discuss our approach to distributed
coordination in later sections.

2.5 Multi-target tracking and modeling

Knowledge about the position of moving objects can be used to improve the behavior
of the system. While Kalman filters have been shown to provide highly efficient state
estimates, they are restricted to Gaussian distributions over the state to be estimated.
Particle filters have been introduced to estimate non-Gaussian, non-linear dynamic pro-
cesses. Schulz et al. introduce a sample-based variant of joint probabilistic data associ-
ation filters (JPDAFs) to track features originating from individual objects and to solve
the correspondence problem between the detected features and the filters [44]. They use
particle filters to track the states of the objects and applies JPDAFs to assign the mea-
surements to the individual objects. Khan et al. present a Markov chain Monte Carlo
based particle filter that effectively deals with interacting targets, i.e. targets that are
influenced by the proximity and/or behavior of other targets [45].

In a multi-target environment, the number of targets also changes with time along
with the states of the targets. This is because of the targets appearing in and disappearing
off the region of interest. Often, the sensors are not able to detect all the existing targets.
Moreover, the sensor also receives a set of spurious measurements (clutter) not originating
from any target. As a result, the observation set at each time step is a collection of
indistinguishable partial observations, only some of which are generated by targets. Out
objective is to jointly estimate the time-varying number of target states from a sequence
of observation sets in the presence of data association uncertainty, detection uncertainty,
noise, and false alarms.

Uncertainties in association of measurements with appropriate targets is an intrinsic
problem in multi-target tracking. Even if the sensor observes all targets and receives no
clutter, single-target filtering methods are not applicable since there is no information
about which target generated which observation. Most traditional multiple-target track-
ing formulations involve explicit associations between measurements and targets [44] [46].
The data association problem has been tackled by various formulations [47]. We propose
to use random finite set (RFS) formulation as it is an emerging and promising approach
as compared to the traditional association-based methods. In the RFS formulation, the
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collection of individual target states is treated as a set-valued state, and the collection of
individual observations is treated as a set-valued observation. The problem of estimating
states of multiple targets in the presence of clutter and association Uncertainties can be
cast in a Bayesian filtering framework by modeling set-valued states and set-valued obser-
vations as RFSs. This approach to multiple-target tracking is an elegant generalization
of the single-target Bayes filter.

3 Topic I : Efficient sensor network configuration

In this section, we discuss the problem of configuring the networks of robotic sensors in
an efficient topology such that the information gain is maximized and the energy spent
by the network is minimized. We propose an information driven approach for covering
the region of interest by a network of robots. In this problem, we assume that the map of
the physical world is known and the goal is to cover the region and efficiently reconstruct
the spatial phenomenon in that region.

3.1 Efficient coverage

Coverage in mobile robotics is the task of determining a path that passes over all points
of an area or volume of interest while avoiding obstacles. Our goal is to sense a particular
region of interest in the environment and be able to reconstruct the measured environmen-
tal field using a network of robotic sensors. Since there are autonomous agents involved
in coverage there is a need to consider the cost involved in terms of energy consumed and
time required to finish the task. A good map of a scalar field requires complete coverage
of the region or a good sparse coverage strategy along with an efficient interpolation tech-
nique. We propose to optimize the trade off between the environmental field mapping
and the cost associated with the sensing.

3.1.1 Adaptive / Selective coverage

Adaptive coverage refers to covering a particular region of interest one step at a time,
making the decision about the next step based on the observations made at the current
step. This can (in some cases) be formalized as a reinforcement learning task. The agent
has to make a sequence of decisions that depend on its observations. The environment
is stochastic (because the underlying spatial phenomena are unknown). There is also
a well defined reward function, and actions influence the rewards to be collected in the
future. The state space in our case will constitute the locations (x ∈ X) of the agent in
the world, the actions will make the agent transit from one location (x ∈ X) to another
(x′ ∈ X). The representation of rewards or costs can be achieved in multiple ways. We
propose to model the rewards such that two different kinds of coverages are achieved.

