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Abstract— This paper addresses adaptive coverage of a spa-
tial field without prior knowledge. Our application in this paper
is to cover a region of the sea surface using a robotic boat,
although the algorithmic approach has wider applicability. We
propose an anytime planning technique for efficient data gath-
ering using point-sampling based on non-uniform data-driven
coverage. Our goal is to sense a particular region of interest
in the environment and be able to reconstruct the measured
spatial field. Since there are autonomous agents involved, there
is a need to consider the costs involved in terms of energy
consumed and time required to finish the task. An ideal map of
the scalar field requires complete coverage of the region, but can
be approximated by a good sparse coverage strategy along with
an efficient interpolation technique. We propose to optimize
the trade off between the environmental field mapping and
the costs (energy consumed, time spent, and distance traveled)
associated with sensing. We present an anytime algorithm for
sampling the environment adaptively by following a multi-scale
path to produce a variable resolution map of the spatial field.
We compare our approach to a traditional exhaustive survey
approach and show that we are able to effectively represent a
spatial field spending minimum energy. We present results that
indicate our sampling technique gathering most informative
samples with least travel. We validate our approach through
simulations and test the system on real robots in the open ocean.

I. INTRODUCTION

Our adaptive coverage planner discretely samples a scalar
field over an unknown region and estimates the continuous
spatial field. The goal is to generate a coverage path that
maximizes the information gain in terms of interesting places
to sample from, while minimizing costs (energy consumed,
time spent, and distance traveled). The anytime algorithm
presented in this paper is guaranteed to generate an approx-
imating path to achieve maximum rewards with minimum
energy consumption even if the algorithm is interrupted
before it ends. An algorithm that can return a valid solution
to a problem even if it is interrupted before it ends is referred
to as an anytime algorithm [1].

One of the applications of mobile robotics is exploring
and mapping environmental phenomena often represented as
scalar fields (e.g. temperature). Building a persistent map
of an environmental scalar field for a given region over a
period of time requires continuous sensing. This problem
has been addressed previously by deploying a network of
static sensor nodes uniformly across the region of interest
[2] or by conducting a uniform survey of the region. In
general, however, environmental fields of interest are non-
uniform over a given region. Persistent mapping of such
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Fig. 1: Field deployment: Autonomous surface vehicle (ASV)
performing Selective Sampling.

fields requires the mobile sensing vehicles to estimate the
variations in the field, and selectively sample measurements
to maximize the rewards while minimizing costs over time.

Adaptive sampling surveys of sub-regions with high local-
variance has become the focus of research in robotic explo-
ration, coverage, and mapping. The sub-regions of a spatial
field which show high local-variance and associated local
maxima are referred to as hotspot-regions. Spatial fields with
hotspot-regions are characterized by continuous spatially
correlated measurements with the hotspot-regions exhibiting
extreme measurements and higher spatial variability than the
rest of the field. Hence, sampling these hotspot-regions with
high resolution and covering them earlier in the survey pro-
cess provides a better representation of the spatial field. Our
goal in this paper is to sample such environments adaptively
to produce a varied-resolution maps of such spatial field and
we do this in the domain of ocean surface sampling. The
video [3] presents an overview of our approach.

A. Motivational Applications

Mobile sensing platforms in the form of unmanned
ground vehicles (UGV), unmanned aerial vehicles (UAV),
autonomous surface vehicles (ASV; Fig. 1) and autonomous
underwater vehicles (AUV) can actively respond to changes
in unknown environments and dynamically actuate them-
selves to adaptively sense the area of interest. Some of the
example applications that motivate us are as listed below,
• Environmental Sensing such as monitoring of ocean

phenomena (plankton blooms, upwellings, contamina-
tion) [4][5], coral reefs [6], forest ecosystems [7], rare
species [8], or pollution [9].

• Terrestrial Exploration such as Antarctic meteorite
search [10]; and prospecting for mineral deposits [11];
or localized methane sources on Mars [12].



