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Abstract—In this paper we examine the interplay between
terrain classification accuracy and gait in a walking robot,
and show how changes in walking speed can be used for
terrain-dependent walk optimizations, as well as to enhance
terrain identification. The details of a walking gait have a great
influence on the performance of locomotive systems and their
interaction with the terrain. Most legged robots can benefit
from adapting their gait (and specifically walk speed) to the
particular terrain on which they are walking. To achieve this,
the agent should first be capable of identifying the terrain
in order to choose the optimal speed. In this work we are
interested in analyzing the performance of a legged robot on
different terrains and with different gait parameters. We also
discuss the effects of gait parameters, such as speed, on the
terrain identification computed by a legged robot. We use
an unsupervised classification algorithm to classify terrains
based on inertial measurement samples and actuator feedback
collected over different terrains and operation speeds. We
present the effects of speed on the terrain classification in our
classification results.

Keywords-legged robots; terrain classification; gait parame-
ters

I. INTRODUCTION

In this paper we consider automated terrain classification

by robot vehicles, and how terrain identification can facilitate

efficient locomotion. In particular, we consider how changes

in the temporal period of a walking gait for a legged robot

(based on the Aqua design) can be used to optimize terrain

classification, as well as tune the effectiveness of the walk

itself in a terrain-depending manner.

Walking robots have the potential to function over a wide

range of terrain types such as sand, mud, grass, snow, ice,

etc. but different terrains imply different optimal walking

behaviours; a phenomenon well known to any person who

has had to walk across an ice-covered sidewalk during a

Canadian winter. Similarly, terrain-specific gait changes in

legged robots are needed to optimize performance. The gait

transition from walking to running in humans and other ani-

mals has been the subject of extensive prior research. There

are several analyses of the transition from walking to running

in biological systems as the speed of motion increases [1],

[2]. One possible explanation for gait transitions is that the

shift to a new mode of locomotion occurs at the mechanical

limit of whatever locomotion mode is being used [3]. That is,

Figure 1. The hexapod Aqua robot, shown equipped with semi-circle legs
for land locomotion.

once the mechanical limit of the legs, walking in particular

gait, has been reached due to the speed of motion, the

system must switch to a new gait to go any faster. Another

explanation proposes that gait transitions occur in order to

minimize total metabolic cost, switching mechanism known

as an “energetic trigger”. The transition can be predicted by

observing when the rate of energy expenditure for walking

surpasses that for running; this is equivalent to the speed

at which running becomes more efficient than walking in

terms of energy expenditure per unit distance. Human data

indicates this speed to be 2.2-2.3 m/s [4] [5].

Terrain is one more major factor affecting the decision

for the gait changes. The gaits used to walk on different

terrains such as grass, sand, snow, ice tend to be different

from one another. Stability of the system is greatly affected

by gait-depending interactions between the dynamic walker

and the terrain on which it is walking. A running gait which

would be efficient on grass can fail to maintain stability of

the system when used on ice, due to slipping.

In this paper, we concentrate on the performance of the

Aqua robot [6] (Figure 1) when operated with varying leg-

cycle periods on a range of terrains like dry sand, wet

sand, grass and concrete. This vehicle is a hexapod with

six compliant legs and a body plan based on that of the

RHex robot [7] [8]. We compare the performance of the

robot in terms of the energy efficiency per meter of walk. We

also compare the terrain sensitivity of the robot at different
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operation speeds. We use an unsupervised machine learn-

ing algorithm on the proprioceptive measurements captured

over Aqua’s walking trials in order to achieve effective

terrain identification, following the methodology developed

by Giguere et al. [9]. Terrain classification and identification

helps in developing terrain models to assess mobility on a

given terrain. The classification results for different speeds

are compared among each other and the results are also

compared with other related works.

II. RELATED WORK

There has been a body of prior work on contact-based

terrain classification for both wheeled [10] [11] [12] and

legged robots [9] [13] [14] [15], gait transitions in legged

robots [16], gait adaptations [17] and explicit tactile sensors

[18] [19]. However, substantial work needs to be done

in the area of studying the effects of gait-speeds on the

performance of the legged robots walking on varied terrains.