One of the ways to approach adaptive sampling is to sample the world adaptively
such that the uncertainty in spatial phenomenon is reduced with time. This encourages
the agent to come up with an optimal policy to explore the region such that the spatial
phenomenon map is complete. A random variable Xv is associated with each location
x ∈ X. The joint distribution P (ZX) can then be used to quantify uncertainty in the
prediction P (ZX\A|ZA = zA) of phenomena at unobserved locations ZX\A, after making
observations ZA = zA at a small subset A of locations. To quantify this uncertainty the
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mutual information (MI) criterion can be used. For a set of locations, X, the MI criterion
is defined as:

MI(A) = H(ZX\A)−H(ZX\A|ZA), (1)

where H(ZX\A) is the entropy of unobserved locations X\A, and H(ZX\A|XA) is the
conditional entropy of locations X\A after sensing at locations A. Hence mutual infor-
mation measures the reduction in uncertainty at the unobserved locations. Therefore, in
our approach, we would like to select locations that most reduce the uncertainty in spatial
phenomenon prediction for the environment. Considering mutual information (MI(A))
as the reward function, we can apply Markov decision process (MDP) solvers, like Q-
learning and Value iteration, to solve for an optimal policy that provides a sequence of
locations to visit such that the uncertainty in the spatial map is reduced over time.

In our recent work [48], we presented an anytime algorithm that selectively covers
a region with varying resolution. This approach is very useful when there is a partial
prior knowledge about the environmental field. The region of interest is discretized into
grid cells and each grid-cell is assigned a utility value equivalent to the integral of the
underlying prior over that cell. The rewards are such that higher rewards imply regions
with high interest, i.e. a hotspot-region. The goal is the plan a path for an agent to
cover hotspot-regions with high resolution and remaining region with lower resolution.
We used value iteration to compute the best action to be taken at a given state. Value
iteration is a method of computing an optimal MDP policy. It computes the optimal
value of a state V ∗(x), i.e. the expected discounted sum of rewards that the agent will
achieve if it starts at that state and executes the optimal policy π∗(x).

The optimal value function V ∗(x), ∀x ∈ X, is defined by the Bellman equation [49],

V ∗(x) = max
a

(
R(s, a) + γ

∑
x′∈X

P (x′|x, a)V ∗(x′)

)
, (2)

where γ is a discount factor. Thus according to Eq.2, the value of a state x is the sum of
instantaneous reward R(s, a) and the expected discounted value of the next state V ∗(x′),
when the best available action (a ∈ A) is used. Optimal policy (pi∗(s)) defines an action
for every state that achieves the optimal value. Given the optimal value function for all
states, optimal policy is defined by,

π∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
(3)

In this approach, we clear the rewards as and when the corresponding state is visited.
Thus the reward function is changing over time as the agent clears the rewards. Even
though this violates the Markov assumption over the entire coverage task, every state
transition still holds good to be formulated as a one step MDP, where every state transi-
tion of the agent is modeled as MDP in a new world and the value function is computed
over the updated rewards of the world. Thus the convergence of the value iteration tech-
nique still holds good for every state transition. This method of re-evaluating the utilities
of all states iteratively for every step becomes computationally expensive and unrealistic
to run on-line. Hence, we propose an approximation of updating the utilities of the states.
The value at any state is influenced more by its neighborhood than by a state that is very
distant from it. Hence, for a one-step transition we can achieve good utility updates by
just considering a neighborhood subset of the state space (Sn ⊂ S) instead of complete
state space (S). We have also extended this algorithm to adapt the actions based on the
operational challenges posed by the environmental conditions. In [50] we extended this
work to plan paths for a team of robots to adaptively explore the region. Fig.4 shows the
robot trajectories generated by our algorithm to selectively cover the region of interest.
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(a) Single robot trajectory [48]. The red
triangle indicates the start and green circle
indicates the end of the trajectory.

(b) Trajectories for two robots (black and
white) [50].

Figure 4: Trajectories generated by selective coverage algorithm [48] overlaid on
underlying reward distributions. The color-bars indicate the rewards.