• Search and Rescue missions in forests and open-water
environments [13].

In this paper, we consider the task of effectively sampling
the visual data of a coastal region which is known to contain
coral reef outcrops and build an image mosaic to monitor the
health of the reefs (ideally over successive years). The exact
distribution of living coral is unknown, though we do know
that the reef is not continuous over the entire region. An
exhaustive survey of this area with our ASV would spend the
majority of its time collecting images in which coral is not
observed, wasting valuable battery power for data which is
not useful for our goal of building image mosaics of the reef.
In this application, the coral heads are hotspot-regions which
need high resolution coverage compared to regions covered
with sand. Hence, our selective coverage approach fits well
for this application. We are interested in collecting visual data
of shallow-water coral reefs (generally within 15m of the
surface) from the ocean surface using an autonomous surface
vehicle (ASV). Since we are sampling from the surface, good
visual data is available at the shallower regions. Hence in this
particular application sampling at shallower regions can be
formalized as providing a higher reward.

B. Contributions

In prior work, we presented an algorithm that selectively
samples a region with similar objectives at a single resolu-
tion [6]. In that work, we presuppose a coarse prior model
of the phenomenon of interest in advance of the sampling
process and thus a sampling path can be precomputed offline.
This paper, in contrast, uses an online anytime algorithm
and avoids the need for a prior. Our previous approach
is useful when there is partial prior knowledge about the
environmental field, for example from aerial surveillance.
One of the limitations of our previous approach is its
relatively expensive computations. In addition, on-site data
sometimes proved to be at odds with observations from aerial
surveys (for example if a promising region proved to contain
only dead coral or other misleading visual cues), so real-
time adaptation is highly desirable. The key contributions
of the technique presented in this paper are that it is not
being dependent on prior knowledge, that it exploits variable
resolution sampling by planning multi-scale paths, and that it
is relatively computationally efficient making the algorithm
feasible for real-time deployment on low power devices, and
that it provides anytime better result even if its interrupted in
the middle. We also provide new performance data support-
ing these claims based on both simulation and experiments
at sea.

C. Background

One is required to exhaustively sample the area as defined
by the limits of the sensor to be able to completely represent
a partially observable region [14], [15], [2]. The traditional
approach to covering a partially observable, obstacle-free
region is to employ a boustrophedon path [16]. The boustro-
phedon or lawnmower path is the approach a farmer takes
when using an ox to plow a field, making back and forth

straight passes over the region in alternating directions until
the area is fully observed. We refer to the boustrophdeon
approach as a metric for measuring the performance of our
sampling approach.

With our approach we trade off completeness for effi-
ciency. This notion of incomplete coverage is to be sufficient
when the underlying phenomenon being sampled is band-
limited, which is to say sufficiently smooth. Even for rapidly
varying phenomena, sub-sampling can be effective when
the sample points are correctly selected. It has been well
established that for low-pass multi-band signals, uniform
sampling can be inefficient and sampling rates far below the
Nyquist rate can still be information preserving [17], [18].
This is the key guiding principle behind active sampling
and the present work. Recently there has been a growing
interest in non-uniform coverage [19], [20]. Seyed et al.
propose a coverage strategy based on space-filling curves
that explore the region non-uniformly [21]. They propose a
coverage tree with Hilbert-based ordering of nodes. We have
previously demonstrated an algorithm to selectively cover a
region based on the underlying reward distribution [6], [13].
This technique, however, requires prior knowledge about the
underlying distribution of the field which is not available in
the proposed approach.