One of the works by Garcia Bermudez, et al. [13], discusses

the maximum velocity achieved by the robot on different

terrains. Through our work, we analyze the performance

in terms of physical speed and the power efficiency of the

robot. Furthermore, a walking robot can optimize its ability

to classify the terrain by controlling the way it interacts

with the terrain [20]. We have done our investigation on this

by comparing the performance of the unsupervised terrain

classification [9] over varied speeds of run of the robot on

four different terrains.

The study made by Coyle, et al. [21] uses singular

value decomposition interpolation (SVDI) to make terrain

classification independent of speed. According to this work,

the issue with reaction-based terrain classification is the

need for large data sets for training the algorithm. Such

an approach could be adapted to our system. However, due

to our unsupervised learning approach, the cost of using

and collecting training data is small. One more similar

work is done by DuPont, et al. [22] in which the speed

dependency of the terrain classification is eliminated by

applying Principal Component Analysis (PCA) on the terrain

signatures. Instead, in our work we make use of speed

dependencies to increase the classification accuracy of the

algorithm.

III. APPROACH

We would like to start our approach by introducing the

Buehler clock which is an essential part of walking gaits

of the Aqua robot. The Buehler clock is the computational

analog of the central pattern generator [23] in animals. The

Buehler clock was originally developed for RHex [7] [24]

and is based on a study which shows Cockroach legs are

excited by a strongly stereotypical clock reference signal

[25]. As the Aqua is based on RHex, it follows a similar

pattern for walking. To achieve the tripod-gait, this clock

uses a piece-wise linear angle vs. time reference trajectory

characterized by four parameters [26]: the total stride or

cycle period tc, the duty factor (the ratio of a single stance

period over the cycle period) ts/tc, the leg angle swept

during stance Φs and an angle offset to break symmetry in

the gait Φ0. In our work we change these parameters which

in turn affect the velocity of the leg motors. We will refer

to these changes as the change in the cycle-frequency fc as

we are affecting the total cycle period tc of the leg.

As discussed in the introductory section, the optimal gait

for an agent can be decided based on many factors: the speed

at which it is walking; the energy efficiency of the gait; the

mechanical constraint on the legs of the agent; the terrain

on which it is walking. We separate the problem into two

sub problems as discussed further in this section.

Firstly, the problem is to come up with an optimal cycle

frequency - for a particular terrain - at which the robot

achieves highest physical speed or operates at power efficient

speeds or a trade-off between both. We have investigated

this problem by taking the walking trials of robot on four

different terrains, like dry sand, wet sand, grass, and concrete

floor, with five different cycle-frequencies. We computed the

physical speed of the robot by measuring the time from

the recorded video and the physical distance between the

flag posts. We also recorded the battery current and battery

voltage during the runs and computed the power consumed

by the robot for every run. Thus we have an estimate of

the physical speeds and power consumption of the robot

on different terrains when operated with different cycle-

frequencies fc for further analysis of the performance of

Aqua.

As a second sub problem, we address the issue related to

terrain sensitivity and differentiability. In this work, terrain

differentiability is defined as the separation between the

terrain classes within a chosen set of features. We collected

the inertial measurement samples and the actuator feedback

from the walking trials on different terrains as mentioned

earlier. The aim is to observe the changes in the terrain

differentiability as the cycle-frequency (fc) changes.

One of the features is the electric current (Il) flowing

in the electric motor of robot legs. A feedback controller

maintains the error between the leg angle and the desired

trajectory close to zero, by modulating the actuator torque

on the legs. This torque at each leg can be modelled as a

function of physical features of the terrain, actual leg angle,

leg point of contact to the ground and acceleration of the

robot. Indeed, this torque is generated by an electrical motor

proportional to the electric current flowing in it [14]. Hence

leg motor current (Il) measurements form an important

part of the feature set containing the information about the

terrain.

Another informative feature is the vertical acceleration of

the robot. As the mechanical properties of terrain change,

the impact on the robot’s dynamics also changes. One

of the major impacts in legged robots would be on the
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Figure 2. Tripod leg configuration for the walking gait of the AQUA
robot. [14]

vertical acceleration as the robot’s legs provide different

push based on the terrain they are interacting with. Further

discussion about the feature set reduction is explained in the

experiments section.

We also propose the idea of enhancing the performance

of terrain classification by using optimal cycle-frequency for

classification. We make use of an unsupervised clustering

algorithm [9] which exploits the time-dependency between

samples. We use the inertial measurement samples and

actuator feedback from the previous experiments to feed

the clustering algorithm. We compare the results of the

clustering with different cycle-frequencies and with other

similar previous works.