3.1.2 Efficient reconstruction

Efficient coverage needs an efficient way to reconstruct the spatial field with as sparse
samples as possible. In this section we will discuss some of the techniques that we plan to
use to address the problem of field representation and reconstruction. Field reconstruction
in a sensor network setup needs to deal with noisy measurements, unevenly distributed
observations, and fill small gaps in the data with high confidence while assigning higher
predictive uncertainty in sparsely sampled areas. One of the techniques to naturally
handle these necessities is Gaussian Process (GP) models. GP models also have the
advantage of not assuming a fixed discretization of the space and of additionally providing
predictive uncertainties. The explicit model of uncertainty that a GP provides has led
to their successfully application in a wide range of other robotic applications. Hence,
we propose to model the distribution of valuable/interesting locations in the world as a
Gaussian Process: a probabilistic representation of a scalar field [51]. In this modeling
of the spatial phenomena, the value of the field f(x) at each location x is estimated by a
Gaussian distribution with mean m(x) and a covariance function or the kernel k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)) (4)

The assumptions about the smoothness of the estimated field are incorporated in
the covariance function. Input to the model is a set of noisy observations {(x∗i , f ∗i )|i =
1, 2, ...., n}, where f ∗i = f(x∗i )+εi and εi ∼ N (0, σ2

n). A Gaussian measurement noise with
zero mean is assumed over the observations. The predicted value for f at new location x
is estimated as a Gaussian distribution:

f ′(x) = k(x)T (K + σ2
nI)−1f∗ (5)

V ar[f ′] = k(x, x)− k(x)T (K + σ2
nI)−1k(x) (6)

where k(x) = [k(x1, x), .., k(xn, x)]T , K = [k(x, x′)]x,x′∈{x∗i }, and f∗ = [f ∗1 , f
∗
2 , .., f

∗
n]T .

The form of the kernel function k(x, x′) needs to be chosen such that it reflects the
assumptions about the scalar field. We plan to use the radial basis kernel function with
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the form,

k(x, x′) = exp

(
−||x− x

′||2

2l2

)
. (7)

The characteristic length-scale parameter l specifies how quickly the value of the scalar
field becomes uncorrelated with distance. The global noise variance σ2

n, and the length-
scale l are known as the hyperparameters of the process and represented as Θ = (σn, l). To
best represent the underlying data, the hyperparameters Θ need to be adapted. One of the
ways to achieve this is by maximizing the marginal log likelihood of the training data w.r.t.
the hyperparameters. In our recent work [48], we used Gaussian processes to create depth
profile of the sea-floor using sparse altitude measurements from an autonomous surface
vehicle. We also analyzed the variation in the accuracy of the depth map in accordance
with the sparsity of measurements (Fig.5). This gives us an idea about coming up with
a trade-off between building an accurate map and minimizing the cost associated with
sampling. We also used similar approach with other water quality sensor measurements.
These maps are very useful in representing the environment field and figuring out the
local-maxima peaks for further planning of the robotic network.

Figure 5: Efficiency of GP model over no. of samples [48].

One of the limitations of standard GP framework is the assumption of constant length-
scale over the whole input space. Intuitively, the length-scales describe the area in which
observations strongly influence each other [52]. For environmental fields with or with-
out local-maxima peaks, we propose to use locally varying length-scales to account for
different situations. In our case, where we want to sample spatial fields with varying
resolutions, high-resolution at high local-variance regions and lower resolution at low
local-variance regions, we plan to use low length-scale for regions with high sampling
density and higher length-scale when the sampling density is low. We will use an ex-
tension of the squared exponential covariance function [53] to address this problem of
non-stationarity. The squared exponential covariance function takes the form,

k(xi, xj) = |Σi|
1
4 |Σj|

1
4

∣∣∣∣Σi + Σj

2

∣∣∣∣− 1
2

× exp

[
−(xi − xj)T

(
Σi + Σj

2

)−1
(xi − xj)

]
(8)

Each input location x′ is assigned a local Gaussian kernel matrix Σ′ and the covariance
between two targets fi and fj is calculated by averaging between the two local kernels at
the input locations xi and xj. Thus the modeled covariance of the corresponding target
values is influenced by the local characteristics at both locations (xi and xj). In addition,
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to achieve the smoothing behavior, we plan to calculate the local length-scale following
the techniques proposed by Lang et al. [54]. For an input location xi, Lang et al. estimate
the gradient (5f)i from the observations in the local neighborhood. Thus we can adapt
the the local kernels Σi using gradient information. But for a network of robots to achieve
reconstruction of the map of a region in a distributed way we cannot directly apply GPs
because of their unfavorable scaling: O(N3) in time and O(N2) in space, where N is
the number of training samples. Various approximation methods have been proposed in
the literature to overcome these limitations [55] [56]. Most of these methods fall within
sparse approximation where a low-rank approximation is applied to the covariance matrix
of the GP prior using a smaller subset of M (<< N) inducing variables [57]. In this case
complexity in time and memory space are reduced to O(M2N) and O(MN), respectively.