Adaptive sampling refers to strategies in which the pro-
cedure for selecting locations to be included in robot paths
depends on the sampling data observed during exploration
[19]. When the environmental phenomena are smoothly vary-
ing without any local-maxima peaks, non-adaptive strategies
are known to perform well [22]. However, if the environment
contains peaks with high local-variance, adaptive sampling
can exploit the clustering phenomena to map the environmen-
tal field more accurately than non-adaptive sampling. Low et
al. present an adaptive multi-robot exploration strategy that
can perform both wide-area coverage and adaptive sampling
of high local-variance regions using non-myopic path plan-
ning [19]. A key feature of this approach is in covering the
entire adaptivity spectrum, thus allowing strategies of varying
adaptivity to be formed and theoretically analyzed in their
performance.

In contrast to random exploration of the environmental
field [23], directed exploration selects robot paths to observe
regions of high uncertainty. Directed exploration strategies
that focus on feature sampling expect areas of high un-
certainty to contain highly-varying measurements [11][24].
Another approach to seek the trade-off between cost and
information is to use down-sampling. Compressive sensing,
a recently developed down sampling and reconstructing
method yielding a sub-Nyquist sampling criterion, uses con-
densed linear measurements for reconstruction under a sparse
domain without losing useful information [25][26][27].

II. SELECTIVE SAMPLING

A. Overview

We assume that measurements over the region of interest
have non-uniform utility and thus we collect reward in
regions of maximum value, in particular points from which



we can best infer the structure of high-value areas of the
scalar field of interest. In terms of implementation, we do this
by imposing a uniform grid over the region of interest where
each grid-cell is initially assigned a utility value equivalent
to the integral of the underlying prior over that specific grid-
cell. We preferentially sample grid cells that provide a good
trade-off of information and accessibility. Thus our goal is
to harvest most informative samples (rewards) with least
expenditure of energy.

We need a path for an agent to cover hotspot-regions with
high resolution and remaining region with lower resolution.
We apply an efficient method of computing an optimal MDP
(Markov Decision Process) policy called value iteration to
compute the best action in a given state. Optimal value of a
state V ∗(x), ∀x ∈ X , is the discounted sum of instantaneous
rewards R(s, a) and the expected discounted value of the
next state V ∗(x′), when the best available action (a ∈ A) is
used. It is defined by the Bellman equation [28],

V ∗(x) = max
a

(
R(s, a) + γ

∑
x′∈X

P (x′|x, a)V ∗(x′)

)
, (1)

where γ is the discount factor. Optimal policy (π∗(s)) defines
an action for every state that achieves the optimal value.
Given the optimal value function for all states, optimal policy
is defined by,

π∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
(2)

In our approach (Algorithm 1), we clear the rewards when
the corresponding state is visited (as shown in Fig.2). Thus
the reward function is changing over time as the agent clears
the rewards. Even though this violates the Markov assump-
tion over the entire coverage task, every state transition still
holds good to be formulated as a one step MDP, where every
state transition of the agent is modeled as MDP in a new
world and the value function is computed over the updated
rewards of the world. Thus the convergence of the value
iteration technique still holds good for every state transition.

Fig. 2: The figure depicts one step of an agent (white circle)
running selective sampling algorithm from time ti to ti+1. The
colors in the grid-cells (states in our case) represent the rewards

and arrow marks represent the optimal policy for each state.
Green dotted circle represents the subset of states considered for

value iteration.

This method of re-evaluating the utilities of all states
iteratively for every step becomes computationally expensive

and unrealistic to run in real-time. Hence, we apply an
approximation for updating the utilities of the states. Value
at any state is influenced more by its neighborhood than
by a state that is very distant from it. Hence, for a one-step
transition we achieve good utility updates by just considering
a neighborhood subset (shown with green dotted circle in
Fig.2) of the state space (Sn ⊂ S) instead of complete state
space (S).