IV. EXPERIMENTAL SETUP

A. Description of the Robot (Aqua 1.0)

The robot used for the experiments (Figure 1) [6] [8] is a

hexapod robot that is specifically designed for amphibious

locomotion. This robot is based on the RHex [7] [24] robot.

There are many kinds of legs designed for the appropriate

functionality: semicircle compliant legs for walking, am-

phibious straight legs for walking and swimming and flippers

for underwater swimming. In our experiments for this paper

we have used the semicircle legs as in (Figure 1).

B. Robot Gait

The locomotion of the robot on land is achieved by

rotating the legs in two groups of three legs, sometimes

known as a tripod gait. In this mode of walking, the three

legs, two on one side and one on the other side of the robot,

form a stable tripod. While one tripod formation is in contact

with the ground and propelling the robot forward, the other

tripod formation is circulated rapidly around to be ready for

the next support phase [14] (Figure 2). This quick alternation

of support coupled with the compliant nature of the legs

results in a complex dynamic interaction between the robot

and the ground. This tripod gait is used for the experiments

mentioned in this paper.

C. Data collection

The experiment trials were performed on four different

terrain types with five cycle-frequencies fc evaluated on each

Figure 3. The terrains used for the experiment (dry sand, wet sand, grass,
and concrete surface) and the field setup for the experiments.

terrain. The fc of the Buehler clock is controlled by changing

the input speed levels in the graphical interface of Aqua.

Five different fc are achieved by changing the input speed

control setting to five levels, like 0.1, 0.2, 0.4, 0.6 and 0.8,

on the graphical speed bar of the interface. For each speed

control setting and every terrain, five trials are taken.

The Collected data is a mixture of many sensor mea-

surements as mentioned below. The Relative leg rotations

are measured using optical encoders attached to the motor

shafts and a MSI-P400 quadrature decoder card is used

to decode the signals from light receivers. Leg motor

electrical currents are estimated using carefully calibrated

motor models [27]. These models compute an electrical

current estimate based on the physical parameters of the

motors, the voltage command to the motors and their

angular velocities. The robot is equipped with a 3-axis

Inertial Measurement Unit (3DM-GX1TM), which possesses

3 Micro-Electro-Mechanical Systems (MEMS) acceleration

sensors, 3 MEMS rate gyroscopes and 3 magnetometers. The

accelerometers measure the acceleration of the robot’s body,

in m/s2. The rate gyroscopes return the angular velocity of

the robot’s body in rad/s. The data is collected from these

sensors at a rate of 20 Hz, i.e. 20 readings of sensor data

per second.

The video of all the trials was recorded from a fixed

distance as explained in the next subsection. This video is

used to compute the time taken by the robot to cover the

experimental path distance. This time is more accurate than

the stopwatch timing and it is used in computing the physical

speed of robot.

D. Terrains and the field setup

The experiments were conducted on four kinds of terrains

(Figure 3a), namely dry sand, wet sand, grass and concrete

surface. The setup as seen in Figure 3b was used on these

terrains and Aqua was made to walk from start point till end

point.
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Figure 4. Physical speed of robot plotted against the speed control readings
of the leg rotation. The plot shows the variation found over different terrains.

V. EXPERIMENTAL RESULTS AND OBSERVATIONS

A. Performance at varying speeds

This experiment was done to see the effect of speed

(fc) on the performance of Aqua robot. The performance is

measured in terms of physical speed and power consumed

per meter walk. In Figure 4, we can see that the physical

speed of the robot increases with cycle-frequency for soft

granular terrains like dry and wet sand. However, the physi-

cal speed of the robot on hard terrains like grass and concrete

surface starts to decrease at the higher speed control setting

of 0.8. We suspect that the robot legs start to slip from

the surface of terrain when rotated at very high speeds on

hard terrains. On soft terrains, the granularity of the terrain

gives grip to the legs and helps the robot achieve higher

physical speeds. Thus, to achieve higher physical speeds on

hard terrains, the speed control setting of the robot should

be capped to the range 0.6 to 0.7. To achieve the same on

soft granular terrains the robot needs to operate at its highest

cycle-frequency of the leg motors. These results thus clearly

show that the type of terrain has a strong influence on the

velocity of the robot, for fixed gait parameters.