We plan to build on tiling approximation strategy proposed by Plagemann et al. [52],
in which they split the input space into overlapping rectangular segments and assign an
individual GP model to each of the segments. This sub-model is then only provided
with observations from within its segment. For a prediction at input location x, the
GP segment that is most likely to have best approximation for x is used to predict the
function value (f) at x. In our work, the approach is to assign segments to different
robotic sensor nodes based on their locations and use these segments to generate the
observation maps around the nodes helping in decision about the next potential location
to visit.

3.2 Multi-agent coordination

In this section we will discuss the coordination techniques that we plan to consider for the
optimal behavior of the network of sensing robots. As discussed in Section 2.4, centralized
decision making is capable of producing optimal plans, but it suffers from the cons like
non-scalability, vulnerability, and non-robustness. In our multi-robot setup we would
like the robots to be capable of making decisions for themselves and still come up with
an optimal plan for the group task. In our recent work [50], we used a hybrid decision
making architecture with an assumption of full communication between the robots. We
present an algorithm to plan paths for multiple robots to selectively cover the region of
interest such that the information gain per unit time is maximized. We used a shared
memory between the robots where the robots could see the complete current state of the
environment and also their neighbor’s position on the map. But, each robot decided its
own optimal policy for its next action based on the current state of the world and its
neighbors. Thus we tried a hybrid method between centralized and distributed control
architectures. We achieved this by assigning a reward function for robot rk proportional to
the distance of the grid-cell location li from other n− 1 neighboring robots and inversely
proportional to the distance of the grid-cell location li from its own location lrk , thus
encouraging robot k to visit locations that are close to the lrk and farther from other
neighboring agents,

R(lrk , li) ∝

∑
j∈(1,2,..n)

j 6=k

distance(lrj , li)

distance(lk, li)
. (9)

There has been many approaches to multiple robot exploration problem: closest
frontier cell approach [58], rendezvous-based strategies [59], sub-region based explo-
ration [36], but with less focus on coverage efficiency and overall mission efficiency. Re-
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cently, negotiation-based coordination algorithms [60] [61] [40] have shown a reduction in
time and travel distance in multi-robot missions because of their capabilities to address
both coordination and task distribution at once and present task-independent strategies
for multi-robot coordination. We plan to approach the distributed coordination problem
by using distributed bidding algorithm [17]. Sheng et al. propose a nearness measure,

λi = e−
d1
rc + αe−

d2
rc + · · ·+ αn−2e−

dn−1
rc (10)

where, λi is the nearness measure of the ith robot, d1 ≤ d2 ≤ · · · ≤ dn−1 are the distances
d(Ri, Rj) with j ∈ (1, 2, ..., n), n is the number of robots within the same subnetwork,
and rc is the communication range. α(< 1) is a positive fading factor that will help to
disperse the robots and maximize the coverage area.

In a given task, every robot can compute a measure for task-success (Sa) with the
next action a based on the current state of the world, current position and state of other
task-mate robots, and target actions chosen by its task-mates. For example, in the case
of exploration the robot calculates the information gain Ii for each frontier cell i. The
cost (Ca) associated with each action of the robot is computed. In our example problem,
cost would be the distance of the frontier cell i from the robot’s current location. Lastly
robot’s nearness (λ) is computed using the Eq.10. The total gain of the robot if action a
is chosen is given by,

ga = ω1Sa − ω2Ca + ω3λ (11)

where ωi, i ∈ (1, 2, 3) represent positive weights. Now the maximum gain over all possible
actions will be placed as a bid between all the robots. The bid B of a bidding robot is
given by,

B = max
a

(ga). (12)

The bidding robot broadcasts this bid value to all of its neighbors and waits for a fixed
time tbid to hear a response back. If there is no other robot bidding during this period
or no other robot provide a better bid, the robot goes ahead with the decided action.
If there are any new changes to the state of the world during the bidding time period,
then the bidding robot recalculates its bid value. And if there is any other robot who
bids a better bid value, then the robot waits for the winner’s identification and includes
the destination state of the winner robot to calculate its next bid values. Obviously
the bidding wait period tbid is an important parameter. If tbid is very small, it is highly
possible that fewer robots will participate in the bidding. If tbid is very big, it is very
likely that many robots will participate in the bidding, which implies a better bid will
be generated but the waiting time will be longer. Hence, the choice of the tbid has to be
made very carefully and should be backed by proper analytical backing.