Algorithm 1 Online Selective Sampling Algorithm
Input: No. of transects nT

Set of all locations X
Hyper-parameters for GP:

hyp.Mean m(x) ∀x ∈ X
hyp.Cov k(x, x′) ∀(x, x′) ∈ X
hyp.lik l

Set of states S
Set of actions A
State transition probability P (s′|s, a)

∀(s, s′) ∈ S and ∀a ∈ A
Discount factor γ
Starting state s1
Sub-region size subR
Reward threshold Rlimit

Convergence threshold ε
Output: Path ~W = (s1, s2, .....sn), a sequence of states.
Predicted field Value f(x) for each location x ∈ X
Predicted field Variance V ar(x) for each location x ∈ X

1: startT = size(S)
nT

2: Start sparse lawnmower at startT for nT
3: Gaussian Estimation: ∀x ∈ X
4: f(x) ∼ GP(m(x), k(x, x′))
5: R(s) = f(s)∀s ∈ S
6: ∀s ∈ S,
7: Initialize V ∗(s), π∗(s), and current state scur = s1
8: Repeat
9: Ssub is the sub-region of size subR around scur

10: ~W = Append( ~W, scur)
11: ∀s ∈ S and If (s ∈ Ssub),
12: (V ∗(s), π∗(s)) =ValueIteration(Ssub, A, P,R, γ, ε)
13: Current Action, acur = π∗(scur)
14: ApplyAction acur on scur to obtain snext
15: R(scur) = 0, Clearing the reward at scur
16: scur = snext
17: Gaussian Estimation: ∀x ∈ X
18: f(x) ∼ GP(m(x), k(x, x′))
19: R(s) = f(s)∀s ∈ S
20: until (

∑
s∈S

R(s) < Rlimit) or the region is fully covered.

21: Return ~W , f(x), and V ar(x)

B. Key properties

As discussed earlier, one of the key features of this
selective sampling algorithm is its ability to provide high-
rewarding path even when the algorithm is interrupted in the
middle. Thus the algorithm is expected to find better and



better solutions the more time it keeps running. This quality
of an anytime algorithm is very essential in robotic surveys
considering the battery limitations and other challenges in the
dynamic environments where such surveys are necessary.

Variable-resolution sampling is important when there is
significant spatial variation on the underlying field being
sampled, leading to an exploitable non-uniformity. In prac-
tice, this occurs when the area to be surveyed is large and
the features that need to be sampled are concentrated at a
few hotspot-regions. The utility of this approach is magnified
when performing repeated mapping of a region over time
for sampling a dynamically varying quantity for which a
model can be inferred. The multi-scale paths with variable-
resolution sampling of the selective sampler are illustrated in
Fig. 3(c). The sample points (represented with white dots) are
dense close to the high-reward locations and become sparse
as the robot moves towards lower-reward regions.

III. EFFICIENT RECONSTRUCTION

Efficient coverage requires an adequate method to re-
construct the spatial field with as sparse samples as pos-
sible. Field reconstruction in an autonomous survey setup
needs to deal with noisy measurements, unevenly distributed
observations, and fill small gaps in the areas with high
confidence while assigning higher predictive uncertainty in
sparsely sampled areas. One of the techniques to naturally
handle these necessities is Gaussian Process (GP) models.
GP models also have the advantage of not assuming a fixed
discretization of the space and of additionally providing
predictive uncertainties. The explicit model of uncertainty
that a GP provides has led to their successful application in
a wide range of other robotic applications. Hence, we model
the distribution of valuable/interesting locations in the world
as a Gaussian Process: a probabilistic representation of a
scalar field [29]. In this modeling of the spatial phenomena,
the value of the field f(x) at each location x is estimated
by a Gaussian distribution with mean m(x) and a covariance
function or the kernel k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)) (3)

The assumptions about the smoothness of the estimated
field are incorporated in the covariance function. Input to
the model is a set of noisy observations {(x∗i , f∗i )|i =
1, 2, ...., n}, where f∗i = f(x∗i ) + εi and εi ∼ N (0, σ2

n). A
Gaussian measurement noise with zero mean is assumed over
the observations. The predicted value for f at new location
x is estimated as a Gaussian distribution:

f ′(x) = k(x)T (K + σ2
nI)−1f∗ (4)