The plot (Figure 5) shows the variation of power con-

sumed per unit distance walk of the robot with varying

cycle-frequencies. From the results it is evident that the

robot reacts differently to hard and soft granular terrains.

There is a trade-off between the cycle-frequency at which the

robot consumes less power yet achieves acceptable physical

speeds. For example, on wet sand the robot can operate

at high cycle-frequency of 0.8 achieving highest physical

speed, still maintaining less power consumption compared

to other terrains. However on dry sand it is very power

expensive to operate at high cycle-frequency.

Figure 5. Root mean square of the power consumed per a meter walk of
the robot. The plot shows the errors in the readings over five trials for each
speed and terrain.

B. Terrain differentiability

We have analyzed the effects of cycle-frequencies (oper-

ating speeds) on the differentiability of the terrain classes.

We created a feature set as explained in the section 2 by

considering the leg motor currents (Il) and vertical accel-

erations (Az) as these features of robot are most affected

by physical interaction with the terrains. The dimensionality

of the feature set was reduced by sampling the data at

one particular angle of the leg rotation cycle, at which the

separation between the terrain classes was the highest [28].

In Figure 6, the features Il and Az are plotted as a function

of leg angle. The plot also shows the optimal angle (1.25

radians) at which the classes are well separated. The optimal

angle was computed by considering the angle at which the

average distance between the classes was Maximum. Then

the data was sampled at leg angle of 1.25 radians and used

for further results.

The results in Figure 7 show the data samples from

different terrains sampled at the leg angle of 1.25 radians.

The data samples were collected over all 5 speed control

settings (i.e. fc of leg rotation). It can be inferred from

the results that the separation between the classes varies

as the speed control setting changes from 0.1 through 0.8.

Moreover, this class separation is terrain-dependant. For

example, the terrains grass and dry sand are well separated

at the speed control setting of 0.1, but not separated at the

speed of 0.8. Similar observations can be made for different

pairs of terrains. This emphasizes the impact of terrains on

the robot’s dynamics.

These results can be used to analyze how difficult it is to

classify the classes at different fc. They can also be used to

verify the terrain identified by the robot. For example, if the

robot identifies the terrain to be concrete while walking with
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Figure 6. Leg motor current and Vertical acceleration (Az) plotted as
a function of Leg angle. The plot also shows the angle (1.25 radians) at
which the data sets collected from different terrains are well classifiable.

Figure 7. Distribution of sensor measurements in feature space (motor
current Il, vertical acceleration Az) sampled at leg angle 1.25 rad, with
changes in the speeds of operation (fc of the leg rotation).. The data shows
four terrain classes.

a speed control setting of 0.1, it can switch the speed control

setting to 0.8 and re-run the identification to be sure of the

terrain detected. Once the terrain is verified, the robot can

also choose a fc at which that particular terrain is isolated

and verify which all terrains the robot is not on. Thus, these

results are very useful in real-time gait adaptation for the

terrain qualities.

C. Terrain Classification and the cycle-frequency

We have already identified how the changes in cycle

frequency have an impact on the way the terrain classes

are distributed in the feature space. To assess the effect of

cycle-frequency on the terrain classification, we classified

the terrain data with an unsupervised terrain classification

algorithm proposed by Giguere et al [9].

1) Algorithm and Data sampling: The algorithm used is

an unsupervised clustering of unlabelled samples of the sen-

sor data. These samples represent sequences of consecutive

measurement from the robot as it traverses the terrains. Since

the samples are generated through a physical system interact-

ing with a continuous or piece-wise continuous terrain, time-

dependency will be present between consecutive samples.

The clustering algorithm [9] explicitly exploits this time-

dependency. It is a single-stage batch method, eliminating

the need for a moving time-window.

The algorithm works by minimizing a cost function which

minimizes the variation of classifier posterior probabilities

over time, while simultaneously maintaining a wide distri-

bution of posterior probabilities. The aim of the algorithm is

to search for the parameters �θ that minimizes the following

cost function,

argmin
�θ

Nc∑

i=1

∑T−1
t=1 (p(ci| �xt+1, �θ)− p(ci|�xt, �θ))

2

var(p(ci| �X, �θ))2

The dataset needed for the algorithm are,

• A sample set �X of T time-samples of feature vectors

�xi, generated by a Markovian process with Nc (No. of

Classes) states.