4 Topic II : Reconfiguration of sensor networks to

monitor spatio-temporal fields

Persistent monitoring of a spatial phenomenon that is varying temporally (Fig.6) requires
on-line adaptation of the topology of the network of robots because the measurements by
stationary robots cannot capture the dynamics of the spatio-temporal fields. To achieve
this, the autonomous agents should be capable of estimating the temporal evolution of
the phenomenon. In this section we discuss techniques to model the changing field by
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tracking the targets that move around in the region of interest. We are not interested
in tracking each target separately. Instead we want to build a continuous field based on
the density of the targets in the sub-regions and model the changes in this field as the
targets move over time.

Figure 6: An example of a dynamic spatio-temporal field modeled using Gaussian radial
basis functions is shown at different time instants. The black dots and lines represent

the expected sensor network topologies.

4.1 Multi-target motion modeling

Consider a state space X with transition density ft|t−1(xt|xt−1) from time t−1 to t and ob-
servation space Z with a probability density gt(zt|xt) of receiving the observation zt. For
multiple-target tracking, we represent the collection of target states and measurements
at time t as finite sets,

Xt = {xt,1, xt,2, ..., xt,m(t)} ∈ F(X ) (13)

Zt = {zt,1, zt,2, ..., zt,n(t)} ∈ F(Z) (14)

where m(t) is the number of targets in the region og interest at time t, n(t) is the
number of observations made at time t, and F(X ) and F(Z) are the collections of all
finite subsets of X and Z. The multiple-target tracking problem can then be posed as a
filtering problem with (multiple-target) state space F(X ) and observation space F(Z).
Analogous to single target system, uncertainty is characterized by modeling multiple-
target state Xt and measurement Zt as random finite sets (RFSs). The Bayes filter
recursion to propagate the multiple-target posterior in time is given by,

pt|t−1(Xt|Z1:t−1) =

∫
ft|t−1(Xt|X)pt−1(X|Z1:t−1)µs(dX) (15)

pt(Xt|Z1:t) =
gt(Zt|Xt)pt|t−1(Xt|Z1:t−1)∫

gt(Zt|X)pt|t−1(X|Z1:t−1µs(dX)
(16)

where µs is an appropriate reference measure of F(X ) [62]. The recursion Eqs. 15 and
16 involve multiple integrals on the space F(X ), which are computationally intractable.
The combinatorial nature of the multiple-target densities and the multiple integrations
on the (infinite dimensional) multiple-target state space make the multi-target Bayes
filter computationally intractable. Probability hypothesis density filter (PHD filter) is an
approximation developed to alleviate the computational intractability in the multiple-
target Bayes filter. PHD filter propagates the first-order statistical moment, or intensity,
of the RFS of states in time rather than propagating the multiple-target posterior density
in time [47].
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The first order moment (intensity) for an RFS X on X with probability distribution
P is a nonnegative function v on X such that for each region S ⊆ X ,∫

|X ∩ S|P (dX) =

∫
S

v(x)dx, (17)

i.e. the integral of v over any region S gives the expected number of elements of X that
are in S. Given a multiple-target state Xt−1 at time t − 1, the state Xt is given by the
union of surviving targets, the spawned targets, and the spontaneous births.

Xt =

 ⋃
ζ∈Xt−1

St|t−1(ζ)

 ∪
 ⋃
ζ∈Xt−1

Bt|t−1(ζ)

 ∪ Γt (18)

where, Γt is the RFS of spontaneous birth at time t, and Bt|t−1(ζ) is the RFS of targets
spawned at time t from a target with previous state ζ. Using the intensities of these
RFSs, i.e. γt(·) is the intensity of RFS Γt, βt|t−1(·|ζ) is the intensity of RFS Bt|t−1(ζ),
PS,t(ζ) is the probability that a target still exists at time t given that its previous state
is ζ, PD,t(x) is the probability of detection, and κt(·) is the intensity of clutter RFS
Kt, it can be shown that the posterior intensity can be propagated in time under PHD
recursion [47],

vt|t−1(x) =

∫
PS,tft|t−1(x|ζ)vt−1(ζ)dζ +

∫
βt|t−1(x|ζ)vt−1(ζ)dζ + γt(x) (19)

vt(x) = [1− PD,t(x)]vt|t−1(x) +
∑
z∈Zt

PD,t(x)gt(z|x)vt|t−1(x)