V ar[f ′] = k(x, x)− k(x)T (K + σ2
nI)−1k(x) (5)

where k(x) = [k(x1, x), .., k(xn, x)]T , K =
[k(x, x′)]x,x′∈{x∗i }, and f∗ = [f∗1 , f

∗
2 , .., f

∗
n]T . The form of

the kernel function k(x, x′) needs to be chosen such that
it reflects the assumptions about the scalar field. For our

experiments, we use the radial basis kernel function with
the form,

k(x, x′) = exp

(
−||x− x

′||2

2l2

)
. (6)

The characteristic length-scale parameter l specifies how
quickly the value of the computed scalar field becomes
uncorrelated with distance. The global noise variance σ2

n, and
the length-scale l are known as the hyperparameters of the
process and represented as Θ = (σn, l). To best represent the
underlying data, the hyperparameters Θ need to be adapted.

One of the limitations of standard GP framework is the
assumption of constant length-scale over the whole input
space. Intuitively, the length-scales describe the area in
which observations strongly influence each other [30]. For
environmental fields with or without local-extrema, we use
locally varying length-scales to account for different sample
densities. In our case, where we sample spatial fields with
varying resolutions, high-resolution at high local-variance
regions and lower resolution at low local-variance regions,
we use low length-scale for regions with high sampling
density and higher length-scale when the sampling density
is low.

IV. SIMULATIONS AND RESULTS

We evaluate our approach in simulation over synthetically
generated spatial data and also on ground truth data gathered
from field observations. Fig. 3(a) depicts the synthetic field
generated by sampling three different distributions and nor-
malizing the values. The synthetic spatial field simulates the
distance between two points in the map and thus the robot
simulation can simulate the actual distance traveled. We used
a 4-transect sparse lawn mover with randomly chosen starting
points to generate the initial reward distribution.

We validate our sampling approach by comparing the spa-
tial maps generated by measurements sampled by selective
sampling technique to the one generated by sampling on a
traditional boustrophedon or lawnmower path. Fig. 3(b) and
Fig. 3(c) are the maps generated by lawnmower path and
our selective sampling approach respectively, after traveling
a total of 1500 meters in simulation. The white markers
indicate the sampling points. We quantify these maps, which
indicate how well the underlying distribution is estimated,
by finding the mean squared error (MSE) of the map as
compared to the synthetic ground-truth distribution (Fig.
3(a)).

The statistical evaluation of our algorithm is done by
running 30 simulations with varying start-state for the au-
tonomous agent. We use three metrics to assess the per-
formance of our approach: 1. Mean squared error (mse)
between the interpolated map and the ground truth map, 2.
Percentage of area covered or fraction of grid-cells visited,
and 3. Percentage of value gathered or reward harvested.
Fig. 4 indicates that the selective sampler achieves better
reconstruction of the map with a minimal travel compared
to the exhaustive sampler.



(a) (b) (c)

Fig. 3: (a) Synthetic ground truth spatial field - The spatial field is simulated by the distribution shown here. The values of the field are
between 0 and 1 as indicated by the color bar. Both lawnmower coverage (b) and selective sampling coverage (c) are interrupted after a

travel of 1500m and the spatial field map is generated using their samples. The corner samples in (c) are included to simplify the
boundary implementation.

Fig. 4: Mean squared error in the generated spatial map vs.
distance traveled (m). Error bars indicate two-sided standard

deviation over 30 trials.

Fig. 5: Percentage (%) of area covered against distance traveled
(m). Error bars indicate two-sided standard deviation over 30

trials. Our model does not visit every location in the spatial world
due to varied sampling resolution.

Fig. 5 presents the plot of percentage of area covered.
Here, the selective sampler does not visit 50% of the grid-
cells but still collect very high rewards pretty soon in the
survey as seen in Fig. 6. Lesser number of grid-cells visited
imply lesser energy spent on travel. Thus our goal to harvest
most informative samples (rewards) with least expenditure
of energy is achieved by the selective sampler.