• A classifier with parameters �θ used to estimate the

probability P (ci|�xt, �θ), that the sample belongs to class

ci ⊂ C.

• A set of parameters �θ that is able to classify the data

set �X reasonably well.

The classifier input �xt used for this work was collected

by sampling 13 sensors - comprising of 3 accelerometers, 3

rate gyroscopes, 1 leg angle encoder and 6 motor current

estimators - at a rate of 30 samples per one cycle of

the leg. Thus each feature vector, �xt is of size 13x30.

The dimensionality of the dataset was reduced by applying

Principal Component Analysis and only the top Nf = 5
number of features were selected for the classification. The

advantage of this algorithm is that it can be evaluated with

three different kinds of classifiers based on the knowledge

about the class distributions. For this work we have used the

k-Nearest Neighbors (kNN) classifier with this cost function.

2) Results: The results indicate that there are specific

cycles-frequencies or speed control settings at which the

classification between different sets of terrains becomes

more accurate. As illustrated in Figure 8, the speed control

setting of 0.4 is optimal for most of pairs of terrains.

However, for dry sand and grass, a speed control setting

of 0.8 gives better classification success rates and for Grass

and Concrete, a speed control setting of 0.2 gives better

classification success rates. The classifier performs better

when the speed factor is involved. The success rate for two
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Figure 8. Plot to show the variation in the performance of the classifier
with the cycle-frequency. It shows a comparison between different pairs of
terrains.

Figure 9. Results of the classification algorithm run on the data set
collected at a speed (Cf ) of 0.4 and Nf=5 (PCA features) selected from
the data. Also shows the confusion matrix of the classification.

class classifier is estimated around 90% at the optimal speed.

This is more efficient than the success rate of 73.75% in [9].

The previous results suggest that 0.4 speed control setting

is optimal for classification of most of the terrains. Hence,

we classified the data from four different terrains collected

at the speed control setting of 0.4. Top 5 (Nf ) PCA features

from the data were used. We see from Figure 9 that the

performance is very good and comparable to the similar

experiments done in [13] with an overall success rate of

92.11%. But the advantage here is the use of unsupervised

algorithm on unlabelled data and still being able to produce

similar results. There was training with just unlabelled data

and the feature set used is also very small. Thus the results

are very promising and push us to do more work on similar

lines in future.

VI. CONCLUSION

The main aim of this work was to quantitatively measure

the effects that gait parameters can have on the performance

of a robot when it walks on different terrains. We also

Figure 10. Gait-switch system - A complete real-time gait adaptation
system with a controller to choose optimal speed of walk before the terrain
classification is invoked.

evaluated the performance of the terrain classification when

operated at different cycle-frequencies. Some of our results

suggest that the optimal speed of leg rotation for energy

consumption is tied to the terrain type. Thus, by controlling

the cycle-frequency one can achieve a trade-off between the

physical speed and power consumption of the robot.

We also demonstrated that the terrain identification sensi-

tivity of the robot, and thus the error margin of the classifier,

differs when it walks with different cycle-frequencies. This

implied that active gait selection should improve classifica-

tion accuracy. In fact, we observed a significant increase in

efficiency of the terrain classification algorithm by varying

the cycle-frequency of the leg rotation. While this notion is

consistent with human experience, we believe this is the first

time this phenomenon has been reported or quantified in a

robotics context.

VII. FUTURE WORK

The classification problem is highly dependent on the set

of features selected. We would like to experiment with the

larger feature sets and evaluate the obtained results. We also

plan to extend and generalize our results to a more diverse

set of terrain types, more rugged non-flat terrains, like gravel,

rocky paths, etc.

In the near future, we plan to build a gait-switching system

(Figure 10) for automated real-time gait adaptation in Aqua

[6] based on real-time terrain classification. Our current

results suggest that gait-alterations can be used to enhance

both walking efficiency as well as identification itself.

The increased performance of the classifier with varied

cycle-frequencies suggests that the accuracy of the gait-

switch system can be improved by including a speed con-

troller. This controller would switch the robot to an optimal

speed for the classification, so that the classifier predicts the

terrain more accurately. We also plan to build the controller

to be decision tree based; so that it could choose an optimal

speed from a set of speeds. Decision could be made based

on some conditional queries about the current terrain the

robot is walking on and the probability with which the next

terrain is predicted.
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