κt(z) +
∫
PD,t(ξ)gt(z|ξ)vt|t−1(ξ)

. (20)

The posterior intensity as seen in Eq.19 and Eq.20 is a function on the single-target state
space X unlike the multiple target recursion that operates on F(X ). Hence, the PHD re-
cursion requires much less computational power. Particle-PHD filter has been a popular
implementation due to its ability to deal with time-varying number of nonlinear targets
with relatively low complexity. However, the large number of particles and unreliable
clustering techniques for extracting state estimates leave this approach in disadvantage.
Instead we plan to use Gaussian mixture PHD filters [63] that propagate posterior in-
tensity in time as measurements arrive. The PHD recursion does not admit closed-form
solutions in general, and numerical integration suffers from the curse of dimensional-
ity. Vo et al. in their work [63], successfully demonstrated that for a certain class of
multiple-target models, i.e. linear Gaussian multiple-target models, the PHD recursion
in Eq.19 and Eq.20 admits a closed-form solution. They provide proof showing that if
the posterior intensity at time t − 1 is a Gaussian mixture, then the predicted intensity
for time t is also a Gaussian mixture and this further implies the posterior intensity at
time t is also a Gaussian mixture. Given the Gaussian mixture intensities vt|t−1 and vt,

the corresponding expected number of targets N̂t|t−1 and N̂t can be obtained by summing
up the appropriate weights.

In the multiple-agent case, we will use a similar model where each of the agent is
assigned a sub-region within the region of interest and each agent tracks the number of
targets present in its particular region at any given time. Based on this number of targets
in its region, every agent decides to explore neighboring regions or continue to stay in
their own region. We also plan to merge the field map and get overall trajectories and
distribution of the mobile targets. Once we have the targets tracked, decision about the
topology of the network is made such that the target coverage is maximized. We will
discuss more on the reconfiguration of the network in the next section.
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4.2 Data merging and network reconfiguration

Each robot in the network is assigned with a sub-region around it for which the robot is
responsible to generate a target density map. The region-based approach using the robot
and target densities does not always maximize the total coverage in a region; for example,
if the sensor ranges of robots in a region overlap, the total coverage within the region
is often small even though there are enough robots in the region. In order to obtain a
good robot spread within a region, a visibility maximization method can be used. The
visibility of a region R is defined as [64]:

V isibility(R) =
ThecoveredareaofregionR

TotalareaofregionR
. (21)

The movement of robots within a region is modified in order to pursue two goals in
parallel: each robot tries to maximize the number of targets tracked, and to maximize the
coverage of regions. As discussed in Section 4.1 we plan to use PHD filters to generate
a target density map for every sub region around each robot. To obtain the density
map for entire region of interest, the maps from sub regions need to be merged. But
we need to consider the fact that there are regions in between the covered sub-regions
where there is no data and also there will be regions where there is an overlap between
the sub-regions. We propose to use Gaussian Processes with radial basis kernels (Section
3.1.2) to interpolate and merge the maps from all sub-regions into a global target-density
map.

Once the global target density map is built, the aim is to optimally distribute the
robotic sensor nodes such that the number of targets tracked is maximized. This problem
has similar flavor as the ones explained in Section 3.1.1, where there is an underlying
distribution and the agent needs to maximize the coverage for higher density regions. But
one change is that the robot to target ratio needs to be considered in current problem.
We cannot have all the robotic nodes concentrated in one sub-region. One way to handle
this is by including the target-robot ratio of the sub-region into the reward function. The
reward gained by robot rk at location lrk by taking an action to go to location li can be
represented according to,

R(lrk , li) ∝
Nti

Nri

, (22)

where Nti and Nri represent the number of targets and the number of robots in the
sub-region around location li respectively.

5 Proposed research plan

In this section we list the progress we have made to this date, and the proposed milestones
to evaluate progress in our research plan.

5.1 Progress to date

We have discussed some of the recent work done so far in Section 3.1. Here we present a
list that summarizes our current progress.