Fig. 6: Percentage (%) of rewards gathered vs. distance traveled
(m). Error bars indicate two-sided standard deviation over 30
trials. Our algorithm generates paths that sample value-rich

locations as quickly as possible.

V. FIELD EXPERIMENTS AND RESULTS

We validated our approach over a shallow region known
to have several coral outcrops in the Folkestone Marine
Reserve, Holetown, Barbados (Fig. 7(a)). We used an ASV
(Fig. 1) equipped with depth pinger that measures the depth
of the sea floor with acoustic pings at a frequency of 1Hz.
The ASV also has GPS (5Hz) for localization and a camera
recording frames at a rate of 10Hz. The surface vehicle was
set to operate at half of its maximum speed (0.65 ms−1).

To build a baseline, we initially sampled the region ex-
tensively (as seen in Fig. 7(b)) and built a depth map of
the sea floor which is utilized as the ground truth (Fig.
7(d)) to evaluate selective sampling approach. Fig. 7(b) and
(c) are the real-time screen shots of the robot’s graphical
interface when the robot is performing respective paths. We
are interested in effectively sampling the visual data of the
coral reefs and build an image mosaic to monitor the health
of the reefs over years. The selective sampling algorithm
generated a sampling path based on the interpolated map
from sparse lawnmower samples (depicted by black trail
in Fig. 7(e)). As we wanted high resolution sampling of
the shallow regions, the algorithm generated sampling path
that covers all the shallower regions, however most shallow



Fig. 7: (a) Experiment site in Barbados with region of interest(white box). (b) Dense lawnmower path and (c) Selective sampling path
executed by the ASV (Red blob represents goal and Green represents home). (d) Depth map of sea floor generated with dense

lawnmower samples. (e) Selective sampling path (black) and samples (white dots). (f) Map generated using the samples from Selective
Sampling path. The color bar indicates the depth of sea floor (in meters) from the surface.

regions get higher priority. Fig. 7(c) presents the actual path
followed by the ASV. The samples collected over this path
of length 1800m were used to generate the spatial map
presented in Fig. 7(f). The mean squared error between the
interpolated depth map and ground truth depth map was
found to be 0.1587m2.

We further evaluated our algorithm by running 10 trials of
simulations on the real data (Fig. 7(d)) with randomly chosen
starting locations for selective sampling algorithm. The Fig. 8
compares the mean squared error of the depth map generated
with samples from selective sampling technique and dense
lawnmower sampling path. The observations are consistent
with the results from synthetic data.

VI. CONCLUSIONS

In this paper we presented an anytime algorithm for active
data-driven sampling of a spatial field and illustrated its
deployment on an autonomous surface vehicle (i.e. a robot
boat). We discovered that the algorithm was efficient and lead
to productive sampling paths that led to good approximations
of the phenomenon being modeled with much lower data-
acquisition costs than alternative methods that have been
used in practice. We presented statistically significant results,
both in simulations and real robot experiments, to establish
that selective sampling algorithm presented in this paper is
capable of gathering most informative samples with least
expenditure of energy.

A limitation of our approach is that it fails to take into

Fig. 8: Mean squared error of the depth map (m2) vs. distance
traveled (m). Error bars indicate two-sided standard deviation over
10 trials. The error bars are not visible due to very small values

compared to the range of y-axis.

account estimates of the available time horizon to complete
the task, which we plan to incorporate in the future. In
addition, our current deployment is a proof of concept for
a more robust and high-endurance vehicle we expect to
use in the future. One of the exciting directions for future
work is to model the dynamics of the changing spatial field
and including those dynamics into the planning of sampling
paths. In the near future we plan to implement this algorithm
on a multi-robot system to address the challenges in active
sampling, exploration, and search and rescue.
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