• Sparse Sampling and Field Reconstruction: Building a map of a field map of
an environmental phenomenon requires an enormous amount of data and achieving
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this with an autonomous vehicle becomes challenging because of limited sensing
range and battery life. Having an efficient reconstruction technique which can
construct the field with sparse data points becomes very important. In one of our
recent studies [48], we illustrate the performance of the Gaussian process regression
technique over the number of training samples used for field reconstruction (Fig.5).
We constructed a bathymetric map from sparse sonar point-data using a Gaussian
process model. The results show that a decent reconstruction could be achieved
even when the sampling rate is reduced to half.

• Selective Coverage by Multiple-robots: One of the essential features of a
good coverage algorithm is to examine salient regions in the increasing order of the
value-gain associated with them. This becomes significant when the task is to cover
a given region in limited time. We present a value iteration based reward-driven
finite-horizon algorithm to extract the maximum amount of valuable data in the
least amount of time [48]. We extended this approach to multi-robot scenario [50]
where we explored some of the multi-robot coordination strategies as discusses in
Section 3.2.

• Search and Exploration strategies: In a recent collaboration [65], we analyzed
three search strategies to efficiently search passively moving targets by modeling
their distribution and motion. We provided a comparison of performance in terms of
their success rate and the cost of search. In this work, we also presented performance
bounds for guaranteed capture of the target and minimum time of capture. This
study will be of use when we have heterogeneous platforms in our network and have
the active agents looking for passive nodes to exchange information.

• Data Correlation in Heterogeneous Robotic setup: Another collaboration
with Li et al. [66] introduced an array of data mapping tools like Zernike-moment
image matching, and Fabmap image classification. Through this work we compared
and correlated the data collected by an ensemble of heterogeneous autonomous
sensor systems to produce a comprehensive view of the health of the coral reef.

• Frontier based Exploration and Task distribution: Recently in a summer
school we implemented a frontier based exploration algorithm which aims to min-
imize the map-uncertainty by predicting the actions based on Gaussian Process
predictions. We also tried a task coordination experiment with two robots sharing
the tasks of water-surface exploration and water-sampling. We modeled the water
sampling task as a secretary hiring problem where the water from particular spot
is sampled only when the required water-quality threshold is crossed. We are still
working on implementation for a multi-robot scenario and expect to publish this
work in Fall 2016.

5.2 Proposed Milestones

In this thesis we plan to develop a framework for a network of robots to autonomously
plan and update their configuration such that they can efficiently observe and track
spatially varying scalar field(s) that express environmentally important phenomena (e.g.
temperature) and also discrete target groups (e.g. group of wifi-hotspot users). Our
approach will be based on using a combination of topological representation of the robot
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network, and probabilistic model of the phenomena of interest. Following is the list of
problems that lie within the interest of this thesis,

• Sensor network monitoring and tracking 1 target.

• Sensor network monitoring and tracking 2 targets.

• Nt ≤ Nr (Number of targets (Nt) is less than or equal to the number of robots(Nr)).

• Nr < Nt < 2Nr (Number of targets is greater than the number of robots, but not
too big).

• Nt >> Nr (Continuous field).

• Nh ≤ Nr (Number of local-maxima peaks (Nh) is less than or equal to the number
of robots(Nr)).

Another dimension can be added to the list of problems by considering the static and
dynamic targets. Thus there is a lot of problems in the robotic sensor network problem
space that the thesis aims to address. We created milestones in order to evaluate our
progress towards the thesis goals presented in Sections 3 and 4. In this section, we propose
a tentative list of milestones that will guide us towards our research goals. This list will
evolve according to any new developments we make.

• Multi-robot Selective Coverage Experiments on Real Robots: The value-
iteration based coverage algorithm [48] discussed in Section 3.1.1 has been tested
on a single Kingfisher platform (Fig.7(a)). We plan to validate this approach in a
multiple-robot [50] setup on real-robots. The plan is to use autonomous surface ve-
hicles (Fig.7(a)) to map the water-surface phenomena and terrestrial robots (Husky
platforms Fig.7(b)) to map the spatial fields.

(a) Autonomous Surface Vehicle
(Kingfisher robot)

(b) Terrestrial Vehicle (Husky
robot)

(c) Indoor platform (Turtlebot
robot)

Figure 7: Robots planned to be used in our experiments.

• Evaluation of Multi-robot Selective Coverage: As discussed in Section 3.1.2,
we plan to implement varying length-scale Gaussian Processes based on the sam-
pling resolution and rugosity in spatial fields. We want to use this reconstruction
technique as an evaluation for our online selective/adaptive coverage algorithms.

19



• Coordination between Multiple Robotic Sensor Nodes: In our recent work
[50], we presented a distributed decision making system with continuous communi-
cation. We want to explore three different models of communication in multi-robot
coordination: Continuous communication, Range limited communication, and No
communication. We proposed an auction based approach for coordination between
multiple-robots in Section 3.2. In this approach the robots use a range-limited com-
munication model. We plan to implement a frontier based multi-robot exploration
algorithm presented in [17] with a auctioning strategy for coordination between the
robots. For no-communication model of coordination, we plan to decompose the
region of interest into multiple sub-regions and using bidding mechanism to assign
robots to these sub-regions. Then we use a distributed decision making mechanism
to decide actions for each of these robots within their sub-region.

(a) Water quality measure-
ment sensors

(b) Audio sensor (c) Photo sensor

Figure 8: Sensors to be used in exploration field experiments.

For experimental validation, we plan to use autonomous surface vehicles (Fig.7(a))
and terrestrial robots (Husky platforms Fig.7(b)). The goal of exploration exper-
iments will be to map the surface water quality measures collected using water-
quality sensors (Fig.8(a)). With the terrestrial exploration we can think of appli-
cations like mapping the audio field or the light field in the given region of interest
using audio and photo sensors (Fig.8(b) and (c)).

• Region-based Probability Hypothesis Density filters for Distributed Track-
ing of multiple targets: As proposed in Section 4.1, one of our milestones is to
achieve a distributed tracking of evolution in multi-target density distribution using
PHD filters. To achieve this we plan to implement a region-based target density
map where each of the robot in the network is assigned a particular sub-region to
track. Then the task is to merge the density distribution from all the robots to get
a target-density map of the whole region. We plan to use Gaussian mixture PHD
filter implementation presented in [63]. The plan for evaluation of this technique is
to use simulations on ROS-Stage and ROS-Gazebo. We plan to use real robots in
an extension of this methodology explained in the next milestone.

• Reorganization of Robotic Network based on the Target Density Distri-
bution: In this milestone we plan to implement and validate the algorithms to
adapt according to the temporally changing target density distribution. We plan
to use an adaptive sampling approach similar to the one discussed in Section 3.1.1
to follow the target density instead of the underlying spatial field. Here, we are
tracking the targets as continuous density distribution rather than discrete targets.
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Hence, we can use similar adaptive sampling techniques used for continuous spa-
tial fields. We propose an experiment involving mobile wifi-hotspots which change
their configuration according to the motion of potential wifi users. We plan to use
indoor setup for these experiments with robots like Turtlebots (Fig.7(c)) equipped
with wifi-hotspots.

The following item is our “long shot goal”, for which the progress on the prior tasks
is critical, and could possibly not be a part of this thesis.

• Network of Heterogeneous Robots: We are interested in exploring similar
robotic sensor network problems when the sensor robots are all not the same (het-
erogeneous). Operating with heterogeneous network of robots opens a plethora of
interesting problems related to coordination, data fusion, task distribution, com-
munication, and data sampling. We plan to solve problems involving robots with
varying capabilities. For example, having a network of surface vehicles and under-
water vehicles coordinating to monitor a coral reef by mapping the reef at different
resolutions.

6 Conclusion

We present a summary of our planned contributions to Robotic Sensor Network frame-
work. We discuss the challenges in achieving an autonomous network of robotic sensor
nodes. The problems in robotic sensor network that have been of interest are related to
tracking of either continuous spatial field or discrete targets. We present a background
for these problems and also proposed our ideas to address both of these tracking problems
simultaneously.

We propose to develop a framework for a network of robots to autonomously plan
and update their configuration such that they can efficiently observe and track spatially
varying scalar field(s) that express environmentally important phenomena (e.g. temper-
ature) and also discrete target groups (e.g. group of wifi-hotspot users). Our approach
will be based on using a combination of topological representation of the robot network,
and probabilistic model of the phenomena of interest. We described the progress we have
made upto this date and proposed milestones which will help us evaluate the progress
towards our research goal.
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